ZEITSCHRIFT FÜR NATURFORSCHUNG

SECTION C

A EUROPEAN JOURNAL OF BIOSCIENCES

Council

E. BÜNNING, Tübingen A. BUTENANDT, München M. EIGEN, Göttingen Editorial Board

A. HAGER, Tübingen
K. HAHLBROCK, Köln
W. HASSELBACH, Heidelberg
P. KARLSON, Marburg
F. KAUDEWITZ, München
J. KLEIN, Tübingen
J. ST. SCHELL, Köln
E. WECKER, Würzburg

Advisory Editorial Board

P. BÖGER, Konstanz D. BÜCKMANN, Ulm K. G. GÖTZ, Tübingen G. GOTTSCHALK, Göttingen R. JAENICKE, Regensburg G. F. MEYER, Tübingen M. RAJEWSKY, Essen H. SCHIMASSEK, Heidelberg D. SCHULTE-FROHLINDE, Mülheim/R. F. F. SEELIG, Tübingen J. SEELIG, Basel H. SIMON, München W. STEGLICH, Bonn A. TREBST, Bochum

EDITED IN COLLABORATION

WITH THE INSTITUTES OF THE MAX-PLANCK-GESELLSCHAFT

VOLUME 39 c

1984

VERLAG DER ZEITSCHRIFT FÜR NATURFORSCHUNG TÜBINGEN

|--|

Original Communication.	Original	Commun	ication	lS
-------------------------	----------	--------	---------	----

Novel Ceramides from Cystobacter fuscus (Myxob	oac-
terales) (In German)	
H. ECKAU, D. DILL, and H. BUDZIKIEWICZ	1

- Pistallarin, a Characteristic Metabolite of Clavariadelphus pistillaris and Several Ramaria Species (Basidiomycetes) (In German) W. STEGLICH, B. STEFFAN, K. STROECH, and M. WOLF 10
- New Dextrorotatory Peterocarpan Phytoalexins from Leaflets of Nissolia fruticosa J. L. INGHAM and K. R. MARKHAM 13
- 6-Hydroxyflavones and Other Flavonoids of Crocus J. B. HARBORNE and C. A. WILLIAMS 18
- Aliphatic I-Amino Acid Decarboxylase from Ferns (Filicopsida) 24
- T. HARTMANN, K. BAX, and R. SCHOLZ
- Elaboration of the 6,7,8 Oxygenation Pattern in Simple Coumarins: Biosynthesis of Puberulin in Agathosma puberula Fourc. S. A. BROWN, D. E. A. RIVETT, and H. J. THOMP-
 - 31 SON
- Biosynthesis of the Bufadienolide Ring of Scillirosid in Scilla maritima L. R. GALAGOVSKY, A. M. PORTO, G. BURTON, and E. G. GROS 38
- An Adsorbent as Phytohormone Reservoir in a Plant Cell Suspension Culture (In German)

45

- R. BEIDERBECK and B. KNOOP
- Hormone Induced Changes in Carotenoid Composition in Ricinus Cell Cultures. I. Identification of Rhodoxanthin H. KAYSER and A. R. GEMMRICH 50

Conformation about the Glycosidic Bond and Sus- ceptibility to 5'-Nucleotidase of 8-Substituted Analogues of 5'-GMP
P. LASSOTA, R. STOLARSKI, and D. SHUGAR 55
Identification of N ¹ -Glycolylbiuret in the Gamma Radiolysis of Aerated Aqueous Solution of Cyto- sine. Influence of the pH M. POLVERELLI, J. ULRICH, and R. TEOULE 64
Purification and Partial Characterization of the Soluble NADH Dehydrogenase from the Photo- trophic Bacterium <i>Rhodopseudomonas capsulata</i> T. OHSHIMA, M. OHSHIMA, and G. DREWS 68
Causal Relationships among Metabolic Circadian Rhythms in <i>Lemna</i> K. GOTO 73
Light Dependent Ammonium Inhibition of Nitrate Assimilation in <i>Rhodopseudomonas capsulata</i> AD2 K. ALEF 85
Nickel-Dependent Uptake-Hydrogenase Activity in the Blue-Green Alga Anabaena variabilis H. ALMON and P. BÖGER 90
Effect of Electron Transfer Inhibitors and Uncou- pling Agents on the Chlorophyll Fluorescence Lifetime during Slow Fluorescence Decline in Bean Leaves and Intact Chloroplasts E. A. KOTOVA and M. D. IL'INA 93
The Influence of Amino Acid Ligands and Vita-

min C on the Reduction Potential of Fe(III): Polarographic and Electron Spin Resonance Investigations

102 B. KIEFER, H. SAPPER, and W. LOHMANN

- Effects of N-Aryl-N',N'-Dialkyl-1,2-Ethanediamines on ATP Formation in Chloroplasts. QSAR of Amine Uncouplers G. VAN DEN BERG and N. BRANDSE 107
- Inhibition by Sethoxydim of Chloroplast Biogenesis, Development and Replication in Barley Seedlings H. K. LICHTENTHALER and D. MEIER 115

Con

Legume Root Response to Symbiotic Infection. En- zymes of the Peribacteroid Space R. B. MELLOR, E. MÖRSCHEL, and D. WERNER 123	ES
Cell Cycle Kinetics and Metabolism of Ehrlich Asci- tes Tumor Cells in the Presence of Chlorampheni- col as Inhibitor of Mitochondrial Protein Synthesis W. KROLL and F. SCHNEIDER 126	Ele
Immune Serum against Anti-DNA-8-Methoxypsora- len Photoadduct	111
Z. ZARĘBSKA, IVI. JARZĄBEK-CHORZELSKA, I. CHORZELSKI, and S. JABLOŃSKA 136	Ins
X-Ray Studies on Phospholipid Bilayers. III. Struc- ture and Morphology of L- α -Dilaurylphosphatidyl- ethanolamine (DLPE) M. SUWALSKY, C. G. SEGUEL, and F. NEIRA 141	Int
Fusion of Large Unilamellar Liposomes Containing Hemocyanin with Planar Bilayer Membranes F. PASQUALI, G. MENESTRINA, and R. ANTOLINI 147	Inl
The Triton X-100 and High Salt Resistant Residue of Saccharomyces cerevisiae Nuclear Membranes, II. Isolation of the Nuclear Membrane Insoluble Re- sidue from G 1 Arrested Cells and Immunological Comparison with the Corresponding Vertebrate Nuclear Fraction	Sa
K. MANN and D. MECKE 156	Th
Conductivity of Normal and Pathological Human Erythrocytes (Homozygous β -Thalassemia) at Ra-	

diowave Frequencies C. BALLARIO, A. BONINCONTRO, C. CAMETTI, A. ROSI, and L. SPORTELLI 160

Notes

New Cinnamoyl Esters of Quinic Acid from Meum athamanticum

D. BARRON, M. KAOUADJI, and A.-M. MARIOTTE 167

Product Specificity during Incubation of Methyl Linoleate with Soybean Lipoxygenase-I A. HATANAKA, T. KAJIWARA, J. SEKIYA, and M. 171 Asano

itents
ESR Investigations on Lyophilized Blood: Mixtures with Ascorbic Acid H. NEUBACHER 174
Electron Microscopic Evidence for the Transmem- brane Displacement of Calcium ATPase D. J. SCALES and S. R. HIGHSMITH 177
The Influence of Cysteine on the Reaction of d-Gu- anosine with <i>cis</i> -Diamminedichloroplatinum (II) I. KULAMOWICZ, R. OLIŃSKI, and Z. WALTER 180
Insulin Binding Sites Induced in the Tetrahymena by Rat Liver Receptor Antibody G. CSABA, P. KOVÁCS, and A. INCZEFI-GONDA 183
Intranuclear Crystals in the Intestinal Epithelium of the Snail Marisa cornuarietis (Prosobranchia) R. G. LUTFY and A. RUTHMANN 186
Inheritance of mitochondrial DNA in Oenothera ber- teriana and Oenothera odorata Hybrids A. BRENNICKE and B. SCHWEMMLE 191
Salmonella/Microsome Mutagenicity of 1-Nitropyre- ne-2-ol, a Nitropyrene Phenol Formed in the Pho- tolysis of 1-Nitropyrene G. LÖFROTH, L. NILSSON, E. AGURELL, and A. YASUHARA 193
The Chromophore of the Visual Pigment in Some Insect Orders K. VOGT 196
The Life Span and Osmotic Fragility of Erythrocytes in Mice Bearing Benzo(a) Pyrene – Induced Fi- brosarcoma M. R. RAY and J. ROY CHOWDHURY 198

Contents of Number 3/4

Original Communications

- Field Desorption and Fast Atom Bombardment Mass Spectrometry of Spirostanol and Furostanol Saponins from Paris polyphylla
 - H.-R. SCHULTEN, S. B. SINGH, and R. S. THAKUR

IV

201

Miotoxin-A: A Novel Macrocyclic Trichothecene from the Brazilian Plant <i>Baccharis coridifolia</i> G. G. HABERMEHL, L. BUSAM, and J. STEGEMANN	Regulation of Acetyl-Coenzyme A Carboxylase and Acetyl-Coenzyme A Synthetase in Spinach Chlo- roplasts
212	A. SAUER and KP. HEISE 268
Two Different Pathways Leading to Phenanthrenes and 9,10-Dihydrophenanthrenes of the Genus Dioscorea KH. FRITZEMEIER, H. KINDL, and E. SCHLÖSSER 217	Aurintricarboxylic Acid and Polynucleotides as Novel Inhibitors of Ribonucleotide Reductases H. BAUMANN, R. HOFMANN, M. LAMMERS, G. SCHIMPFF-WEILAND, and H. FOLLMANN 276
Glycoprotein Biosynthesis in <i>Phytophthora mega-</i> sperma f. sp. glycinea. An in vitro Study P. BABCZINSKI 222	Activation Volumes of the Calcium Dependent para- Nitrophenyl Phosphate Hydrolysis of the Sarco- plasmic Reticulum Calcium Transport Enzyme K. G. KÖNIG and W. HASSELBACH 282
Catabolism of (R)-Amygdalin and (R)-Vicianin by Partially Purified β -Glycosidases from Prunus serotina Ehrh. and Davallia trichomanoides G. KUROKI, P. A. LIZOTTE, and J. E. POULTON 232	Alteration of Acylphosphate Formation of Cardiac Sarcoplasmic Reticulum ATPase by Calmodulin- Dependent Phosphorylation C. PIFL, B. PLANK, G. HELLMANN, W. WYSKOVSKY,
Volatile Sulfur Compounds Produced by Methionine Degrading Bacteria and the Relationship to Con- crete Corrosion M. POHL, E. BOCK, M. RINKEN, M. AYDIN, and	and J. SUKO 289 Isolation and Characterization of Tributyltin Resis- tant Mutants of <i>Escherichia coli</i> A. P. SINGH and K. SINGH 293
 W. A. KONIG 240 About the Similarity between Polymaleic Acid and Water Soluble Humic Fractions F. MARTIN, F. J. GONZALEZ-VILA, and HD. LÜ-DEMANN 244 	Photoinactivation of <i>Propionibacterium acnes</i> by Near-Ultraviolet Light B. KJELDSTAD 300
A Micromethod for Rapid Quantitative Determina- tion of Phosphonate Phosphorus V. M. KAPOULAS, S. K. MASTRONICOLIS, I. C. NAK- HEL, and H. J. STAVRAKAKIS 249	Notes Flavonoid Aglycones in the Leaf Resin of Some Cistus Species E. WOLLENWEBER and K. MANN 303
Structure-Dependent Biological Activity of Racemic 1-Substituted 2-O-Hexadecylglycero-3-phospho- cholines and Analogues S. KLUGE, HP. KERTSCHER, and G. OSTERMANN 252	Herpetol, a New Dimeric Lignoid from <i>Herpetospermum caudigerum</i> WallM. KAOUADJI and J. FAVRE-BONVIN 307
Glutamate Dehydrogenase of <i>Pisum sativum</i> : Heat- Dependent Interconversion of the Multiple Forms A. EHMKE, HW. SCHEID, and T. HARTMANN 257	Structure Determination of 6-C-β-D-glucopyrano- syl-8-C-α-L-arabinopyranosyltricetin from <i>Radula</i> <i>complanata</i> K. R. MARKHAM and R. MUES 309
Mechanisms of Adriamycin-Dependent Oxygen Activation Catalyzed by NADPH-Cytochrome c-(Ferredoxin)-Oxidoreductase E. PAUR, R. J. YOUNGMAN, E. LENGFELDER, and E. F. ELSTNER 261	 A Convenient Synthesis of <i>p</i>-Hydroxy-β-[carboxy-methyl]-cinnamic Acid (Sphagnum Acid) (In German) D. WÄCHTER and H. RUDOLPH 311

 γ-Butyrolactone from the Black Stink Bug: Aethus indicus Westwood (Hemiptera: Pentatomidae) T. O. OLAGBEMIRO, M. N. KHAN, and A. MOHAMMED 313 	A Nitroxide Diuron Analog as a Probe for the Mode of Action of Herbicides Y. SIDERER, N. LAVINTMAN, C. GILON, and I. OHAD 342
Identification of a Major Pathway of Strand Break Formation in Poly U Induced by OH Radicals in Presence of Oxygen	The Effects of 3-(3,4-Dichlorophenyl)-1,1-dimethyl- urea on the Photosynthetic Oxygen Complex MJ. DELRIEU 347
D. SCHULTE-FROHLINDE and E. BOTHE 315	DCMU-Induced Fluorescence Changes and Photo- destruction of Pigments Associated with an Inhibi-
K ⁺ Diffusion Potential in Liposomes Bearing Chloroplast ATP Synthase	S. M. RIDLEY and P. HORTON 351
M. DINANT and K. KAMINSKI 320	Use of Chlorophyll Fluorescence Induction Kinetics to Study Translocation and Detoxication of
Yeast-Like Endosymbionts in an Ichneumonid Wasp J. MIDDELDORF and A. RUTHMANN 322	DCMU-Type Herbicides in Plant Leaves J. M. DUCRUET, P. GAILLARDON, and J. VIENOT 354
Erratum to G. LASKAY, T. FARKAS, E. LEHOCZKI, and K. GULYA, Z. Naturforsch. 38 c, 741-747 (1983) 326	Measurements of Penetration and Detoxification of PS II Herbicides in Whole Leaves by a Fluorome- tric Method M. Voss, G. RENGER, P. GRÄBER, and C. KÖTTER
Contents of Number 5	Studies on the Functional Mechanism of System II Herbicides in Isolated Chloroplasts
Original Communications	G. Renger, R. Hagemann, and W. F. J. Vermaas 362
Mode of Action of Herbicides in Photosynthesis	Herbicide/Quinone Binding Interactions in Photo-
Preface J. J. S. van Rensen, A. Trebst, P. Böger 327	system II W. F. J. VERMAAS, G. RENGER, and C. J. ARNTZEN 269
I. Herbicides and the Photosynthetic Electron Transport	Interaction of Photosystem II Herbidices with Bicar- bonate and Formate in Their Effects on Photo-
Interference by Herbicidal Inhibitors of Electron Transport with Phosphorylation and Permeability	synthetic Electron Flow J. J. S. VAN RENSEN 374
Properties of Chloroplast Membranes D. E. Moreland and W. P. Novitzky 329	Comparison of Bicarbonate Effects on the Variable Chlorophyll <i>a</i> Fluorescence of CO ₂ -Depleted and
Cyanoacrylate Inhibitors of Photosynthetic Electron Transport. Nature of the Interaction with the Re- ceptor Site	Non-CO ₂ -Depleted Thylakoids in the Presence of Diuron D. J. BLUBAUGH and GOVINDJEE 378
J. PHILLIPS and J. HUPPATZ 335	The Effects of Bicarbonate Depletion and Formate Incubation on the Kinetics of Oxidation-Reduc-
Photosynthetic Electron Transport Inhibitors: Some Problems Related to an Accurate Determination of the Molecular Site of Action C. J. VAN ASSCHE 338	tion Reactions of the Photosystem II Quinone Ac- ceptor Complex H. H. ROBINSON, J. J. EATON-RYE, J. J. S. VAN RENSEN, and GOVINDJEE 382

- Formate as an Inhibitor of Photosynthetic Electron Flow
 - J. F. H. SNEL, D. NABER, and J. J. S. VAN RENSEN 386
- Comparison of Diuron- and Phenol-Type Inhibitors: Additional Inhibitory Action at the Photosystem II Donor Site K. PFISTER and U. SCHREIBER 389
- Herbicide and Plastoquinone Binding to Photosystem II

W. OETTMEIER, H.-J. SOLL, and E. NEUMANN 393

- Redox-State Dependent Changes of Inhibitor-Binding to the Photosystem II Acceptor Complex W. URBACH, H. LAASCH, and U. SCHREIBER 397
- Increased Binding of [¹⁴C]Ioxynil in Unicellular Green Algae under Anaerobiosis and by Addition of Other Phenolic Herbicides or Uncouplers W. NEUMANN, H. LAASCH, and W. URBACH 402
- Structure Activity Correlation of Herbicides Affecting Plastoquinone Reduction by Photosystem II: Electron Density Distribution in Inhibitors and Plastoquinone Species

A. TREBST, W. DONNER, and W. DRABER 405

- The Molecular Basis of Triazine-Herbicide Resistance in Higher-Plant Chloroplasts
 J. HIRSCHBERG, A. BLEECKER, D. J. KYLE, L. MCINTOSH, and C. J. ARNTZEN
 Protein Sequence Homologies between Portions of the L and M Subunits of Reaction Centers of *Rho-dopseudomonas capsulata* and the Q_B-Protein of Chloroplast Thylakoid Membranes: a Proposed Relation to Quinone-Binding Sites
 J. E. HEARST and K. SAUER
 421
- Identification of the Herbicide Binding Region of the Q_B-Protein by Photoaffinity Labeling with Azidoatrazine P. K. WOLBER and K. E. STEINBACK 425
- Herbicide-Binding Protein, Binding Sites and Electron-Transport Activity: Quantitative Relations G. HERRMANN, A. THIEL, and P. BÖGER 430
- Isolation of 32-35 kDa Thylakoid Proteins from Chlamydomonas reinhardii N. PUCHEU and G. F. WILDNER 434

Metribuzin-Resistant Mutants of Chlamydomonas reinhardii

N. PUCHEU, W. OETTMEIER, U. HEISTERKAMP, K. MASSON, and G. F. WILDNER 437

Comparison of the Photosynthetic Capacity between Intact Leaves of Triazine-Resistant and -Susceptible Biotypes of Six Weed Species

J. L. P. VAN OORSCHOT and P. H. VAN LEEUWEN

440

II. Bleaching Herbicides

- Inhibition of Phytoene Desaturase the Mode of Action of Certain Bleaching Herbicides G. SANDMANN, I. E. CLARKE, P. M. BRAMLEY, and P. BÖGER 443 Comparison of the Action of Bleaching Herbicides J. FEIERABEND 450 Herbicides which Interfere with the Biosynthesis of Carotenoids and Their Effect on Pigment Excitation, Chlorophyll Fluorescence and Pigment Composition of the Thylakoid Membrane K. H. GRUMBACH 455 Short Note on Dihydropyrones, a New Herbicidal Family with Bleaching Properties J. VIAL and G. BORROD 459 Inhibition of Carotene Biosynthesis in Cell Extracts of Phycomyces blakesleeanus P. M. BRAMLEY, I. E. CLARKE, G. SANDMANN, and P. BÖGER 460 Interaction of Herbicides with Pea Chloroplasts K. N. SINGH, J. PRAKASH, A. K. AGARWAL, and G. S. SINGHAL 464 **III. Peroxidations, Chloroplast Metabolism**
- Multiple Modes of Action of Diphenyl Ethers P. Böger 4
 - 468
- The Diphenyl-Ether Herbicide Oxyfluorfen: A Potent Inducer of Lipid Peroxidation in Higher Plants
 - K. J. KUNERT 476
- Photodynamic Damage to Isolated Chloroplasts: A Possible Model for *in vivo* Effects of Photosynthetic Inhibitor Herbicides
- M. P. PERCIVAL and A. D. DODGE 482

 Radical Formation and Peroxidative Activity of Phytotoxic Diphenyl Ethers R. LAMBERT, P. M. H. KRONECK, and P. BÖGER 486 Chloroplast Biogenesis, Its Inhibition and Modification by New Herbicide Compounds H. K. LICHTENTHALER 492 	 Herbal Insecticides II [1]. The Essential Oil from Leaves of Chrysanthemum balsamita L. Insectici- dal Activity and Composition (In German) H. J. BESTMANN, B. CLASSEN, U. KOBOLD, O. VOSTROWSKY, F. KLINGAUF, H. STROBEL, and K. KNOBLOCH 543 Chemical Defense of Leguminosae. Are Ouinolizi-
The Effect of Phosphinothricin on the Assimilation of Ammonia in Plants A. WILD and R. MANDERSCHEID 500	dine Alkaloids Part of the Antimicrobial Defense System of Lupins? M. WINK 548
Physiological Changes in <i>Matricaria inodora</i> Following Ioxynil and Bromoxynil Treatment G. E. SANDERS, A. H. COBB, and K. E. PALLETT 505	Chemical Defense of Lupins. Mollusc-Repellent Properties of Quinolizidine Alkaloids M. WINK 553
Increased Synthesis of Photosystem II in <i>Triticum</i> vulgare when Grown in the Presence of BAS 13-338 S. BOSE, R. M. MANNAN, and C. J. ARNTZEN 510	 Common Identity of UDP-Glucose: Anthocyanidin 3-O-Glucosyltransferase and UDP-Glucose: Fla- vonol 3-O-Glucosyltransferase in Flowers of <i>Petu- nia hybrida</i> L. M. V. JONSSON, M. E. G. AARSMAN, J. BASTIA- ANNET, W. E. DONKER-KOOPMAN, A. G. M. GERATS, and A. W. SCHRAM 559
Contents of Number 6 Original Communications Hydroxycinnamoyl Esters of Malic Acid in Small Radish (Raphanus sativus L. var. sativus) W. BRANDL, K. HERRMANN, and L. GROTJAHN 515	 O7g and D6a: Two Flavone Glycosylating Genes in Silene, which are Only Expressed in Cotyledons and Rosette Leaves J. M. STEYNS, O. MASTENBROEK, G. VAN NIGTE-VECHT, and J. VAN BREDERODE 568
Epicuticular Waxes of Seed Coats from Species of the Genus Cistus L. (Cistaceae) P. KROLLMANN, C. EICH, and PG. GÜLZ 521	 pH-Induced Inactivation of Glycerol Dehydrogenase from <i>Bacillus megaterium</i> (In German) A. GANZHORN, M. SCHARSCHMIDT, and G. PFLEI- DERER 575
 Characterization of Volatile Constituents from Photomixotrophic Cell Suspension Cultures of <i>Ruta graveolens</i> F. DRAWERT, R. G. BERGER, R. GODELMANN, S. COLLIN, and W. BARZ 525 	Pheromone-Binding and Matrix-Mediated Events in Sexual Induction of Volvox carteri R. GILLES, C. GILLES, and L. JAENICKE584Control of Fatty Acid Incorporation into Chloroplast
The Structure of Desmocarpin, a Pterocarpan Phyto- alexin from Desmodium gangeticumJ. L. INGHAM and P. M. DEWICK531	Lipids in vitro A. SAUER and KP. HEISE 593 Differences between Rat Splenic and Thymic Cells
Examination of the Structure Activity Relationship of Antihepatotoxic Natural Products (Silybin- Antamanide) by X-Ray Analysis (In German) H. LOTTER 535	with Respect to the Effects of Ethidium Bromide on the Unsheduled DNA Synthesis (DNA Repair Synthesis) and the Nucleoid Sedimentation (In German) K. TEMPEL, A. GOETTE, and I. SCHMEROLD 600

6 -	Leaves of Chrysanthemum balsamita L. Insectici- dal Activity and Composition (In German) H. J. BESTMANN, B. CLASSEN, U. KOBOLD, O. VOSTROWSKY, F. KLINGAUF, H. STROBEL, and K. KNOBLOCH 543
n	Chemical Defense of Leguminosae. Are Quinolizi- dine Alkaloids Part of the Antimicrobial Defense System of Lupins?
0	М. WINK 548
-	Chemical Defense of Lupins. Mollusc-Repellent Properties of Quinolizidine Alkaloids
5	WINK 555
-	Common Identity of UDP-Glucose: Anthocyanidin
n S	vonol 3-O-Glucosyltransferase in Flowers of Petu-
0	nia hybrida L. M. V. Jonsson, M. E. G. Aarsman, J. Bastia- annet, W. E. Donker-Koopman, A. G. M. Gerats, and A. W. Schram 559
	07g and D6a: Two Flavone Glycosylating Genes in Silene, which are Only Expressed in Cotyledons and Rosette Leaves
11 5	J. M. STEYNS, O. MASTENBROEK, G. VAN NIGTE- vecht, and J. van Brederode 568
of	pH-Induced Inactivation of Glycerol Dehydrogenase from <i>Bacillus megaterium</i> (In German)
1	A. GANZHORN, M. SCHARSCHMIDT, and G. PFLEI- DERER 575
)- а	Pheromone-Binding and Matrix-Mediated Events in Sexual Induction of <i>Volvox carteri</i>
5.	R. GILLES, C. GILLES, and L. JAENICKE 584
5	Control of Fatty Acid Incorporation into Chloroplast Lipids <i>in vitro</i>
)-	A. SAUER and KP. HEISE 593
1	Differences between Rat Splenic and Thymic Cells with Respect to the Effects of Ethidium Bromide
р 1-	on the Unsheduled DNA Synthesis (DNA Repair Synthesis) and the Nucleoid Sedimentation (In
	German)

VIII

Time-Resolved Polarized Fluorescence of C-Phyco- cyanin and Its Subunits from <i>Mastigocladus lami</i> -	Notes
nosus D. Happaner, D. Creativer, T. Mayre, S.	HPLC Analysis of Alkaloids in Extracts of Callus
P. HEFFERLE, P. GEISELHART, I. MINDL, S.	P VERDOODTE T MULDER KRIEGER P WILNISMA
Currencemulate Inhibitary of the Hill Departier III	J. M. VERZIJL, and A. BAERHEIM SVENDSEN 680
Stereochemical and Electronic Aspects of Inhibi	Abscisic Acid in Phytomethogenic Fungi of the
tor Binding	Genera Botrytis Ceratocystis Fusarium and
J. L. HUPPATZ and J. N. PHILLIPS 617	Rhizoctonia
	K. Dörffling, W. Petersen, E. Sprecher, I.
Interaction of Photosynthetic and Respiratory Elec- tron Transport in Blue-Green Algae:	URBASCH, and HP. HANSSEN 683
Effect of a Cytochrome c-553 Specific Antibody	Temperature Induced Spectral Changes of Chloro-
I. ALPES, E. STÜRZL, S. SCHERER, and P. BÖGER	phyll in Micelles and Solution
623	S. S. Brody 685
Inhibition of Photosynthetic Reactions by Aureomy-	Lysine-Enhanced Threonine-Inhibition of Bacterial
CIN	Aspartokinase: Concerted or Synergistic Feedback
JI-YO I E AND O. HEBER 027	Inhibition?
Effect of UV-B Radiation on Biomass Production	JH. KLEMME 687
Pigmentation and Protein Content of Marine	Lamovirene Structural Proof of the Spermatozoid
Diatoms	Releasing and Attracting Pheromone of Lamina-
G. Döhler 634	riales
A Granulanciasia Inhibitar Partially Durified from	FJ. MARNER, B. MÜLLER, and L. JAENICKE 689
A Granulopolesis minipilor Farmany Furned from Large-Scale Serum-Free Cultures of Porcine Leu-	
kocvtes	Packing Pattern of DNA in Bacteriophage 12
M. KASTNER, H. R. MAURER, U. GERLACH, H.	A. N. GHOSH, A. SEN, and N. N. DAS GUPTA 69/
RENNER, and J. H. WISSLER 639	
Rabbit Antipeptide Antibodies against Restricted	Contents of Number 7/8
Domains of the Histocompatibility Complex	
A. CHERSI and R. A. HOUGHTEN 646	Original Communications
Purification of Soybean DNA-Dependent RNA Polymerase I on a Column of Plasmid pHFK 206 Covalently Attached to Agarose	New Terphenylquinones from Mycelial Cultures of <i>Punctularia atropurpurascens</i> (Basidiomycetes) [1] (In German)
K. GROSSMANN, H. FRIEDRICH, and H. U. SEITZ 652	H. ANKE, I. CASSER, R. HERRMANN, and W. STEG- LICH 695
Thermal Diffusion as a Mechanism for Biological	The Composition of Terpene Hydrocarbons in the
Transport	Essential Oils from Leaves of Four Cistus Species
F. J. BONNER and L. O. SUNDELÖF 656	PG. GÜLZ, U. KOBOLD, K. MICHAELIS, and O. VOSTROWSKY 699
The Sensitivity Shift Due to Light Adaptation De-	
pending on the Extracellular Calcium Ion Con- centration in <i>Limulus</i> Ventral Nerve Photorecep-	Chemosystematics of Japanese Heterotropa (Aristo- lochiaceae)
tor	N. HAYASHI, K. MAESHIMA, T. MURAKAMI, and H.
H. STIEVE, M. BRUNS, and H. GAUBE 662	Комае 705

Novel Epicuticular Leaf Flavonoids from Kalmia and Gaultheria (Ericaceae) E. WOLLENWEBER and G. KOHORST 710	Comparison of the Polypeptide Complement of Dif- ferent Plastid Types and Mitochondria of Narcis- sus pseudonarcissus
	P. HANSMANN and P. SITTE 758
Conversion of Dihydroflavonols to Flavonols with Enzyme Extracts from Flower Buds of <i>Matthiola</i> <i>incana</i> R. Br. R. SPRIBILLE and G. FORKMANN 714	Polycation-Cell Surface Interactions and Plasma Membrane Compartments in Mammals. Interfer- ence of Oligocation with Polycationic Condensa- tion
The Crystal Structure of Anhydrous Xanthosine Displays Intramolecular O(2')HO(3') Hydro- gen Bond	S. ANTOHI and V. BRUMFELD 767 Electron Microscopic Study of the Polymyxin
B. LESYNG, C. MARCK, and W. SAENGER 720	Treated Goat Erythrocytes T. K. MANDAL and S. N. CHATTERJEE 776
Tyrosine Oxidation by NO2 in Aqueous Solution	
W. A. Prütz 725	Statistical Analysis of Quantum Bump Parameters in <i>Limulus</i> Ventral Photoreceptors
Comparison of Different Methods for the Determi- nation of Phenylalanine Hydroxylase Activity in	W. KEIPER, J. SCHNAKENBERG, and H. STIEVE 781
Rat Liver and Euglena gracilis	Multiple Periodicities in the Circadian System of
R. M. FINK and E. F. ELSTNER 728	Unicellular Algae
	M. HOFFMANS-HOHN, W. MARTIN, and K. BRINK-
Studies on the Possible Mechanism of Inactivation of Phenylalanine Hydroxylase by Destructive Oxy-	MANN 791
gen Species	System Analysis of the Circadian Rhythm of Euglena
R. M. FINK and E. F. ELSTNER /34	gracilis, II: Masking Effects and Mutual Interac- tions of Light and Temperature Responses
Two Dimensional Double-Quantum and COSY Spectra of Porcine Adenylate Kinase P Rösch and K -H GROSS 738	T. KREUELS, R. JOERRES, W. MARTIN, and K. BRINKMANN 801
	Mode of Discharge of Hantocysts in Enhelota gem-
On the Reactivity of Native Phytochrome	mipara (Suctoria, Ciliata) (In German)
P. EILFELD and W. RUDIGER 742	G. DENWITZ 012
Uncoupling of Spinach Thylakoids by Gramine C. S. ANDREO, E. G. ORELLANO, and H. M. NIE- MEYER 746	The Radial Polar Pattern of Differentiation in <i>Tricho- plax adhaerens</i> F. E. Schulz (Placozoa) (In German) V. SCHWARTZ 818
Effects of Vitamin A in the Presence of Vitamins D_3 , E, K ₁ on Red Cell Membrane Structure	Notes
R. Cicero, D. Callari, L. Guidoni, V. Viti, M.	
SCALIA, I. MAIDA, A. BILLITTERI, and G. SICHEL 749	Exudate Flavanoids in <i>Hieraceum intybaceum</i> , an Alpine Hawkweed (In German)
Hormone Induced Changes in Carotenoid Composi-	
tion in <i>Ricinus</i> Cell Cultures. II. Accumulation of Rhodoxanthin during Auxin-Controlled Chromo-	Oxidized <i>p</i> -Phenylenediamine Staining of Epoxy Resin Sections
plast Differentiation A. R. GEMMRICH and H. KAYSER 753	J. C. STOCKERT, R. ARMAS-PORTELA, O. D. COL- MAN, J. M. FERRER, and A. TATO 835

х

sus pseudonarcissus
P. HANSMANN and P. SITTE 758
Polycation-Cell Surface Interactions and Plasma Membrane Compartments in Mammals. Interfer- ence of Oligocation with Polycationic Condensa- tion
S. ANTOHI and V. BRUMFELD 767
Electron Microscopic Study of the Polymyxin Treated Goat Erythrocytes
T. K. MANDAL and S. N. CHATTERJEE 776
Statistical Analysis of Quantum Bump Parameters in <i>Limulus</i> Ventral Photoreceptors
W. KEIPER, J. SCHNAKENBERG, and H. STIEVE 781
Multiple Periodicities in the Circadian System of Unicellular Algae M. HOFFMANS-HOHN, W. MARTIN, and K. BRINK-
MANN 791
System Analysis of the Circadian Rhythm of <i>Euglena</i> gracilis, II: Masking Effects and Mutual Interac- tions of Light and Temperature Responses
T. KREUELS, R. JOERRES, W. MARTIN, and K. BRINKMANN 801
Mode of Discharge of Haptocysts in Ephelota gem- mipara (Suctoria, Ciliata) (In German)
G. BENWITZ 812
The Radial Polar Pattern of Differentiation in <i>Tricho- plax adhaerens</i> F. E. Schulz (Placozoa) (In German) V. SCHWARTZ 818

Exudate	Flavanoids	in	Hieraceum	intybaceum,	an
Alpine	Hawkweed	(In	German)		
E. Woi	LLENWEBER			:	833

The Distribution of β-Cyano-L-alanine in Cyanoge- nic Lepidoptera (In German) K. WITTHOHN and C. M. NAUMANN837	Degradation of the Isoflavone Biochanin A-7-O-glu- coside-6"O-malonate and Phenylacetic Acids by <i>Fusarium javanicum</i> D. SCHLIEPER, D. KOMOSSA, and W. BARZ 882
Specificity of Synthetic Sex-Attractants in Zygaena Moths E. PRIESNER, C. M. NEUMANN, and J. STERTEN- BRINK 841	Induced and Constitutive Isoflavonoids in <i>Phaseolus</i> mungo L. Leguminosae S. A. ADESANYA, M. J. O'NEILL, and M. F. RO- BERTS 888
Analysis of a Sex-Attractant System in the Noctuid Moth <i>Rhyacia baja</i> Schiff E. PRIESNER 845	Cytochromes of the Purple Sulfur Bacterium Ecto- thiorhodospira shaposhnikovii W. H. KUSCHE and H. G. TRÜPER 894
The Pheromone Receptor System of Male Eulia mi- nistrana L., with Notes on Other Cnephasiini Moths E. PRIESNER849	Metabolic Activity of Hydroxycinnamic Acid Glucose Esters in Cell Suspension Cultures of <i>Chenopodium</i> <i>rubrum</i> D. STRACK, M. BOKERN, J. BERLIN, and S. SIEG 902
Isolation and Respiratory Assay of Earthworm Body Wall Mitochondria T. V. RAO and U. C. BISWAL 853	Purification by Affinity Chromatography of Gluta- thione Reductase (EC 1.6.4.2) from <i>Escherichia coli</i> and Characterization of such Enzyme A. M. MATA, M. C. PINTO, and
Neuroanatomical Evidence for Electroreception in Lampreys B. FRITZSCH, MD. C. DE CAPRONA, K. WÄCHT- LER, and KH. KÖRTJE 856	J. LÓPEZ-BAREA 908 Occurrence of Mercaptopyruvate Sulfotransferase Activity in Photosynthetic Organisms
<i>In vivo</i> Metabolism of [4- ¹³ C]Phenacetin in an Isolated Perfused Rat Liver Measured by Con- tinuous Flow ¹³ C NMR Spectroscopy K. ALBERT, G. KRUPPA, KP. ZELLER, E. BAYER, and F. HARTMANN 859	Occurrence of the Bacteriochlorophyll-Binding Poly- peptides B870 α and B800-B850 α in the Mutant Strains Y5 and A1a ⁺ of Rhodopseudomonas capsu- lata, which are Defective in Formation of the Light-Harvesting Complexes B870 and B800-850, Respectively
Contents of Number 9/10	M. n. TADROS, R. DIERSTEIN, and G. DREWS 922
Original CommunicationsInorganic Bromide in Higher FungiT. STIJVE863	Functional and Regulatory Properties of H ⁺ Pumps at the Tonoplast and Plasma Membranes of Zea mays Coleoptiles A. HAGER and W. BIBER 927
Characterization of Microcystis Strains by Alkyl Sul- fides and β -Cyclocitral F. JÜTTNER867	De novo Synthesis and Levels of Cytochrome c and a Biliprotein during Pupal-Adult Development of a Butterfly, Pieris brassicae
Phthalide Derivatives from Meum athamanticum Jacq. M. KAOUADJI, A. M. MARIOTTE, and H. REUTE- NAUERNAUER872Alkaloid Sequestration by Papaver somniferum Latex B. C. HOMEYER and M. F. ROBERTS876	H. KAYSER 938 Development-Specific Incorporation of [¹⁴ C]5-Ami- nolevulinate and [³ H]Leucine into Cytochrome <i>c</i> and Biliprotein in the Butterfly, <i>Pieris brassicae</i> . Correlation with the Ecdysteroid Titer in the Pupa H. KAYSER and U. KRULL-SAVAGE 948

- Distribution of the H1 Histone Subfractions in Syrian Hamster Chromatin Fractions
 - H. Modrzejewska, G. Gałązka, J. Szemraj, and H. Panusz 958
- Phospholipids and Glycerides Composition during Spheroplasts Formation of Mycobacterium smegmatis ATCC 14468

M. V. V. S. Murty and T. A. Venkitasubramanian 962

- Surface Pressure Hysteresis of Mixed Lipid/Protein Monolayers: Applications to the Alveolar Dynamics
 - R. MUTAFCHIEVA, I. PANAIOTOV, and D. S. DIMItrov 965
- Cell Fusion by Simulated Atmospheric Discharges: Further Support for the Hypothesis of Involvement of Electrofusion in Evolution

G. KÜPPERS, K.-J. DIEDERICH, and U. ZIMMER-MANN 973

- Octopamine Modulates the Sensitivity of Limulus Ventral Photoreceptor H. STIEVE and E. ANDRÉ 981
- Influence of the Membrane Potential on the Intracellular Light Induced Ca²⁺-Concentration Change of the *Limulus* Ventral Photoreceptor Monitored by Arsenazo III under Voltage Clamp Conditions I. IVENS and H. STIEVE 986
- The Cellular Substrate: A Very Important Requirement for Baculovirus *in vitro* Replication
 H. G. MILTENBURGER, W. L. NASER, J. P. HARVEY,
 J. HUBER, and A. M. HUGER 993

Notes

- Production of C₆-Wound Gases by Plants and the Effect on Some Phytopathogenic Fungi (In German) I. URBASCH 1003
- Binding of the Fluorescent Dye 8-Anilinonaphthalene 1-Sufonic Acid to the Native and Pressure Dissociated β_2 -Dimer of Tryptophan Synthase from *Escherichia coli*

TH. SEIFERT, P. BARTHOLMES, and R. JAENICKE 1008

Determination of 4-Pregnene-3-ones in Thymus Tissue Samples by High Performance Liquid Chromatography J. REISCH and J. NORRENBROCK 1012

- Effects of Vitamin D₃ on *in vivo* Labelling of Chick Skeletal Muscle Proteins with [³H]Leucine A. R. DE BOLAND and R. L. BOLAND 1015
- A New Isolation Procedure for Acylamino Acid Amidohydrolase. Kinetics of the Co²⁺, Mn²⁺, Ni²⁺ and Cd²⁺ Enzyme (In German) I. GILLES, H.-G. LÖFFLER and F. SCHNEIDER 1017

Dose Rate Dependence of Radiation Induced IgG Membrane Receptor Alteration [1] F. OJEDA, D. MORAGA, M. I. GUARDA, and H. FOLCH 1021

Contents of Number 11/12

Original Communications

- A New Cembranoid from Tobacco, IV V. Sinnwell, V. Heemann, A.-M. Bylov, W. Hass, C. Kahre, and F. Seehofer 1023
- Constituents of Agaricus xanthodermus Genevier: The First Naturally Endogenous Azo Compound and Toxic Phenolic Metabolites M. GILL and R. J. STRAUCH 1027
- Accumulation of Volatile Flavour Compounds in Liquid Cultures of *Kluyveromyces lactis* Strains H.-P. HANSSEN, E. SPRECHER, and A. KLINGEN-BERG 1030
- Dopamine Accumulation in *Papaver somniferum* Latex B. C. HOMEYER and M. F. ROBERTS 1034
- Differential Synthesis of Alkaline Phosphatase in
 - Rhizobium Species Isolated from the TropicsA. P. SINGH and J. B. SINGH1038
- Preparation of an Affinity Chromatographic System for the Separation of ADP Binding Proteins E. BIEBER, C. WOENCKHAUS, and H. PAULI 1042
- A Simple Method to Prepare Affinity Resins on Cellulose Basis
 K. EISELE, F. DIAS COSTA, C. PASCUAL, and B. OFENLOCH-HÄHNLE

Isolation of the Adducts of Platinum Complexes and Nucleic Acid Bases on the Dowex 50 W Column R. OLIŃSKI and Z. WALTER 1052	Flash Photolysis of Liposomes Containing Chloro- phyll and Zeaxanthin, as a Function of Tempera- ture (2°-34°C)
	S. S. Brody 1108
Isolation of the Products Resulting from the Reac- tion of <i>cis</i> and <i>trans</i> Diaminedichloroplatinum [II] with DNA and Chromatin on the Dowex 50 W	Properties of Membrane Fractions Prepared by Chromatophore-Liposome Fusion
Column R. Oliński and Z. Walter 1057	A. F. GARCIA and G. DREWS 1112
Structural Studies on the Galactan from the Albu- min Gland of <i>Achatina fulica</i> O. HOLST, H. MAYER, R. O. OKOTORE, and W. A. KÖNIG	Light Induced Changes in the Conformation of Spinach Thylakoid Membranes as Monitored by 90° and 180° Scattering Changes: A Compara- tive Investigation
KONIG 1005	S. J. COUGHLAN and U. SCHREIBER 1120
Incorporation of Radiolabeled Tyrosine, N-Acetyl- dopamine, N- β -Alanyldopamine, and the Aryl- phorin Manducin into the Sclerotized Cuticle of Tobacco Hornworm (<i>Manduca sexta</i>) Pupae	Effects of Membrane-Acting Drugs and Aerobiosis on Production of Streptolysin S and Nuclease in Hemolytic Streptococci A TAKETO and Y TAKETO 1128
L. GRÜN and M. G. PETER 1066	
High Energy Radiation-Induced Crosslinking of	Haemolytic Properties of Cereal 5-n-Alk(en)ylresor- cinols
KJ. DEEG, L. KATSIKAS, and W. SCHNABEL 1075	А. Коzubek 1132
Red-Light Effects Sensitized by Methylene Blue on Nitrate Reductase from Spinach (Spinacia olera-	Dependence on Membrane Lipids of the Effect of Vanadate on Calcium and ATP Binding to Sarco- plasmic Reticulum ATPase
cea L.) Leaves S. G. Mauriño, M. A. Vargas, C. Echevarría, P.	P. MEDDA and W. HASSELBACH 1137
J. APARICIO, and J. M. MALDONADO 1079	Metabolic Effects of Direct Current Stimulation on Cultured Vascular Smooth Muscle Cells
Fluorescence-ODMR of Reaction Centers of <i>Rho- dopseudomonas viridis</i>	H. Heinle, G. Sigg, A. Reich, and KU. Thiede- mann 1141
A. ANGERHOFER, J. U. VON SCHUTZ, and H. C.	
Flack Pottern of Ownern Fucketion in Constring	Juvenile Hormone III as a Natural Ligand for Photo- affinity Labelling of JH-Binding Proteins
Etioplasts of Oat	III. STOFF and M. O. FEIER II-5
F. FRANCK and G. H. SCHMID 1091	Titer of Juvenile Hormone III in Drosophila hydei during Metamorphosis Determined by GC-MS-
Studies on the O ₂ Evolution under Flash Light Illu- mination in Preparations of <i>Anacystis nidulans</i> E. K. PISTORIUS and G. H. SCHMID 1097	MIS U. Bührlen, H. Emmerich, and H. Rembold 1150
Pressure Induced Shifts in Spectral Properties of Pig- ment-Protein Complexes and Photosynthetic Or	Feeding and Molt Inhibition by Azadirachtins A, B, and 7-Acetyl-azadirachtin A in <i>Rhodnius prolixus</i> Nymphs
ganisms S. S. BRODY and K. HEREMANS 1104	E. S. GARCIA, P. DE AZAMBUJA, H. FORSTER, and H. REMBOLD 1155

|--|

A High Frequency Mutation Starts Sexual Repro-	Muscle Sarcoplasmic Reticulum and Transiently
B Wright and B Charge B More and I	W HARDEN DA CH and A MICANA 1180
D. WEISSHAAR, K. OILLES, K. MOKA, and L.	W. HASSELBACH and A. MIGALA 1189
JAENICKE 1139	Identification and Field Evolution of a Can Dham
Effect of Entropollular Aller I: Matel Calter on the Elec	Identification and Field Evaluation of a Sex Phero-
Effect of Extracellular Alkali Metal Salts on the Effec-	mone of the European Pine Moth
tric Parameters of Human Erythrocytes in Normal	E. PRIESNER, H. BOGENSCHUTZ, K. ALBERT, D. W.
lassemia)	REED, and M. D. CHISHOLM 1192
C. Ballario, A. Bonincontro, C. Cametti, A.	Stimulation of Brain Synaptosome – Associated
ROSI, and L. SPORTELLI 1163	Adenvlate Cyclase by Acidic Phospholipids
,	S. TSAKIRIS 1196
Impaired Diffusion Coupling-Source of Arrhythmia	
in Cell Systems	Stimulation of Immunoreactivity against Endoge-
I. SCHREIBER, M. KUBÍČEK, and M. MAREK 1170	nous Retroviruses and Protection against Leuke-
· · · · ·	mia of Older AKR Mice by Treatment with Anti-
	bodies against Retroviral Surface Components.
Notes	Role of p15(E) Antibody (In German)
	H. SCHWARZ, HJ. THIEL, K. J. WEINHOLD, D. P.
Arboxeniolide-1, a New, Naturally Occurring Xenio-	BOLOGNESI, and W. SCHÄFER 1199
lide Diterpenoid from the Gorgonian Paragorgia	
arborea of the Crozet Is. (s. Indian Ocean)	Comment on: C. Koschnitzke, F. Kremer, L. Santo,
M. D'AMBROSIO, A. GUERRIERO, and F. PIETRA	P. Ouick and A. Poglitsch, A Non-Thermal Effect
1180	of Millimeter Wave Radiation on the Puffing of
Flavonoids of Fricameria laricifolia (Asteraceae)	Giant Chromosomes (Z. Naturforsch. 38c,
W D CLARK and F WOLLENWERER 1184	883-886. 1983)
W. D. CLARK and E. WOLLEN WEBER 1104	A. H. FRUCHT 1203
Oxygen Supply of Roots by Gas Transport in Alder-	
Trees	Answer to the Comment of A. H. Frucht
W. GROSSE and P. SCHRÖDER 1186	F. Kremer 1204
Inhibitors of Calmodulin-Dependent Phosphoryla-	Subject Index 1205
tion Simultaneously Inhibit Calcium Uptake and	-
Calcium-Dependent ATPase Activity in Skeletal	Authors Index 1231

XIV

Time-Resolved Polarized Fluorescence of C-Phycocyanin and Its Subunits from *Mastigocladus laminosus**

P. Hefferle, P. Geiselhart, T. Mindl, and S. Schneider

Institut für Physikalische und Theoretische Chemie der Technischen Universität München, D-8046 Garching, Bundesrepublik Deutschland

and W. John and H. Scheer

Botanisches Institut der Universität, Menzinger Str. 67, D-8000 München 19, Bundesrepublik Deutschland

Z. Naturforsch. 39c, 606-616 (1984); received February 16, 1984

Photosynthesis, Biliproteins, Picosecond Spectroscopy, Energy Transfer, Protein Denaturation

The influence of aggregation and temperature on the excited state kinetics of C-phycocyanin from *Mastiqocladus laminosus* has been studied. Polarized fluorescence decay curves have been recorded using a synchronously pumped dye laser in conjunction with a synchroscan streak camera. The experimental data for all samples can be fit satisfactorily assuming a biexponential decay law. Fluorescence depolarization times have been interpreted in terms of energy transfer among the different chromophores. The influence of temperature is only moderate on the intramolecular relaxation, but pronounced on the rates of energy transfer. Both are dependent on the size of the aggregate. The biexponential decay of the α -subunit containing only one chromophore, indicates the presence of different subsets of chromophores in these samples. The results are discussed in terms of variations of the chromophore arrangements upon temperature induced changes in the protein conformation.

Introduction

Phycobiliproteins are light harvesting pigments in certain algae. They contain 2-3 polypeptide subunits each bearing up to 4 covalently bound linear tetrapyrrolic chromophores [1-3]. Unlike most other photosynthetic pigments, the phycobiliproteins are not integral membrane proteins and readily water soluble. The phycobiliproteins from blue-green and red algae are aggregated in vivo into microscopic particles, the phycobilisomes, which act as light harvesting and energy transfering units mainly to photosystem II. They also have a tendency for aggregation in vitro. Here, much smaller and less complex structures are formed, which are believed to represent the phycobilisome building blocs [4, 5]. Earlier static fluorescence studies (see [6-8]) of the readily accessible biliproteins have prompted a series of investigations by picosecond time-resolved spectroscopy using different excitation and detection conditions [9-19]. The complex aggregation has, on the other hand, led to considerable technical and interpretational problems [11, 14, 16]. In order

* In part presented at the 6th Int. Congr. Photosynthesis, Brussels 1983, Proceedings II. 2. 81.

Reprint requests to Prof. Dr. H. Scheer.

0341-0382/84/0600-0606 \$ 01.30/0

to elucidate the influence of aggregation and other environmental factors (e.g. temperature) on the primary photophysical processes, we have begun systematic studies using polarized picosecond timeresolved emission spectroscopy [15, 16]. As a continuation of earlier work on higher aggregates including integral phycobilisomes from Mastigocladus (M.) laminosus [15], we here wish to report the results obtained with a series of increasingly complex aggregates of one of its biliproteins, C-phycocyanin (PC). This alga was chosen, because the primary structure of its biliproteins [20-22] as well as preliminary X-ray results of its PC [23] are known. The comparison with similar studies [16] on PC from a different alga, Spirulina (S.) platensis may also shed some light on the different properties of the two functionally similar pigments derived from a thermophilic and mesophilic organism, respectively.

Materials and Methods

Biochemistry

Cells of *M. laminosus* were grown photoautotrophically in Castenholz' medium [24] at $40-45^{\circ}$ in 101 cultures. They were either used fresh for the measurement with whole cells, or stored frozen for the isolation of PC. The latter was isolated as described for S. platensis [16]. The trimeric aggregates ($S_{20, w} = 5.6$) were dissociated into the monomers $(S_{20,w} = 2.8)$ with NaSCN (1 M). Subunits were obtained by preparative isoelectric focusing on Sephadex G75 gels (Pharmacia, Uppsala) and renatured without delay on Biogel P2 desalting columns (Biorad, München). The isoelectric points were at 6.3 (α -) and 5.1 (β -subunit). The subunits were concentrated with aquacide (Calbiochem) to an optical density of $\leq 0.5 \text{ cm}^{-1}$ at the red maximum. Both subunits were $\geq 95\%$ pure from the respective other subunit and from colorless peptides if judged from SDS-PAGE. The absorption and fluorescence spectra of the subunits are shown in Fig. 2. Analytical SDS polyacrylamide gel electrophoresis was performed according to Laemmli [25]. Analytical ultracentrifugation was done as described earlier [16] on a model E (Beckman, München) ultracentrifuge. The S-values were corrected for density of the solutions. Standard correction factors for viscosity and partial volume of the protein were taken from the literature [26]. The viscosity correction for NaCl was used for KSCN. The $S_{20, w}$ coefficients were then extrapolated to t = 0. Stationary fluorescence was measured with a model DMR 22 (Zeiss, Oberkochen) photometer equiped

with a single monochromator on the excitation side and a double monochromator on the emission side. Standard bandwidths were 33 and 15 nm, respectively, at 600 nm. Sedimentation and fluorescence measurements were done with aliquots of the same preparations. All buffer compounds and other chemicals used were reagent grade. Stationary fluorescence measurements were performed as described in the previous paper [16].

Time-resolved fluorescence measurements and data analysis

The experimental setup is similar to the one used in the previous communications [15, 16]. The excitation pulses are derived from a dye laser (rhodamine 6G, tuned to 600 nm) synchronously pumped by an acousto-optically mode-locked Argon ion laser. The pulse intensity at the sample is 10^{13} photons \cdot pulse⁻¹ \cdot cm⁻². The fluorescence is monitored at 90° and passes through a filter (Kodak Wratten No. 23, 620 nm cutoff) and a polarizing film directly into the entrance slit of the streak camera. The streaked image is monitored and digitized (PAR model 1025 optical multichannel analyzer (OMA)), and the data are transferred to a minicomputer.

Fig. 1. Schematic of the experimental setup for the fluorescence measurements. L = lenses; PR = fixed polarizer, f = emission filter, BS = beam splitters, $\lambda/2 = adjustable$ polarizer, ND = neutral density filter. The Michelson interferometer is used for calibration of time scale.

Fig. 2. Absorption (—), fluorescence excitation (----) and emission spectra (----) of the α (a) and β -subunit (b) of PC from *M. laminosus*. All spectra are normalized with respect to the red absorption maximum. Experimental conditions for the α -(β)-subunit: A = 0.52 (0.48) at 617 (602) nm, emission at 650 nm for the excitation spectra, excitation at 600 (590) nm for the emission spectra. The skewing of the excitation as compared to the absorption bands is due to the experimental conditions.

The expressions $I(t) = I_{\perp}(t) + 2I_{\perp}(t)$ and $D(t) = I_{\parallel}(t) - I_{\perp}(t)$ were calculated from the decay curves with the analyzer being parallel $(I_{\parallel}(t))$ and perpendicular $(I_{\perp}(t))$ to the adjustable polarization of the exciting laser beam. I(t) corresponds to the decay of the excited state population, the "difference function" D(t) to the product of the former with the correlation function of the absorption and emission dipoles [27, 28]. D(t) can be evaluated by means of a convolution (in contrast to the fluorescence anisotropy R(t) both if the individual functions are convoluted by the slower instrument response function (see e.g. [28]) and if the recorded fluorescence is a superposition of fluorescence from two (or more) emitting species (see e.g. the appendix in [16]). The latter condition is prevalent in most biological samples.

In the case of fluorescence depolarization by orientational relaxation of the photoselected excited molecules, the correlation function is (multi-)exponential and the analytically simple function D(t) can be evaluated to give the orientational relaxation time(s) τ_{or} [29]. In the case of depolarization by energy transfer, the functional dependence of the

correlation function on energy transfer parameters is not yet solved. We have here assumed that the correlation function can be approximated by a (multi-)exponential and thereby derived a formal set of parameters τ_{dep} which give a rough measure of the energy transfer kinetics.

Almost all decay curves can be fitted on the basis of a biexponential:

$$F(t) = A_0 + \int E(t - t') \cdot [A_1 \exp(-t'/\tau_1) + A_2 \exp(-t'/\tau_2)] dt'$$

where E(t) represents the excitation profile as recorded by the streak camera and A_0 a constant background. The five parameters, A_0 , A_1 , A_2 , τ_1 and τ_2 are determined using a non-linear least squares routine based on the algorithm of Marquardt [30] and Berington [31]. The precision of the fit parameters depends not only on the signal-tonoise ratio (S/N), but also on their relative magnitudes [32]. The noise distribution is not well defined in a combined streak camera-optical multichannel detector system, in contrast to e.g. single photon timing methods [13]. We have, therefore, performed simulations in order to establish some criteria for the realiability limits of the computed parameters. Two examples with S/N ratios of 2 and 5% are shown in Fig. 3 (see figure legend for details), which correspond roughly to the situation encountered with the β -subunit (Figs. 4a and 4b). The deviation of the amplitude ratios (A_1/A_2) is comparably small in the cases studied. The time constants can, however, deviate by up to 20% from the "true" value ($\delta = 1$) for an S/N = 5%. This is in particular true for the long-lived component due to the limited time window (2-3 ns) of the streak camera system. If judged from these reliability tests, the absolute values of the calculated parameters are only approximate, but their variations with temperature and aggregation state should reliably reflect the trends.

Results and Discussion

Temperature dependence of the fluorescence

The fluorescence intensity of all samples decreased markedly with increasing temperature. This decrease is demonstrated in Fig. 3 for the α - and β -subunits (normalized to equal excitation and detection conditions). The integrated fluo-

P. Hefferle et al. · Time-Resolved Polarized Fluorescence and Its Subunits

Fig. 3. Error analysis for the derived decay times. Noise from a random number generator corresponding to 2% (dashed lines) and 5% intensity (solid lines) with respect to the maximum amplitude has been superimposed on a theoretical decay curve (convolution of an excitation function with a biexponential, $\tau_1^0 = 100 \text{ ps}$, $\tau_2^0 = 1500 \text{ ps}$, $R^0 = 5$). The procedure has been repeated 30 times, and the fit parameters were then determined by means of a program based on a a Marquardt algorithm. The distribution of deviations (in relative units with respect to the "true" values, *e.g.* $\delta_1 = \tau_1/\tau_1^0$, $\delta_2 = \tau_2/\tau_2^0$, $R = (A_1/A_2)/R^0$) are given for the short decay time τ_1 (a), the long decay time τ_2 (b), and the amplitude ratio R of the two components (c).

rescence intensity (expressed as $A_1 \tau_1 + A_2 \tau_2$) is then proportional to the fluorescence yield, provided that the spectral distribution of the fluorescence is temperature independent. The yields decrease at increasing temperature (see Table I). The changes are reversible to a large extent, if the samples are kept at elevated temperatures only for the relatively brief time necessary for thermal equilibration and data acquisition (see Ref. 16).

Increased temperature leads generally to a (partial) unfolding of the peptide chain. The bili-

Table I. Temperature dependence of integrated fluorescence intensity normalized to emission at 18 °C. Values in parenthesis are derived from steady state experiments.

$I_{\rm F}(T)/I_{\rm F}[18^{\circ}{\rm C}]$	T[°C]			
[%]	18	36	51	
α -subunit β -subunit	100	73	17	
	100	67	33	
monomer	100	42	27	
	(100)	(71)	(41)	
trimer	100	67	42	
	(100)	(72)	(44)	
algae	100	95	70	

proteins are particularly suited to study this process, because they contain with the covalently bound chromophores very sensitive probes for the state of the peptide chain. The unfolding of the protein both by increased temperatures or chemical denaturants like urea is reversible and accompanied by drastic changes in their absorption [1, 33] and circular dichroism spectra [34] and fluorescence yields [8, 34]. The oscillator strength of the visible absorption band is decreased by a factor of five, which is probably due to a conformational change of the chromophore (see 1 for leading references). The steady-state fluorescence is, however, decreased by four orders of magnitude [8, 34]. This much stronger effect must therefore be connected to other changes of the chromophore state.

The denaturation of proteins can often be described by a two state model, where the equilibrium is shifted by the denaturant from the native to the fully denatured state [35, 36]. The absorption and circular dichroism data of PC have indicated earlier, that the unfolding of PC from *S. platensis* could not be described satisfactorily by the twostate model, but that an intermediate state exists in equilibrium with the native and the denatured state [33, 34]. These data were, however, derived from

Fig. 4. Isotropic decay I(t) of the chromophore fluorescence in the α -(top) and β -subunits (bottom) of PC from *M. laminosus*. Curves are normalized to equal excitation at 600 nm, maximum intensity decreases with increasing temperature. All fluorescence with $\lambda \ge 620$ nm has been recorded.

integral PC consisting of two subunits, and the dissociation of the former could be the process leading to this intermediate. The results obtained here for the α -subunit indicate, that another type of intermediate must be invoked, *e.g.* one in which the peptide chain has changed its conformation. The two-state model would predict a monotonous decrease of the fluorescence yield with temperature, and temperature independent decay constants. Since both the yield *and* the rates change, the data presented in this paper must be taken as further evidence for an intermediate state being present during the unfolding. As shown in Fig. 4, this is also true for the more complex aggregates.

Aggregation state and fluorescence

A similar set of data as shown in Fig. 4 has been collected for the monomeric $(\alpha \beta)$ and trimeric PC

 $(\alpha\beta)_3$ and for the whole algae. The data are summarized in Fig. 5 for both the isotropic (I(t)) and the anisotropic decay (D(t)), see experimental part for the definition of these functions). To emphasize the different kinetics with increasing temperatures, the curves have here been normalized to the maximum amplitude except in those cases, where an identification of the individual curves would be impossible due to an extensive overlap of data points. The results are in the following discussed in the order of increasing size of the aggregates.

α-subunit

The α -subunit of PC contains only a single chromophore, and the decay should, therefore, be monoexponential, if all chromophores were kept in the same conformation by noncovalent interactions

with the apoprotein. The decay curves can nonetheless only be fitted by biexponentials (Fig. 5). A similar observation has been made earlier for the isotropic fluorescence of the α -subunit of PC from S. platensis [16] and Anabaena variabilis [19]. An aggregation of the α -subunit is unlikely from (i) the low concentration, (ii) from the fact that NaSCN is present [16] and (iii) the ultracentrifuge measurements $(S_{20, w} = 2.35)$. One must then assume, that there are two species present with different chromophore-protein arrangements and hence fluorescence lifetimes. The "long-lived" species has a lifetime in the range of the integral biliproteins, whereas that of the "short-lived" species is unusual in the sense that lifetimes of this intermediate range have only occasionally been reported for integral phycobiliproteins [16, 19].

In contrast to earlier work [16], it has now been possible to obtain also information of the depolarization with an acceptable S/N (Fig. 5). The difference function D(t) of the α -subunit can again be fit only by a biexponential, with shorter decay times τ than the respective τ' of the isotropic decay. Under the assumptions discussed above, the depolarization times τ_{dep} can be obtained separately for both components from the relation

$$1/\tau_{\rm dep} = 1/\tau - 1/\tau'$$

The slow depolarization components are subject to a large possible error (values in parenthesis in Table II) and will, therefore, not be discussed. The depolarization time of ≈ 1500 ps for the short-lived component at lower temperatures (18 and 36 °C) can be reconciled with the torsional motion of a loosely bound chromophore. The chromophores of PC from *M. laminosus* are covalently attached to the peptide chain by a single thioether bond [38], but they are believed to be rigidly bound to the latter by additional strong non-covalent interactions (see Ref. [1]). The comparably rapid depolarization of the fast decaying fluorescence component would then indicate, that these interactions are weakened in the

Table II. Fluorescence depolarization times τ_{dep} (in ps) in dependence on temperature and state of aggregation (for error analysis see text; values in parenthesis correspond to the slow decaying component).

τ _{dep} [ps]	T[°C]			
	18	36	51	
α-subunit	1575 (10778)	1355 (3306)	573	
β-subunit	403 (2838)	162 (2701)	145 (773)	
monomer	580	561 (7165)	649 (4400)	
trimer	70 —	242	160 (3520)	
algae	0	0	0	

"short-lived" species. This "loosened bolt" model would be supported by the decreased depolarization time of 570 ps at higher temperature $(51 \,^{\circ}C)$, where an even higher mobility of the less tighly coupled chromophore is expected. This is also in accordance with the decreased isotropic lifetime of the "shortlived" species, while that of the "long-lived" one is fairly insensitive to temperature.

There are two explanations for these results: The first is, that the fast decaying species is an experimental artefact due to irreversible denaturation. The isolation of the α -subunit involves a complete unfolding of the peptide chain over several hours, which may cause such problems. The second explanation suggested by Sauer (personal communication, 1983) is based on the finding (contrary to our data) of a similar decay constant in the β -subunit and in integral PC from Anabaena variabilis [19]. It suggests, that the native biliproteins might be heterogeneous per se. The two possibilities are presently difficult to distinguish, but the microheterogeneity of a biopolymer is an intriguing and potentially far-reaching idea. It may be supported by the fact, that biexponential decays have been observed for a-subunits of PC's from different

Fig. 5. Influence of temperature and aggregation on the isotropic (I(t), left side) and anisotropic decay (D(t), right side) of the chromophore fluorescence in PC from *M. laminosus*. Top: α -subunit, second row: β -subunit, third row: monomeric PC, fourth row: trimeric PC and bottom: whole algae. No anisotropic fluorescence was detectable in the latter. Excitation wavelength was generally 600 nm, and all fluorescence with $\lambda \ge 620$ nm has been recorded. All curves are normalized with respect to peak intensity, except for few to allow a better identification of the individual curves. The original data are given by the points, and the fit parameters for the solid curve are given in the insets in the order τ_1 , τ_2 (in ps), amplitude ratios A_1/A_2 (in %). The data were collected at 18 °C (A), 36 °C (B), and 52 °C (C), in the figures the amplitudes at longer decay times decrease in that order (see labels Fig. 5a) except for the anisotropic decay of the trimer (notice labels).

species and prepared by somewhat different procedures. It may also relate to the photochromic properties of phycobiliproteins under mildly denaturing conditions including low pH [39], moderate concentrations of urea [40] or monomer formation by chaotropic salts including NaSCN [41], or of isolated subunits of biliproteins [42].

β-Subunit

This subunit contains two chromophores, whose absorption maxima are about 20 nm or 550 cm⁻¹ apart. Both chromophores are about equally well excited with the chosen wavelength, *viz.* 600 nm. The stationary emission spectrum of the β -subunit is at ambient temperature similar to that of the monomer, which indicates an efficient energy transfer from the high-energy (sensitizing = "s" in the nomenclature of Teale and Dale [6]) to the low energy (fluorescing = "f") chromophore.

The postulated efficient energy transfer is supported by the kinetic data. A satisfactory fit of all decay curves is again obtained with a biexponential fit (Fig. 5 c, d), although additional long-lived, low-amplitude components cannot be excluded in all cases. At increased temperatures, the decay times of both components are reduced, but less pronounced than in the α -subunit. The depolarization times τ_{dep} (see above) of the fast decaying component are much faster than those of the α -subunit and decrease with increasing temperature from $\tau_{\rm dep} \approx 400$ to 150 ps (Table II). They are too fast for an orientational depolarization, but are rather assigned to a depolarization by energy transfer. A physical interpretation of τ_{dep} as the energy transfer time is, however, ambiguous. There is no dissipative continuum, and back transfer can, therefore, not be excluded, in which case τ_{dep} would be only an effective energy transfer time. Processes of this type have been discussed in chlorophyll antennas, which have similar energy differences as isolated PC [43].

The longer lived component in the fluorescence decay is considerably shorter than that of the α -subunit and that of all other isolated PC's studied here (Fig. 5). This could indicate a partial uncoupling of the chromophore as compared to the integral PC, because the free chromophores have lifetimes ≤ 100 ps, whereas those of native chromophores are ≈ 1500 ps. There are two explanations to account for such a change: The first is again an

artefact due to the preparation, which involves the same denaturation-renaturation sequence as described above for the α -subunit. The second is a rearrangement of the peptide chain in the absence of the α -subunit. The absorption spectra of the two subunits add up to that of the monomer (as observed earlier for other biliproteins, see e.g. [8]), but it is also known that the absorption spectra are far less sensitive than the fluorescence towards changes in the state of the protein (see [1] for a discussion). A partial uncoupling of the chromophore is indicated by a small but distinct heterogeneity of the cw fluorescence (Fig. 2b). It is also supported by the pronounced temperature sensitivity of the lifetime. The reduction in the effective depolarization time would then indicate that the energy back transfer is more strongly reduced than the forward process.

Monomer and trimer

The isotropic fluorescence decay curves (I(t)) of the monomer $(\alpha\beta)$ and the trimer $(\alpha\beta)_3$ are similar to each other and to those of the β -subunit. They can again be fit with biexponentials, with τ_1 in the range of 200-500ps and τ_2 in the range of 1600-2500ps (Fig. 4e-h). The slow component is assigned to the decay of the "f" chromophore(s) in their native state, and the fast one is probably associated – as in the β -subunit – with energy transfer. This interpretation is supported by the depolarization times. They are much shorter in the trimer bearing 9 chromophores than in the monomer bearing only three chromophores (Table II), *i.e.* they decrease with the number of possible acceptors. A similar dependence on the aggregation has been observed earlier for the static fluorescence depolarisation [6-8]. It increases with an increasing number of chromophores, which can all act as acceptors. It should be pointed out in this context that the fluorescence anisotropy in the kinetic experiments never extrapolates to 0.4, e.g. the theoretical maximum in a randomly oriented system. It has been estimated to ≈ 0.2 from the deconvoluted limits of I(t) and D(t) extrapolated to t = 0, a value which is similar to results from other laboratories [51]. One explanation is the non-statistical orientation of the chromophores in biliproteins, an assumption which is also supported by the nonvanishing anisotropy in steady-state experiments or

Fig. 6. Isotropic (a) and anisotropic decay (b) of the chromophore fluorescence of PC at the same temperature $(36 \,^{\circ}C)$, but in different aggregation states. The decay of whole algae is also shown in (a). All spectra are normalized with respect to peak intensity.

at long times after excitation in kinetic experiments [6-8, 50]. An alternative explanation is a third component in the fluorescence decay which is faster than the time-resolution of our equipment. Gilbro *et al.* [50] have recently found two short-lived components in phycobilisomes from *Synechococcus* 6301 with $\tau \approx 10$ and 90 ps, respectively. The latter is in the range observed by us for the fast

component of isolated PC. The presence of an additional ≈ 10 ps component (which is not contained in our biexponential fit) would also lead to a decreased limiting value of the anisotropy for t = 0.

It should be pointed out that the aggregation of biliproteins is at present not yet fully understood. Ultracentrifugal measurements of our PC preparations from M. laminosus (this work) and S. platensis [16] gave the trimer $(\alpha\beta)$, as the predominant aggregate, with little to no hexamers $(\alpha\beta)_6$ detecable. This is at variance with a large body of earlier work showing the hexamer as the predominant species [4], but similar findings have occasionally been reported by others, too [see e.g. 44, 45]. There is growing interest in the function of the generally colorless linker peptides present in phycobilisomes and - in varying amounts - in preparations of isolated phycobiliproteins as well [46-49]. In particular have two of them been invoked in the aggregation of PC from Synechococcus 6301 [49].

The differences in aggregation could then be due to different amounts of the linker peptides in different preparations. The samples studied by us contained only traces of these peptides if judged from SDS-PAGE after staining with Coomassie blue, and the failure to observe aggregates higher than trimers may be linked to this fact. Earlier work involving two of us [15] on PC from the same organism, M. laminosus, but isolated by the controlled dissociation of phycobilisomes and subsequent ultracentrifugation had indeed produced both trimers (as well as hexamers) with significantly different fluorescence decay times. In particular was at ambient temperatures the shorter component of I(t) more pronounced and its lifetime was about half of the values given here, and the difference function D(t) could be fit satisfactorily with a single short-lived exponential. For the present preparation a second component is needed with a lifetime in the range of the isotropic decay ($\tau \approx 2600$ ps). Since the residual fluorescence polarization in biliproteins is increased with a decreasing number of coupled chromophores [6-8] and also order-dependent, these differences in decay pattern probably reflect differences in aggregation and/or non-covalent chromophore-protein interactions in the two preparations. This point adds yet another hitherto neglected parameter in the sample characterization (besides the measuring technique, data analysis and species related differences) which renders the comparison of data in a generalized description rather difficult.

In spite of these problems, it is evident that the set of data obtained here for M. laminosus shows distinct differences as compared to the data obtained earlier [16] under rather similar isolation and measuring conditions for PC from Spirulina platensis. The depolarization times are rather different for PC derived from the two organisms. In both cases, the fast components of the monomer and trimer have similar isotropic, but different anisotropic decay times. The latter is ≈ 600 ps in monomeric PC from M. laminosus, and shorter and more sensitive to increased temperatures in the trimer. The situation is opposite to that in PC from S. platensis, where this decay constant is rather sensitive in the monomer (300-760 ps), but constant ($\approx 90 \text{ ps}$) in the trimer. This difference in temperature dependence of the energy transfer characterized by the depolarization time, may be related to the fact that M. laminosus is thermophilic, although there seems to be no obvious ecological advantage in the observed behavior of PC from M. laminosus. It is furthermore not yet clear how the excited state kinetics of small biliprotein aggregates relate to those of integral phycobilisomes.

Whole Algae

The fluorescence of whole algae is completely depolarized at our time resolution; therefore, only the isotrpic fluorescence decay has been analyzed. The recorded fluorescence is leakage fluorescence from different members of the energy transfer chain, which are to the most part indirectly excited. At ambient temperatures, the integral fluorescence is dominated by a short lived component ($\tau \approx 120 \text{ ps}$). The less intense long-lived component is also comparably short ($\tau \approx 600$ ps), and disappears at 52 °C. Since all fluorescence with $\lambda \ge 620$ nm is recorded, it includes leakage not only from PC but also from its acceptor pigments, e.g. allophycocyanin and chlorophyll. A distinction is possible by a spectral analysis of the emission [15, 18], which was beyond the scope of this project. A tentative assignment is, however, possible from comparison with data from the literature. The isotropic fluorescence of whole phycobilisomes from another alga, Synechococcus 6301 has recently been shown [50] to have two shortlived components (≈ 10 and 90 ps). The first com-

ponent is beyond our time resolution, but the second one could correspond to the 120 ps component in M. laminosus (differences are expected from the differences in the phycobilisome composition and organization in the two organisms). The short-lived component is thus assigned to indirectly excited PC, quenched by transfer to allophycocyanin. The longer lived component in *M. laminosus* would then arise from allophycocyanin and/or chlorphyll a, whose lifetime is determined by the energy transfer to the reaction centers. If this tentative assignment were correct, the decrease in amplitude of the longer-lived component at higher temperatures could indicate an increased rate of radiationless processes in the acceptor pigments (internal conversion, photochemistry) leading to similar short lifetimes of both PC and allophycocyanin. *M. laminosus* is generally grown at ≈ 50 °C, so that photosynthesis and in particular the energy transfer between the two pigments is still efficient at this temperature. Otherwise, the long-lived allophycocyanin emission should be detectable as in the case of integral phycobilisomes [15].

Concluding Remarks

The data presented demonstrate a strong influence of chromophore-protein and chromophorechromophore interactions on the photophysics of the chromophores in PC. This interaction is modified by changes in the quaternary structure, but also in the protein conformations, as shown for the α -subunit. Only two parameters, e.g. the state of aggregation and temperature have been investigated here, in addition to the species dependent differences. The major biochemical problem is the functional relationship of isolated pigments to the in situ antenna system, since the state of the former depends on the isolation procedures. The major problem in deriving parameters for the photophysical processes is the presence of more than one emitting species (in all but the α -subunit), and the large range of decay times. The main advantage of the repetitive streak-camera, viz. the intrinsic high sensitivity, is in part lost by the necessity to record simultaneously very long and very short decay times. This has in addition significant consequences on the accuracy of the derived parameters. Since chromophore-protein interactions are a key for the understanding of chromo-protein structure and

Acknowledgements

We thank Prof. F. Doerr and Prof. W. Rüdiger for stimulating discussions and continuing support.

- [1] H. Scheer, in Light Reaction Path of Photosynthesis
- (F. K. Fong, ed.), p. 7-45, Springer, Berlin 1982. [2] E. Gantt, Ann. Rev. Plant Physiol. **32**, 327-347 (1981).
- [3] A. N. Glazer, Ann. Rev. Biochem. 52, 125-157 (1983).
- [4] R. McColl, Photochem., Photobiol. 35, 899-904 (1982).
- [5] E. Mörschel, K. Koller, and W. Wehrmeyer, Arch. Microbiol. 125, 43-51 (1980).
- [6] F. W. J. Teale and R. E. Dale, Biochem. J., 116, 161-169 (1970).
- [7] J. Grabowski and E. Gantt, Photochem. Photobiol. 28, 39-45 (1978).
- [8] B. Zickendraht-Wendelstadt, J. Friedrich, and W. Rüdiger, Photochem. Photobiol. 31, 367-376 (1980).
- [9] G. F. W. Searle, J. Barber, G. Porter, and C. J. Tredwell, Biochim. Biophys. Acta 501, 246-256 (1978).
- [10] T. Kobayashi, E. O. Degenkolb, R. Behrson, P. M. Rentzepis, R. McColl, and D. S. Berns, Biochemistry 18, 5073-5078 (1979).
- [11] J. Breton and N. É. Geacintov, Biochim. Biophys. Acta, 594, 1-32 (1980).
- [12] F. Pellegrino, D. Wong, R. R. Alfano, and B. Zilinskas, Photochem. Photobiol. 34, 691-696 (1981).
- [13] A. R. Holzwarth, J. Wendler, and W. Wehrmeyer, Photochem. Photobiol. 36, 479-487 (1982).
- [14] "Biological Events Probed by Ultrafast Spectroscopy" R. R. Alfano (ed.), Academic Press, New York 1982
- [15] P. Hefferle, M. Nies, W. Wehrmeyer, and S. Schneider, Photobiochem. Photobiophys. 5, 41-51 (1983), id. 325 - 334.
- [16] P. Hefferle, W. John, H. Scheer, and S. Schneider, Photochem. Photobiol. 39, 221-232 (1984).
- [17] G. W. Suter, J. Wendler, and A. R. Holzwarth, in Workshop: Molecular Structure and Function of Light Harvesting Pigment-Protein Complexes and Photosynthetic Reaction Centers, ETH Zürich, 1983.
- [18] I. Yamazaki, M. Mimuro, T. Murao, T. Yamazaki, K. Yoshihara, and Y. Fujita, Photochem. Photobiol. 39, 233-240 (1984).
- 9] S. C. Switalski and K. Sauer, in Workshop: see [17].
- [20] G. Frank, W. Sidler, H. Widmer, and H. Zuber, Hoppe-Seyler's Z. Physiol. Chem. 359, 1491-1507 (1978).
- [21] P. Flüglistaller, F. Suter, and H. Zuber, Hoppe-Seyler's Z. Physiol. Chem. 364, 691-712 (1983).
- [22] W. Sidler, J. Gysi, E. Isker, and H. Zuber, Hoppe-Seyler's Z. Physiol. Chem. **362**, 611-628 (1981). [23] T. Schirmer, W. Bode, W. Sidler, and H. Zuber,
- in Workshop: see [17].
- [24] R. W. Castenholz, Schweizer Z. Hydrol. 35, 538-551 (1970).

Financial support from the Deutsche Forschungsgemeinschaft, Bonn, is gratefully acknowledged. We thank Dr. W. Hensel, München for the ultracentrifuge measurements and Dr. W. Nies in the laboratory of Prof. W. Wehrmeyer for a culture of Mastigocladus laminosus.

- [25] U. K. Laemmli and M. Favre, J. Mol. Biol. 80, 575-599 (1973)
- [26] H. G. Elias, Ultrazentrifugen Methoden, Beckman, München 1969.
- [27] G. R. Fleming, J. M. Morris, and G. W. Robinson, J. Chem. Phys. 17, 91-100 (1976).
- [28] J. Papenhuijzen and A. J. W. G. Visser, Biophys. Chem. 17, 57–65 (1983).
- [29] F. Perrin, J. Phys. Radium 7, 1-11 (1936).
- [30] D. W. Marquardt, J. Soc. Ind. Appl. Math. 11, 431 (1963).
- [31] P. R. Berington, Data reduction and error analysis for the physical sciences, McGraw Hill, New York 1969.
- [32] A. L. Linde, B. K. Selinger, and P. R. Nott, Austral. J. Chem. **30,** 383–394 (1977).
- [33] H. Scheer and W. Kufer, Z. Naturforsch. 32 c, 513-518 (1977).
- [34] H. Lehner and H. Scheer, Z. Naturforsch. 38 c, 353-358 (1983).
- [35] R. L. Baldwin and T. E. Creighton, in Protein Folding, R. Jaenicke (ed.), Elsevier, Amsterdam 1980.
- [36] C.-H. Chen, O. H. W. Kao, and D. S. Berns, Biophys. Chem. 7, 81-86 (1977).
- W. Kufer and H. Scheer (unpublished results).
- [38] W. Kufer, O. Schmidt, G. Schmidt, and H. Scheer, (submitted for publication in Z. Naturforsch.).
- [39] I. Ohad, H.-J. A. W. Schneider, S. Gendel, and L. Bogorad, Plant. Physiol. 65, 6-12 (1980).
- [40] K. Ohki and Y. Fujita, Plant Cell Physiol. 20, 483-490 (1979).
- [41] A. Murakami and Y. Fujita, Photochem. Photobiol., 38,605-608 (1983).
- [42] L. O. Bjoern, Quart. Rev. Biophys. 12, 1-23 (1979).
- [43] For leading references see: R. M. Pearlstein, Photochem. Photobiol. 35, 835-844 (1982).
- [44] R. McColl, M. R. Edwards, M. H. Mulks, and D. S. Berns, Biochem. J. 141, 419-425 (1974).
- [45] N. Iso, H. Mizuno, T. Saito, N. Nitta, and K. Yoshizaki, Bull. Chem. Soc. Japan, 56, 2892-2895 (1977).
- [46] R. E. Glick and B. A. Zilinskas, Plant Physiol. 69, 991-997 (1982).
- [47] T. Redlinger and E. Gantt, Proc. Natl. Acad. Sci.
- USA, 79, 5542-5546 (1982).
 [48] K. P. Koller, W. Wehrmeyer, and E. Moerschel, Eur. J. Biochem. 91, 57-63 (1978).
- [49] M. H. Yu, A. N. Glazer, and R. C. Williams, J. Biol. Chem. 256, 13 130-13 136 (1981).
- [50] T. Gilbro, A. Sundstroem, V. Sundstroem, and A. R. Holzwarth, FEBS Lett. 162, 64-68 (1983).
- [51] F. Pellegrino, P. Schuler, and R. R. Alfano, Photobiochem. Photobiophys. 2, 15-20 (1981).