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• Abstract— Four normal subjects underwent oc­
ular counterrolling testing in a tiltable chair. Mea­
surements were taken in 62 different body positions 
in steps of 30° varied rolls and pitches. In each 
body position the eyes were recorded on video and 
their roll angle was determined automatically by 
computer analysis. The ocular counterrolling pro­
file showed a periodic characteristic with maximal 
amplitude at roll tilts of 60°. In this study we can 
clearly show that the eyes' rolling response is not 
systematically affected when lateral body tilts are 
combined with any tilts in the pitch direction. This 
undoubtedly implies that the ocular counterrolling 
was mainly stimulated by the subject's roll angle. 
As an empirical contribution, this study provides 
new data specially to be used in modelling and sim­
ulating the function of otolith organs. 
• Keywords —ocular counterrolling; 3D space; 
pitch; roll; tilt. 

Introduction 
Tilting the head sideways causes ocular coun­
terrolling (OCR), a rotation of the eyes 
around their sagittal axes. OCR is mediated 
by the stimulation of the otolith organs in the 
inner ear (1,2). The otolith receptors respond 
to shear forces acting on their hair cells. The 
degree to which the eyes rotate is of crucial 
importance for investigations in spatial per­
ception for at least two reasons: 
A) To determine the precise coordinates of 

physical objects on the retina as the head 
is tilted sideways, the angular alignment 

of subject's eye must be known with ref­
erence to gravity. Since this angle exactly 
differs by the extent of OCR angle from 
subject's head position, the rotation of the 
retinal image about the vertical eye axis is 
obtained by subtracting the OCR from 
the head tilt (this simplified calculation is 
true for head tilts in pure roll direction at 
least). 

B) Since OCR is mediated by the utricles (2), 
it can be considered as a behavioral cor­
relate of otolith function. It therefore al­
lows an additional access to the study of 
afferent vestibular information that is in­
volved in postural adjustments and per­
ceptive mechanisms. 

In order to perceive physical objects ori­
ented in space as they really are, OCR would 
be a conceivable type of compensation. How­
ever, since maximal OCR hardly exceeds 10° 
in humans, it does not fully compensate lat­
eral tilts and therefore does not lead to a po­
sitional constancy of the retinal stimulus 
pattern. Influences of body tilts on the retinal 
image are compensated by central-nervous 
processes. Investigations concerning the prob­
lem of the subjective vertical deal with such 
compensatory mechanisms (3-13). 

OCR is often used as a reliable indicator 
for labyrinthine disturbances (14) and recently 
OCR has been convincingly shown to be a 
most reliable predictor of susceptibility to 
space motion sickness (15,16). In addition, 
the knowledge of the OCR response in vari-

RECEIVED 1 4 August 1 9 9 1 ; REVISED MANUSCRIPT RECEIVED 8 May 1 9 9 2 ; ACCEPTED 1 5 May 1992 . 
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ous positions of the otolith organs with re­
spect to gravity provides information about 
the central-nervous processing of afferent 
utricular signals. By computer simulation 
modeling of the response of utricular haircells 
(17), the present data can be compared to the 
simulation results to validate proposed neural 
network models (see also [18]). In this sense, 
this investigation can be regarded as an empir­
ical contribution to the function of OCR. The 
rationale for this study is to observe the OCR 
not only in the positions where it is most likely 
to occur (pure roll positions), but in a variety 
of different body positions. These tested po­
sitions are distributed equally over an imagi­
nary sphere. Relative to the previous studies 
mentioned above, we took measurements in a 
large number of combined pitch and roll body 
positions yielding a more complete spatial 
OCR pattern. 

Methods 
Apparatus 

Our apparatus allowed us to tilt human 
subjects into every desired body position re­
spective to gravity (see Figure 1). The cockpit 
in which the subjects were placed could be 
turned forward and backward in order to 
vary the pitch dimension. By turning the 
whole frame in which the cockpit is sus­
pended, we were able to tilt the subject side­
ways, thus varying the roll dimension. Both 
possible movements could be performed inde­
pendently as well as in combination. 

To reduce extra-otolith postural influence 
on the perception of the vertical (which also 
was measured during these experiments), the 
subject was placed in a seat surrounded by in­
flatable pillows. By inflating the many differ­
ent sections individually, we ensured that the 
subject remained in a fixed position while still 
feeling comfortable as this afforded a better 
distribution of the pressure that he or she ex­
perienced. (For more details about the space 
perception in our experiments and discussion 
on somatosensory influences see references 
19 and 20). Stabilized by a removable bite-
board, the subject looked through binoculars. 
An onboard camera, equipped with a macro 
optical lens and connected to a video system, 
was used to monitor each eye independently. 
Both eyes remained fixes on a target point, 
which was displayed by a mirror system in the 
optical axis of the camera. In order for the 
eye to be monitored on the screen, an infra­
red light diode was directed toward the eye­
ball. To avoid out of focus recording, the lens 
could be adjusted by remote control while the 
experiment was in progress. These pictures 
were videotaped for further computer analy­
sis. For matters of subjects' convenience and 
therefore reliability reasons, this noninvasive 
OCR measuring procedure is to be preferred 
over others, as, for example, the scleral coil 
technique, especially in studies that include 
perceptual tasks. 

Analysis 
Single frames were analyzed by image anal­

ysis of the iris pattern. The OCR angle was 

frame 
pitch roll 

Figure 1. The apparatus used to tilt the subject into every possible body position. By turning the cockpit around 
the y-axis, the pitch angle is varied. By changing the position of the whole frame around the x-axis, in which 
the cockpit is suspended, the roll angle is varied. 
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calculated by comparing the recorded frames 
with reference frames taken previously in a 
separate session in upright body position (0° 
tilt). This iris pattern was scanned in concen­
tric circles around the pupil center. The se­
quence of the grey values on the scan circles 
of the two frames was approximately the 
same. They differed mainly in rotational po­
sition. The extent of this phase difference can 
be determined by crosscorrelation, and this 
value represents the angle of OCR. A mean of 
10 different OCR values of both eyes was 
taken. The standard errors reflect the varia­
tion of OCR values obtained from the video 
recording (10 seconds) taken at each body po­
sition. A complete description of this proce­
dure is given elsewhere (21). A similar one is 
used by Clarke and colleagues (22). 

Experimental Setting 

(see Figure 2). In each session, lasting approx­
imately 50 minutes, subjects were brought 
into 6 different, randomly selected body po­
sitions. The starting point for each tested po­
sition was the upright body position. This 
periodical resetting of the starting point al­
lowed us to rule out possible hysteresis effects 
(5,12). About 5 minutes later, after subjects 
finished performing their perceptual tasks, 
one eye after the other eye was recorded on 
videotape for 10 seconds (about 250 available 
single frames). During this time, no visual 
stimulus that could possibly provide a direc­
tional cue was presented, in order to avoid vi­
sually induced OCR (23). The resultant data 
consisted of OCR angles measured in 62 dif­
ferent body positions. Four subjects took part 
in our experiments: two females (Fl, F2) and 
two males (Ml, M2), between 22 and 26 years 
of age. Their state of health was checked by 
standard medical testing. 

In the present study, the OCR angle was 
measured in combined pitch and roll body po­
sitions. In steps of 30°, pitch was varied from 
-60° to +90°, and roll from -180° to +180° 

Results 
The data were quantified at each of the 62 

measurement points by calculating the mean 

60° 

30° 

Combined Pitch and Roll Body Positions for OCR Measurements 

-a 

-60°. 

-90° • 
-180° -150° -120° -90° -60° -30° 0° 30° 60° 90° 120° 150° 180° 

Body Roll 
0 = upright body position • = measured body positions 

Figure 2. We have measured OCR at 62 different locations on the sphere. All of these pitch/roll combinations 
are indicated here with black dots. Along the vertical gridlines at roll - 9 0 ° and roll 90° you find only one dot, 
s ince changing the pitch angle at 90° roll does not affect the direction of the gravitational vector relative to 
the otolith organs. 
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value of 10 different video frames of each eye 
separately. Amplitudinal differences of the 
two eyes were present but not further exam­
ined in this study. The OCR profile obtained 
for each subject is shown in Figures 3a through 
3d. The standard error at each displayed data 
point (mean of 2 * 10 values) was <0.6°. The 
different combined pitch and roll tilts are dis­
played on the base plane. The degrees of OCR 
are represented by the curved surface. In body 
tilts to the right (positive roll), the eyes rotate 
to the left (negative OCR values), and vice 
versa. Following the roll angle from -180° to 
180°, the curves show a periodic character­
istic mainly irrespective of pitch. The OCR 
strongly increases as body tilt approaches a 
roll angle of -90° and -60° (left ear down) 
and 60° and 90° (right ear down). The maxi­
mal amplitude of the OCR of each of the 4 
subjects is shown in (Table 1). The amplitude 
varied from 8.3° (Fl) to 10° (F2) in body tilts 
to the left (negative roll) and -5.7° (Fl) to 
-10.5° (Ml) in body tilts to the right (posi­
tive roll). The extreme values were found in 
positions where the roll angle was ±60°. How­
ever, the maximal amplitude is found in a 
combination with a pitch angle, the only ex­
ception being subject F2. OCR differences 
when subjects were tilted to the right or to the 
left (see Figures 3a through 3d, Table 1) dem­
onstrate an asymmetric continuation of the 
OCR. Most asymmetry occurred in subject Fl 
(maximal absolute values 8.3° left ear down, 

Table 1. The body positions (pitch and roll) in 
which the maximal absolute OCR angles occur 

(the data for tilts to the left and to the 
right are presented separately) 

Absolute max. 
Subject Side OCR angle Pitch Roll 

F1 left 
right 

10.0° 
8.6° 

- 6 0 
0 

- 6 0 
60 

F2 left 
right 

8.3° 
5.7° 

30 
90 

- 6 0 
6 0 

M1 left 
right 

9.4° 
9.2° 

- 6 0 
- 3 0 

- 6 0 
6 0 

M2 left 
right 

9.5° 
10.5° 

30 
30 

6 0 
- 6 0 

5.7° right ear down). However, such tenden­
cies were not found in all subjects, for exam­
ple, subject M2. It can also be seen that the 
sinusoidal characteristic of the OCR was not 
much affected when a roll angle was com­
bined with a pitch angle from -60° to +90°. 
This means that following the grid line in the 
graphs at any given roll angle along the vari­
ous pitch angles shows no remarkable changes 
in elevation. It is seen clearly when overlaying 
the different pitch series in a 2D graph, as is 
shown in Figures 4a through 4d, that OCR is 
not systematically affected if lateral body tilts 
are combined with any tilts in the pitch direc­
tion. Kendall's rank correlation did not show 
any statistically significant changes (at 1% 
probability level) of OCR with varied pitch at 
any measured roil angle. Only moderate OCR 
values (<2°) could be observed in pitch-
only tilts. 

Discussion 
The general characteristic OCR response 

agrees with what was shown in earlier studies 
(2,4,5,9,13,14,21,24). With an increasing roll 
angle of the body position, OCR increases to 
reach its maximum at a body roll between 60° 
and 90°. The amplitude of OCR shows some 
asymmetries between left and right body tilts. 
In the present study, we report OCR measure­
ments obtained at different body positions, 
most of them being combined pitch and roll 
positions. 

The reason for asymmetric OCR values, 
obtained when subjects were tilted to the left 
and right, may be due to intra-individual dif­
ferences in the anatomy of the otolith organs 
(25-28). The observed asymmetry of OCR 
could represent a behavioral correlate of asym­
metric positioning of the otoliths in a stereo­
tactic coordinate frame of the head. In addi­
tion, the fact that most OCR peaks occur in 
combined pitch and roll tilts (roll always 60° 
and -60°, see Table 1) may also be due to an­
atomical positioning parameters. 

We have clearly shown that the OCR val­
ues mainly depend on the roll angle of the 
body tilt. The same sinusoidal characteristic 
that has been demonstrated in pure roll exper-





Subject's Roll Angle Subject's Roll Angle 

~ ™ ~ 30° O o _ W w w w -60° ' / / / / / / . -90° 
Combined Pitch Angle 

Figure 4. Figures 4a through 4d show each subject's OCR response at different attitudes. Each curve shows a specific combined pitch angle between +60° and 
- 9 0 ° . The error bars reflect the standard errors resulting from the multiple OCR measurements taken from the 10-second video tape recording at each body position. 
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iments has also been shown in measurements 
taken in combined pitch and roll positions, 
for example, the barbecue rotation, pitch: 
-90°, roll: -180° to 180° (see also references 
14 and 29). In contrast to that, from an engi­
neering point of view, we would have to de­
sign an external compensatory mechanism 
(for example, for a camera) that would be de­
pendent on the roll and the pitch angle. This 
is true even if we only want to compensate for 
a tilt which keeps the projection of the gravi­
tational vector vertical on the xy plane of the 
camera. 

Considering the OCR response in combined 
pitch and roll positions, our data support that 
"we can be reasonably sure the utricle is the 
primary sensory organ" (reference 27, p. 265). 
Although the saccule can be expected to be 
most sensitive to pitch tilts, it hardly contrib­
utes in an exhibitory manner to the afferent 
otolith signals mediating OCR. 

A computer simulation of the otolith re­
sponse to head tilts shows that the utricular 
stimulus patterns in roll positions vary when 
combined with different pitch tilts (17,30). 
Therefore, we assume that the afferent utric­
ular signals contributing to the OCR must be 
processed in a way that a pitch-//7dependent 
OCR response is mediated. This may demon­
strate how necessary it is to observe mecha­
nisms as OCR also in situations where they 
are not expected to contribute in functional 
terms. 

Although moderate, OCR values could be 
found also in all subjects in pure pitch posi­
tions, which are difficult to explain in func­
tional terms. Considering the amplitude and 
the variation, it may rather be attributed to 
a temporal fluctuation as also shown by 
Miller (31). 

In general terms, neither our present study 
nor any previous studies to our knowledge 
have been able to support a compelling bio­
logical function of OCR. Space constancy in 
humans is achieved by more complex internal 
compensatory processes. Despite its ineffec­
tiveness as a compensatory mechanism, it can 
be concluded from these data (providing sys­
tematic measurements in combined pitch and 
roll positions) that the OCR is a very useful 
tool for further investigation of otolith func­
tion and its underlying netting in an alternative 
access than is used for example, in neurophys­
iology or neurobiology. 
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