
Appl. Phys. B 26, 213-216 (1981) Appl ied  
Physics 
�9 Springer-Verlag 1981 

Influence of Fluctuating Pulse Durations 
on the Time Resolution of Probing Experiments 

W. Zinth 

Physik Department, Technische Universit~it, D-8000 Mfinchen, Fed. Rep. Germany 

Received 9 August 1981/Accepted 28 August 1981 

Abstract. Fluctuating pulse durations considerably influence the time resolution of probing 
experiments. The commonly used arithmetic averaging the experimental data changes the 
shape of the signal curves and gives longer decay times in the wings. Methods are presented 
to reduce the effect of fluctuating pulse durations. 

PACS: 06, 42.80 

With the advent of picosecond light pulses the in- 
vestigation of ultrashort dynamical processes has be- 
come an active field of research. Various laser systems, 
mode-locked dye lasers, and Nd-glass lasers with pulse 
durations of the order of one picosecond have been 
employed to measure a variety of ultrashort pheno- 
mena [1-3]. For the experimentalist it is essential to 
know the time resolution of the system to state the 
shortest time constant he is able to measure. It has 
been recognized generally that the time resolution is 
determined by the duration and the shape of the light 
pulses. Little attention has been given to the influence 
of the fluctuations of the pulse duration on the time 
resolution of a specific experiment. Since all existing 
mode-locked laser systems generate ultrashort light 
pulses with a spread of pulse durations, a discussion of 
the effect on probing experiments appears to be 
appropriate. 
Probing experiments are performed in the following 
way: An ultrashort light pulse is split into two parts. 
The first pulse is used to excite a material, whereas the 
second pulse monitors the time dependence of the 
material excitation. An optical delay line introduces a 
variable time separation t D between the excitation and 
probing pulse. The time dependence of the material 
excitation5 M(t) is obtained when the signal S(tD) 
produced in the probing process is measured as a 
function of the time delay t~. We briefly mention two 
examples for probing experiments: (i) "Exciting" and 
"probing" pulse cross within a nonlinear crystal under 
phase-matching conditions, and a second harmonic 

light is generated as long as the two pulses overlap. In 
this case, the material excitation M(t) is proportional 
to the product of the exciting pulse intensity I e times 
the second order susceptibility X ~2). The signal plot- 
ted versus the delay time reproduces the correla- 
tion function of the light pulses. It has been shown 
in a recent paper that the autocorretation curve is 
strongly effected by the fluctuations of the pulse du- 
ration [4]. Care has to be taken to deduce a value for 
the pulse duration from the width of the correlation 
curve. (ii) A first pulse excites a molecular vibrational 
mode (e.g., by resonant infrared absorption) generating 
a population M(t) in the upper vibrational level. A 
second pulse probes M(t) by anti-Stokes Raman scat- 
tering. When the decay time T of the population is 
longer than the pulse duration tp one readily measures 
T. When the time constant T is much shorter than the 
pulse duration, the shape of the signal curve equals the 
correlation function between the exciting and the 
probing pulse. Molecular decay times can only be 
measured when the signal curve differs from the cor- 
relation curve. The shortest molecular time constant 
which can be measured depends on the slope (the 
"decay") of the correlation curve. For instance, using 
Gaussian shaped pulses one finds a better time resolu- 
tion when data are taken far below the peak (down the 
wings). A factor of ten below the maximum one finds a 
slope of the autocorrelation curve of z=0.28 tp, where- 
as at a factor of 103 below the peak the slope is steeper, 
z ~-O. 17 tp, tp being the duration (FWHM) of the pulse. 
The question now arises on the time resolution when 
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Fig. la and b. Normalized probability density functions for the 
pulse duration tp (a) and the probing signal (b). In both eases the 
same fluctuations of the pulse duration AtJtpo =0.2 are assumed 

pulses of fluctuating pulse durations are used in the 
experiments. 

T h e o r e t i c a l  M o d e l  

We begin the following discussion with a simplified 
system where the material excitation has the shape of a 
delta function, i.e. M(t)= Mo~(t). This situation may be 
realized when the duration of the exciting pulse tpe is 
much shorter than the duration tp of the probing pulse 
and when the material excitation decays very rapidly, 
T<tp. We further assume a linear interaction of the 
probing pulse intensity I(t + t o, tp) with the material 
excitation M(t)=MoS(t).  Experimentally we observe a 
time integrated signal: 

+ o 9  

S(to, tp) oc ~ dt M(t)I(t + tD, tp)= MoI(t  D, tv) . (1) 
- - o 9  

The signal measured as a function of the delay time 
reproduces the shape of the probing pulse and the time 
resolution is determined by its shape. When the pulse 
duration fluctuates, the signal S(t D, tp) for a fixed delay 
time varies from shot to shot. It is general practice to 

simply average over many shots [-5]. Near the peak of 
the signal curve fluctuating pulse durations do not 
change the signal considerably. But the rapidly decay- 
ing wings depend strongly on the pulse duration. Long 
pulses give very large signals and short pulses have 
signals close to zero. Under these conditions the 
averaging procedure is of paramount importance for 
the determination of the true shape of the signal curve. 
To illustrate the result of the commonly used averag- 
ing, the arithmetic mean, we calculate the probing 
signal S(to, tp) for fluctuating probing pulses of 
Gaussian shape. We assume a normal probability 
density F(tp) of the pulse duration t v fluctuating around 
t h e  most probable pulse duration tp0. 

1 l(tp--tpOl2 [ 
F ( t p ) = A t p ~ e x p  2 \  Atp ] I' (2) 

The width of the frequency distribution is A tp, and 
more than 66% of all pulses have durations b e t w e e n  
tpo++_At p. The distribution is truncated at  tp=O. 
In Fig. la we plot the probability density of (2) for 
Atv/tpo=0.2. Only pulse durations within a narrow 
range around tpO may occur. 
Next we calculate the probability density of the signal 
values S. The fluctuations of the pulse duration strong- 
ly influences the magnitude of the signals S at a certain 
delay position t D. For Gaussian shaped probing pulses 
we write for the signal S 

S(to, tp) ec e x p [ - ( t o 2 1 ~ / t p ) 2 ] .  (3) 

The probability density F(S) of a certain signal value 
for fluctuating pulse durations is calculated from 

F(S(tD, tv) ) = F(tv) x dtp/dS. (4) 

F(S) was evaluated for the delay time t o = 1.6 tpo (where 
the S-value is approximately 10 -3 below the peak 
value at t o = 0) and for pulse fluctuations A tp/tpo---0.2. 
In Fig. lb the calculated curve F(S) is presented. The 
probing signal is normalized to the signal value for the 
most frequent pulse duration tpo, S(tD, tpO ). A high 
probability density F(S(tD, tp)) is found for the small 
signal values. F(S) decreases to higher signal values but 
high signals occur with non-vanishing probability. The 
influence of the high signals is readily seen when we 
calculate the arithmetic average (expectation value or 
arithmetic mean). 

o9 oo 

<S(tD)>arith = ~ SF(S)dS= ~ F(tp)S(tD, tp)dtp. (5) 
o o 

For our example the average signal is found at 
S(tD)a,~th'~4.2S(tD, t;o)," i.e., the averaged value is four 
times larger than the signal one would expect from the 
most probable pulse duration tpo. 
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Arithmetic Averaging 

The influence of the fluctuating pulse durations is 
obvious when we plot the arithmetic mean of the signal 
as a function of the delay time t D (Fig. 2). For pulses 
with a constant duration tp0 (i.e., for Atp=0) the signal 
curve has the shape of the Gaussian function (dashed 
curve in Fig. 2). For a situation with fluctuating pulse 
durations the calculated probe pulses, (5), give new 
signal curves. The solid curves of Fig. 2 are calculated 
for a width of the distribution of the pulses: 
Atp/tpo =0.2, 0.3, and 0.5. Two properties of the signal 
curves are striking: The fluctuations of tp lead to a 
more pronounced peak at tD=0 and at later delay 
times (tD>0.5tpo) they produce a slower decaying, 
nearly exponential, signal curve. At a signal level of 
10 .3 we find the following apparent time constants: 
z=0.12 tpo for the constant pulse duration and longer 
time constants ~=0.17tpo and z=0.28tpo when the 
pulse durations fluctuate with AtJtpo=0.2 and 0.5, 
respectively. For example, using a pulse distribution 
with tp0 = 6 ps +_ 3 ps the apparent decay of the signal 
curve is increased by 240 % from 0.7 ps (without fluc- 
tuations) to z = 1.7 ps. 
It should be emphasized that as a result of the 
averaging procedure Gaussian pulses give signal cur- 
ves with exponential wings. A careful consideration of 
the pulse distribution is necessary in order not to 
confuse the exponential wings with a time constant of 
the material excitation. A distribution of pulse du- 
rations reduces the time resolution of the probing 
experiments substantially. 
T h e  arithmetic averaging discussed here is used in 
most experimental investigations. In the experiments 
one sums up the different signals (at a certain delay 
position) and normalizes to the total number of shots. 
In particular, mode-locked systems of high pulse re- 
petition rate use detection systems with long time 
constants. In this way one obtains directly the arith- 
metic mean over many pulses of varying pulse du- 
ration. 

Central Point Averaging 

How can one reduce or overcome the problems result- 
ing from fluctuating pulse durations? A straightfor- 
ward technique consists of measuring the pulse du- 
ration of each pulse and taking the signal data for 
pulse durations within a narrow distribution. When 
only very short pulses are used the time resolution is 
optimized. This measuring technique is frequently 
complicated and time consuming. 
We suggest here a different averaging procedure which 
yields data of high time resolution [-6]. We first have to 
discuss the reason for the difficulties arising with the 
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Fig. 2. Arithmetically averaged signals calculated for Gaussian 
shaped pulses probing a delta function shaped excitation. The peak 
intensity of the probing pulses is kept constant. (Broken curve: 
constant pulse duration tp=tpo. Solid curves: fluctuations of the 
pulse duration Atv/tp0 =0.2, 0.3, and 0.5) 

arithmetic averaging. The shape of the averaged signal 
curve changes as the different pulse durations do not 
contribute equally at all the delay times to the arith- 
metic mean. At short delay times all the pulses contrib- 
ute whereas in the wings especially the longer pulses 
with their large signals determine the arithmetic ave- 
rage. To find a better time resolution of the probing 
experiment one has to assure that only one narrow 
band of pulse durations is allowed to determine the 
mean signal value. When we do not want to measure 
the pulse durations we have to find out how to 
correlate specific signal values with specific pulse du- 
rations independent of the delay time. 
We know that the signal is a monotoneous function of 
the pulse duration. Therefore, the probability to find 
signal values smaller than S= S(tp, to) (i.e., the distri- 
bution function) is equal to the probability to find 
pulse durations smaller than tp. This relation allows us 
now to select specific pulses from a measured distri- 
bution of signal values; e.g., we may use the center S c of 
the signal distribution where we have as many smaller 
as larger signal values. We call this value the "central 
point" of the signal distribution. The above mentioned 
relation states that the signal S c is produced by the 
pulse with the duration tpc, i.e. by the central point of 
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Fig. 3. Arithmetically averaged signals calcuiated for Gaussian 
pulses probing a delta function shaped excitation. (Broken curve: 
constant pulse duration; solid curve: A tjtvo = 0.5.) The full points 
indicate the arithmetic mean for 40 pulses with randomly distributed 
durations, (2). The circles show the "central points" of the signal 
distribution determined for the same set of pulse durations. This 
different procedure reproduces the correct shape of the signal curve 

the distribution of the pulse durations. When we plot 
the central point of the signal as a function of the delay 
time this curve should coincide with the curve de- 
termined by the pulse duration tpc. For the normal 
distribution used here, (2), the center value tpc equals 
the most probable pulse duration, tpc=tpo. For a 
measurement with N shots per delay time setting, 
N>> 1, the central point of the signal is determined in 
the following way: The shots are numbered according 
to their increasing signal amplitudes. The signal of the 
(N/2) th shot is called the central point. Using the 
central point of a distribution we overcome the diffi- 
culties of arithmetic averaging and may optimize the 
time resolution. This property is demonstrated in 
Fig. 3 where we compare the arithmetic mean and 
central point values for the example of fluctuating 
pulse durations. 
The broken curve is calculated when all pulses have 
the same pulse duration tpo. The solid curve shows 

arithmetic averaging with Atp/tpo = 0.5, (5). For various 
delay times we generated in a random process 40 
"pulses" distributed according to (2) with A tp/tpo =0.5 
Using these pulses we calculated the arithmetic mean 
(full points in Fig. 3) and the standard deviation of the 
signal. The points are near the theoretical curve, 
showing the slower decay and the non-Gaussian shape 
typical for the arthmetic averaging. For the same set of 
pulse durations we determined the "central points" of 
the signal distribution (circles in Fig. 3). The "central 
point" lies close to the dashed curve calculated with 
tp = tpo and shows the correct Gaussian shape of the 
signal. The remaining small differences between the 
central points and the theoretical line for tp= tpo are 
due to statistical incertainties caused by the limited 
number of shots. 

Conclusion 

Decay times Tof  the material excitation larger than the 
spread A tp of the pulse duration, T> A tp (for Gaussian 
shaped pulses) are not influenced by the arithmetic 
averaging process. For T<Atp arithmetical averaging 
of the probe signal leads to nearly exponentially 
decaying wings. Determining the central point of the 
signal distribution allows to overcome these difficul- 
ties. The signal curve is formed by pulses of a pre- 
dicted, the central point, pulse duration. Using 
Gaussian shaped light pulses the time resolution is 
only limited by the amount  of the useful signal ampli- 
tude, i.e., by the signal to noise ratio. 
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