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The frequency spectrum of moderately chirped laser pulses depends upon the portion of the beam which is accepted by 
the spectrometer. Observation of the development of the chirp in a mode-locked pulse train allows to determine the small 
incipient chirp of early pulses. A product, bandwidth times pulse duration, of 0.47 f 0.03 is consistently observed for 
single pulses switched from a passively mode-locked Nd-glass system. 

It has been well established that picosecond pulses 
have a considerable degree of frequency drift in most 
experimental systems [l-3]. To determine the mag- 
nitude of the chirp, one measures independently the 
duration tp and the frequency spectrum with half- 
width 6v of a single pulse. For coherent pulses, the 
product p = 6 v X tp has values of p = 0.44 or 0.89 for 
gaussian or square pulses, respectively. Experimental 
values of p as large as 100 have been observed for 
pulses of several picoseconds duration and some 
authors called their pulses “nearly bandwidth-limited”, 
even when p = 10. 

In this letter we discuss two closely related topics. 
First, we consider the problem of measuring the chirp 
of a laser pulse correctly and, second, we present a 
method which allows to select an ultrafast pulse of 
negligible chirp. Our investigations refer to high power 
solid state laser systems. 

The drift of the pulse frequency results from the 
nonlinearity of the index of refraction of the amplify- 
ing medium, glass rod or crystal, at high light intensi- 
ties [4]. The chirp accumulates during the many 
passes of the pulse back and forth through the laser 
resonator. The change of the index of refraction with 
electric field 6n = n - no = n2(E(t)2) results in a 
phase change 

tit) = 
wozf12 
7 W(t)3. 

The momentary frequency of the travelling light pulse 

w. t a@/at may be calculated from the time depen- 
dence of the pulse envelope E(t) [5]. The correspond- 
ing spectral intensity distribution is obtained from 
the relation 

E(w)=& s_= dtE(t)exp[-i(o - oo)t + e(t)]. 

A rough estimate of the chirp Av is given by Av = 3vo 
6n z/c tp, where v. represents the carrier frequency, 
z the total path length, and 6n X z the nonlinear change 
of the optical path through the medium. At the fre- 
quency of a Nd-laser of 9480 cm-‘, for example, one 
calculates A;= 3.8 cm-l, when z = 20 cm, tp = 
5 X lo-l2 s, and 6n = 10m6; the latter value corresponds 
to phosphate glass 

6 
n2 = 1.2 X lo-l3 esu) at a light 

intensity of 3 X 10 W/cm:!. 
It is important to emphasize that the chirp is pro- 

portional to the local light intensity. One finds the 
largest chirp in the center of the beam and reduced 
values in the wings, which contain a substantial part of 
the total beam energy. As a result, the interpretation 
of the observed spectrum of the chirped pulse requires 
careful consideration. The measured spectrum has dif- 
ferent shape and width depending upon the part of the 
beam which is accepted by the spectrometer. This 
point is illustrated in the following example: In fig. la, 
the intensity distribution of a Gaussian beam is plotted 
versus normalized radius, where R is the radius at half 
of the peak intensity. For an intensity level of 95$%, 
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Fig. 1. (a) Gaussian intensity distribution Z(r) over the beam 

cross section versus normalized position r/R (beam diameter 

2R). (b) Calculated normalized spectral intensity distribution 

Z(v) of a gaussian pulse versus frequency in units of fi’. A non- 

linear change of the optical path in the beam ten ter of 01 X z = 

0.36 ,um is considered. The spectrometer is assumed to accept 

portions of the beam with diaphragms of radii r = O.i7R, 

0.72R, and 1.82R, respectively, for the spectra (l), (2), and 

(3). (c) The spectrum Z(u) of a chirp-free pulse (4) of width 

6vo = 0.44/tp is compared with spectrum (3) of(b). 

70%, and 10% of the peak intensity, one readily cal- 
culates beam radii of r = 0.27R, 0.72R, and 1.82R, 
respectively. The light energy going through dia- 
phragms of corresponding diameters is 5%, 30%, and 
90% of the total beam energy. In fig. lb, three spectra 
(normalized to the same height) are presented. They 
are calculated for a nonlinear change of the optical 
path of 6n X z = 0.36 pm at the peak intensity in the 
center of the beam. The pulse frequency is assumed 
tobe’Yo=18960cm-‘, the second harmonic of our 

Nd-laser. The spectra of fig. lb correspond to three 
cases. The spectrometer sees (1) the center part of 
the beam with r = 0.27R and (2), (3) two larger beam 
cross sections with r = 0.72R and r = 1.82R, re- 

spectively. Case 1 gives a broad, modulated spectrum 
resulting from the relatively large contribution of the 
chirped radiation. Spectrum (3), on the other hand, 
shows a completely different spectral distribution, a 
bell-shaped form, reminiscent of a chirp-free pulse. 
In fig. lc, the spectrum (3) is redrawn and compared 
with a truly chirp-free Gaussian spectrum of half- 
width Avo = 0.44/t,. The broadening of spectrum (3) 
is now apparent. The spectra of figs. 1 b and c indicate 
that the presence of a moderate chirp hardly can be 
inferred from the form of the spectrum when most of 
beam energy is imaged onto the spectrometer. 

The results on this point may be viewed as follows: 

For a quantitative determination of the chirp of a 

light pulse, one has to know the frequency band- 
width, the time duration and the temporal shape of 
the pulse. The interpretation of the measured band- 
width requires the knowledge of the observed portion 
of the beam. Considering the difficulty of determining 
accurately the pulse duration and pulse shape, one 
recognizes the problem of establishing the degree of 
chirp of picosecond laser pulses. 

We now discuss an experimental technique which 
allows us to generate single picosecond pulses of a 
high degree of monochromaticity. The experimental 
set-up [6] consists of a passively mode-locked Nd-glass 
laser which produces highly reproducible trains of 
picosecond pulses. The subsequent electro-optic 
switch cuts a single pulse of prescribed peak intensity 
from the leading part of the pulse train. The single 
pulse is amplified in a second glass rod with negligible 
additional chirp and is frequency doubled in a KDP 
crystal before the spectrum is analyzed by a 2 m grating 
spectrometer in conjunction with an optical multi- 
channel analyses. Care was taken to accept the center 
part of the light beam with r = 0.72R. In fig. 2a we 
present part of a typical pulse train as it appears on a 
transient digitizer (time resolution 0.7 ns). The spectra 
in fig. 2b correspond to the five numbered pulses. The 
experimentally obtained spectra show very clearly a 
narrow pulse (1) and the chirp of the laser pulses (3), 
(4), and (5). Comparison with calculated spectra sug- 
gests that spectrum (4) corresponds to a value 6n X z = 
0.36 pm (see fig. lb). Since the peak intensity of the 
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Fig. 2. (a) Rising part of the pulse train of a mode-1ockedNd: 

glass laser as detected by a fast photodiode and a transient 

digitizer. (b) Observed spectra of five picosecond pulses select- 

ed from defined positions (1) to (5) of the pulse train (see (a)). 

Data are taken with a diaphragm of radius r = 0.72R. (c) The 

corresponding calculated spectral intensity distributions versus 
normalized frequency. 

Comparison of(b) and (c) allows to estimate the incipient 
chirp of pulse (1) to be Av/6vo = 2 X 10m2. 

laser pulse is proportional to the peak height of the 
pulses at the digitizer (at the beginning of the pulse 
train) we are able to calculate 6n and the spectra of 
pulses (1) to (5). The computed spectra of fig. 2c com- 
pare favorably with the experimental results of fig. 2b. 
Of special interest is the fact, that we are now in the 
position to extrapolate to earlier pulses, for instance to 
the pulse with number one, and make an accurate 
statement as to its incipient chirp. This procedure tells 
us that for pulse (1) we have Av/&v~ = 2 X 10A2, in- 
deed a negligible chirp of this early pulse. 

We note that the preceding treatment is correct for 
the beginning of the pulse train where the gain in the 
oscillator is constant. We have made a detailed study 
of the chirp in our oscillator, taking into account the 

linear losses, the gain, the length of the amplifying 
medium, and the nonlinear coefficient n2. The chirp 
could be predicted during the rising part of the pulse 
train in agreement with experimental observations. It 
is emphasized that the careful observation of the 

growth of the chirp within the pulse train and the well- 
defined selection of a single pulse from the early part 
of the train allows to generate practically chirp-free 

pulses. 
In order to ascertain the high quality of our pulses 

we simultaneously measured the spectrum and the two- 
photon fluorescence track [7] with the help of two 
optical multichannel analysers (see figs. 3a and b). We 
found a contrast ration of 2.9 + 0.2 of the second order 
autocorrelation pattern suggesting good coherence of 
the pulses. The pulse duration was found to be 
5.0 + 0.3 ps. The product p = 6~ X fp was measure: 
to be 0.47 + 0.03 as an average value of 25 pulses . 
To the best of our knowledge, such a small value of 
p has not been reported previously for pulses of 
several picoseconds duration. The result presented here 
is consistent with a gaussian pulse shape * and gives 
convincing evidence that we have generated truly co- 

* The statistical error (twice the standard deviation) is indicated. 

’ An approximately Gaussian pulse shape has been measured in 

previous investigations, see ref. [ 81. 
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Fig. 3. Frequency width (a) and duration (b) of a single pulse 

selected from an early position (1) of the pulse train after 

conversion to the second harmonic frequency. (a) Spectral 

intensity distribution as measured with a grating spectrometer 

and an optical multichannel analyser. (b) Second order auto- 
correlation pattern of the same pulse as in (a) observed by the 

two-photon fluorescence technique using a multichannel 
analyser; rp = 5 ps, mp = 0.47. 
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herent optical signals of picosecond duration. 
Using the pulses described here and taking advan- 

tage of the discussion given above, we have devised a 
simple system to measure the nonlinear coefficient n2 
of various materials with a single picosecond pulse. 
Two pulses are first generated with the help of a 

beam splitter. One pulse is imaged at the upper part 
of the slit of a spectrometer while the second pulse 
traverses the medium of interest and is subsequently 
imaged at the lower part of the slit. With a two- 

dimensional optical multichannel analyser, the two 
spectra are stored and slight changes of the spectra are 
readily detected. We are able to observe additional 

chirps of the second pulse of Au/6v a 0.2. This method 
appears to be competitive with other techniques to 
measure n2 in liquids and solids [9-l 11. 

In closing this note we point to the importance of 
chirp-free pulses for coherent experiments in the pico- 
second time domain. In addition, there are substantial- 
ly higher conversion efficiencies in the generation of 
new frequencies via nonlinear optical processes when 

working with coherent laser pulses [ 121. 
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