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[3-Vinyl]-bacteriochlorophyll a and related pigments modified at C-3 and/or C-13 z havc been synthesized from bactcriochloro- 
phyll a. The reactivity at C-3 is strongly influenced by the C-132 substituent, and vice versa. Spcctroscopical data and comparison 
among derivatives modified at the isocyclic ring indicate that this interaction is related to formation of an intcrmcdiatc cnol(atc) 
structure. The possible role of enol(ate) formation in (bacterio)chlorophylls in nature is discussed. 

Introduction 

The chemistry of plant chlorophylls (Chl a, b) is a 
well-studied part of porphyrin chemistry. A large 
amount of data has been accumulated on the chemical 
reactivity of side-groups and their physical and spectro- 
scopic properties [1-3]. Much of that work is motivated 
by the impor: 1nee of these chlorophylls in oxygenic 
photosynthesis. While most of these data originate 
from in vitro work in organic or micellar solution, 
much less is known on the structural and functional 
details in their native protein environment. In the case 
of bacteriochlorophylls, among which BChl a and b 
are most prominent, the situation is reversed. Due to 
the possibility to isolate bacterial light-harvesting com- 
plexes [4] and purple bacterial reaction centers [5] for 
more than 15 years, and to crystallize some of them, 
high precision structural data in their native protein 
environment are available [6-10]. However, their 
chemistry is relatively seldom investigated. In connec- 
tion with the recently introduced methods for exchang- 
ing modified (bacterio)chlorophylls and -pheophytins 
into bacterial reaction centers [11-14] (no detailed 
reports have been given there on the pigment synthe- 
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sis) and antennas [15-17], we have s',artcd to invcsti- 
gate the reactivity of side-groups in BChl a. 

To understand the structure-function relationships 
of bacteriochlorophylls (and chlorophylls) in more de- 
tail, it is important to obtain structural links between 
the different naturally occurring (bacterio)chlorophyll 
structures. One such link is [3-acetyl]-chlorophyll a 
[18], bearing the 3-acetyl group characteristic of BChl 
a and b, and the macrocycle characteristic of the green 
plant Chl a and b. The complementary link is [3- 
vinyl]-Bchl a, which differs vice versa from Chl a by 
the macrocycle, and from BChl a by the presence ~l a 
C-3 vinyl instead of an acetyl group. Here, we wish to 
report a procedure to synthesize [3-vinyl]-BChl a and 
some related pigments, and discuss some physical 
properties of these pigments in vitro. Attention is given 
to a pronounced, and hitherto unreported, long-range 
interaction between substituents at the positions 3 and 
13 2 , which was observed during these studies. The 
reactivity at C-3 is strongly influenced by the nature of 
the C-13 2 substitucnt, and vice versa. The data suggesl, 
that this 'connection' is related to f,-.~rmation of enol(ateJ 
structures at the isocyclic ring. There has been consid- 
erable interest before it~ the enolisation and the 
epimerisation at C-13 2, and their possible involvement 
in photosynthesis [19-23]. The results are discussed in 
this context. 

Material and Methods 

General conditions 

All chemicals and solvents used were reagent grade. 
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eiglneHls 
The isolation of BChl a (1) and the syntheses and 

spectral ckaractcrizations of all derivatives arc given in 
the Appendix. 

Spectra 
Absorption spectra wcrc recorded on a Lambda 2 

photometer (Perkin Elmer). ~H-NMR spectra arc 
recorded on an AX 360 MHz machine (Bruker model) 
in pyridine-d 5, if not stated otherwisc. FAB mass spec- 
tra were obtained with the model CH 7a/SS 100 mass 
spectrometer (Varian MAT, Bremen). Extinction coef- 
ficients were determined by dissolving the pigments in 
ether to ANm around (I.8. A precise absorption spec- 
trum was recorded. The sample was then dried with a 
stream of nitrogen, and the Mg-contcnts determined by 
atomic-absorption spectroscopy. The reported values 
and error limits are .:tvarages from three to six determi- 
nations. 

Results and Discussion 

Slrllt'lltres 
Ultraviolet-Vis-N1R absorption, ~H-NMR and mass 

spectra of all products are consistent with the given 
structures. The 3-acetyl group was converted to the 
vinyl group by NaBH 4 reduction to yield [3ot-hydroxy- 
ethyl]-BChl a, followed by dehydration in refluxing 
toluene. The 3-a-hydroxyethyl-derivative (4) has the 
absorption maxima and t H-NMR shifts as described in 
Rcf. [26]. The cpimer mixture at C-3 t gives rise to the 
splitting of some signals, as in the BChl c, d, e series 
[30,31]. Reduction of the 13LC=O group, which occurs 
readily in chlorophylls [32,33], has (quite surprisingly) 
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Fig. 1. Lll N M R  spec l rum of [3-vinyl]-B('hl a (7) (132-epimcr  mix- 
lure) in pyridinc-d~. Solvent signals at 7.2, 7.5~ and 8.69 p p m  

(pyrkl inc)  and at 4.8b; ppm (water) .  
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15 H C O H C H  3 * O H / C O O C H  3 * H 2 
16 C l t C H 2  C O O C t t  3 H H ,  

17 C H C H  2 H H H z 

18 C I I C H  2 O H / C O O C I q  3 * H 2 
Phy = phytyl (C 2, I-t ~ ) 

* Ep imer ic  mixture.  

never been observed under these conditions, not even 
at greatly prolonged times. 

The I H-NMR spectrum of [3-vinyl]-BChl a (77 in 
pyridin (Fig. 1) shows the typical AB pattern of a vinyl 
group at ¢5 = 8.02, 6.20 and 5.93 ppm, the high-field 
shift of all signals with respect to chlorophyll is due to 
the reduced ring-current of bacteriochlorins [34]. The 
splitting of the methin proton signals at 8.46/8.45, 
8.44/8.41 and 8.16/8.14 and the 132 H-signal at 6.44/ 
6.29 ppm indicates a 132 epimeric mixture of about 
70% 13zs-(7) and 30% 132R-(7). All other expected 
proton signals are present. After pyrolysis of the mix- 
ture, the resulting (8) shows no split signals in the 
~ H-NMR-spectrum. 

The best way to produce 132-hydroxylated BChl's is 
prolonged standing in methanol under aerobic condi- 
tions. The desired oxygenation (132-OH) and the unde- 
sired methoxylation (132-OCH,) at this position are 
competing processes which occur with different yields 
(see Ref. 25). To obtain 132-hydroxylated BChl's the 
product mixture was subsequently separated by chro- 
matography on DEAE-cellulose column [27]. Although 
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Fig. 2. IH NMR spectrum of 132-hydroxy-BChl a (2) (132-epimer 
mixture) in pyridine-ds. The splitting of the Pj-CH 2 signal (centered 
at 4.65 ppm) is characteristic for 132 hydroxylated bacteriochlero- 

phylls in pyridine. 

the resulting 132 epimers can be separated on analyti- 
cal TLC or HPLC, no attempts were made for a 
preparative separation. A remarkable feature in the 
NMR spectra of 132-hydroxylated epimers concerns 
the signal at 4.63 ppm, which is assigned to the phytyl 
P1-CH2-grou p. It does not appear, as it usually does, 
as a doublet, but rather as a multiplet with seven 
resolved lines, which is the AB-part of an ABM system 
with JAB = 12.7 Hz and JAM ='IBM = 7.2 Hz (Fig. 2). 
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Fig. 3. Quantitative absorption spectra of bacteriochlorophylls, modi- 

l i e d  at  p o s i t i o n  3 in d i e t h y l e t h e r :  B C h l  a (1). ( - ) :  [3-0- 

hydrox3,-c thyl]-BChl  a (4), ( - - - - - - )  a n d  [3-v iny l ] -BChl  a ~7). 
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F ig .  4. Q x - a b s o r p t i o n  b a n d  o f  h a c t e r i o c h l o r o p h y l l s  m o d i f i e d  :it posi-  

l i on  132: BCh l  a (1), ( ); 132 -dcm e thoxyca rbony I -B( ' h l  a (2) 

( . . . .  ); and  13-~-hydroxy-B('hl a (3), ( . . . . .  k 

This effect is typical for all 132-hydroxylated pigments 
investigated. Such a pattern is probably the result of an 
increased anisochronicity, which results from interac- 
tion between the 132-OH and the phytol residue in the 
(natural) 132S-configuration. 

Absorption spectra and extinction coefficients 
Fig. 3 shows the quantitative absorption spectra in 

diethylether of BChl a and the derivatives (4) and (7), 
modified only at position 3. Compared with BChl a (1), 
there is, for both modifications (as expected [35]), a 
characteristic short-wavelength shift of the Qv and the 
Q× bands. For 3<OH-BChl a, the Qv band is shifted 
from 771 nm to 728 nm, and the Qx band from 573 nm 
to 555 nm. The Q v band of [3-vinyl]-BChl a shifts from 
771 nm to 745 nm, and the Qx band from 573 nm to 
560 rim. It is worth noting the lowered extinction 
coefficient of the Qv band for both modifications. It 
decreases from E771 = 105" 10 3 for BChl a over e745 = 
83- 103 for [3-vinyl]-BChl a to e72 s = 66- 103 M- ~ cm- 
for [3-a-hydrox3,ethyl]-BChl a in diethylethcr. 

Decarboxylation and hydrox3'lation at O132 only 
have a small effect on the ~bsorption spectra, as in the 
chlorophyll series. There is, however, a small but dis- 
tinct difference in the Qx region (Figs. 4 and 5). The 
13<demethoxycarbonyl( = pyro) conapounds (2) and (8) 
shift always slightly to longer wavelengths, as compared 
to the respective (1) and (7), bearing a 132- 
carbomethoxy substituent. The shift is most obvious in 
the short-wavelength flange. The 13<hydrox3,1atcd 
products (3) and (9), in contrast, always shift to slightly 
shorter wavelengths, as compared to the 132 H com- 
pounds (1) and (7). This effect, irrespective of the 
modifications at C-3 (see Materials and Methods sec- 
tion for the [3-tr-hydroxyethyl]-bacteriochlorophylls (4), 
(5) and (6)), is also present in the Qx band of the 
~,oncsponding metal-free compounds, e.g., the bade- 
riopheophytins (see Materials and Methods section 
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Fig.  5. Q x - a b s o r p t i o n  b a n d  o f  [3 -v iny l ] -bac t e r i och lo rophy l l s  m o d i f i e d  

at  pos i t ion  132: [3-v inyl ] -BChl  a (7) ( ' L  [3-vinyl]-13Z-de - 
m c l h o ~ ' c a r b o n y I - B C h l  a (81 ( . . . . . .  ) a n d  [3 -v iny l ] -13 : -hydroxy-  

B( ' h l  a (9), ( . . . . .  1. 

and Ref. 29). Ox band shifts are also induced by a 
different modification, e.g.. by the ligand number of 
the central Mg in chlorophylls and bacteriochlorophylls 
[36]. In the latter case. thc change in ligation corre- 
sponds to a change in the macrocycle geometry (but 
see Ref. 37), which is less planar when the central Mg 
has only five ligands (e.g., one axial ligand). The under- 
lying effect for the 132-substituent shifts is also possibly 
steric changes of the macrocycle, because the 132 sub- 
stitution pattern can influence the "puckering' of the 
macrocycle [38]. 

Water elimination attd reciprocal interaction between po- 
sitions C-3 and C-132 

The elimination of water at the C-3 substituent of 
[3-a-hydrox~yethyl]-BChl a (4) proceeds smoothly in re- 
fluxing toluene under anhydrous conditions to yield 
[3-vinyl]-BChl a (7). It is remarkable that this elimina- 
tion reaction at position 3 is strongly dependent on the 
132 substituent. The 3 I, 132-dihydroxylated pigment (6) 
does not yield the respective [3-vinyl]-pigment (9). 
Rather it remains stable even after several hours of 
refluxing. The t H-NMR spectra of 132 hydrox'ylated 
BChl's consistently showed that they are very hygro- 
scopic, which could be a cause for the changed reactiv- 
ity. This was ruled out, however, by extensive drying. 
Repeated evaporation of dry toluene from the pig- 
ments under a stream of nitrogen, before attempting 
the elimination, did not promote the dehydration at 
the C-3 substituent. Moreover a similar influence of 
the 132-substituents was found with the 13Z-de - 
methoxycarbonyl(= pyro) BChl a ($). This pigment is 
not as hygroscopic as are 132-hydroxy-BChl's, but again 
the elimination reaction was negative. Even after 6 h of 
refluxing in toluene, (5) is stable and does not yield the 
expected (8). These experimental data confirm a dis- 

tinct influence of the 132 substitution pattern on the 
reactivity of C-3L One way to rationalize the interac- 
tion over such a distance would be a bimolecular 
mechanism in which one pigment catalyses the reaction 
of the other, e.g., in a 'head-to-tail '  aggregate [39-42]. 
To test this idea, the reaction was followed at lowered 
concentrations of pigments in toluene, and also in 
pyridin, which is known to prevent aggregations. In 
neither case was there a marked change in the water 
elimination kinetics. Taken together these experimen- 
tal results exclude intermolecular interactions as the 
origin for the changed reactivities, and leave as alter- 
native an intramolecular long-range interaction of the 
C-132 on the C-3 sites. 

Interestingly, there is also evidence for the reverse 
influence of the 3Lsubstituent on reactions of the 
isocyclic ring. The hydroxylation rate of [3-vinyl]-BChi 
a (7) at C-132 in methanol is much lower than that of 
BChl a (1). Further results come from reactions in 
alkaline methanol [43,44]. Under conditions where (1) 
is converted to (Rhodo)bacteriochlorin-eT-methylester, 
the isocyclic ring V remains intact in (7) [29]. 

Which role does keto-enol tautomerism play? 
A common aspect of the two compounds, (5) and (6) 

which do not eliminate water from the C-3 substituent, 
is that enolization at the isocyclic ring is greatly re- 
duced (5) or even inhibited (6). (5) is no longer a 
/3-ketoester, and enolization is no longer possible if the 
132-H of (1) or (4) is substituted by an OH-group as in 
(6). The readily enolizable /3-ketoester is present in 
most (bacterio)chlorophylls, but the functional signifi- 
cance of this group is still unclear [19-23]. Enols can 
principally be formed by tautomeric shift of the 132-H 
to either the 13Lcarbonyl or the 133-methoxycarbonyl 
oxygen, but all enolic structures reported so far are 
13Lene-13Lols [19-23,45]. Enolates can be formulated 
from all enols by proton dissociation. In most cases, the 
carbonyl tautomer is strongly favored and accounts, for 
example, for the absorption and vibrational spectra, 
and no significant amounts of chlorophyll enol- 
tautomers are detected in organic solvents by the latter 
[46]. There is, for example, no distictive spectroscopic 
difference between the readily enolizable (1), the more 
difficult enolizable (2), and the non-enolizable (3), 
whereas the known enols differ considerably in their 
absorption ¢rc~m the keto-compounds. However, the 
ready H-exchange [47] and epimerisation of the chiral 
center C-132 [48] are explained by this mechanism. 

Vinylogous enolizations are possible as well, and, 
for example, account for the ~H/aH-exchange at the 
12-CH3-group [49]. It is possible that the long-range 
effects described above are due to a more extensive 
vinylogous enolization. Enol(ates), which are substi- 
tuted at the 0-position by a suitable nucleophilie group, 
are prone to elimination forming a/3-unsaturated ke- 



tones. A number of enzymatic ([50-52] and tk)r a re- 
view see Ref. 53) and non-enzymatic [54-57] reactions 
of this type have been studied in detail. Via the te- 
trapyrrolic ~--system, the water elimination from (4) 
can then also be rationalized by a vinylogous mecha- 
nism. 

It is worth noting the long distance over which the 
supposed enol(ate) formation can influence the reactiv- 
ity of side-groups. There is another long-range intra- 
molecular reaction known in chlorophylls, e.g., the 
electrophilic chlorination of Phe a [58], which depends 
on the stereochemistry at C-13 z. But in this case, 
probably steric rather than electronic factors are im- 
portant. 

It has been speculated for a long time that enoliza- 
tions are important in vivo [19-23], because all bac- 
teriochlorophylls and bacteriopheophytins in reaction 
centers carry the enolizable /3-ketoester system. The 
long-range effect observed here is a further aspect to 
these speculations. It was significant in this context, 
that exchange of the enolizable (1) in bacterial reaction 
centers at the sites BA, B by the non-enolizable (3), did 
not interfere with charge separation, stability and 
V I S / N I R  spectra [11,29]. The same is true for an 
exchange of (10) by (12) (or (18)~ in the HB binding 
site, while such an exchange was not readily possible at 
the H A binding site [29]. An enol formation of BPhe a 
in H A which has been suggested from Raman spec- 
troscopy [59], would explain the latter exchange results. 
However, ENDOR [60] and more recent Raman data 
[61] seem to exclude any enolic character of BPhe a in 
H A in the ground or doublet states. In any event, in 
order to rationalize the possible role of enol(ate) for- 
mation of BPhe a in H A it will be necessary to obtain 
more experimental and theoretical results about the 
influence of enol(ate)s on excited states and charge 
transfer states. One good tool for this will be the 
exchange experiments [11-14,29] in combination with 
I R / R a m a n  spectroscopy (in particular with a stabi- 
lized BPhe a - ) .  

While the previous discussion was mainly concerned 
with static aspects, transient enol(ate) formation is 
another one, especially in photoenolization (for a re- 
view see Ref. 62). The photochemistry of aryl carbonyl 
compounds, such as acetophenone and benzophenone, 
is characterized by very efficient hydrogen abstraction 
from solvent or other hydrogen donors to give ketyl 
radicals, which then either couple to give pinacois or 
abstract hydrogen to give alcohols. However, the pres- 
ence of an ortho-substituem carrying benzylic hydro- 
gens almost completely quenches this intermolecular 
reaction and often renders the aryl carbonyl compound 
photochemically inert [63,64]. The mechanism of this 
quenching has been recognized as involving intra- 
molecular hydrogen abstraction from the ortho-sub- 
stituent by the carbonyl in a Norrish type I1 reaction to 
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give a biradical, which can collapse to ground state 
dienols. This is preferable tor anti-conformers, the 
s~,n-contbrmer converts directly from the excited S ~ 
state to ground state dienols. The unstable di-enols 
rapidly 're-ketonize" to give back the starting material, 
so that the initial photochemical excitation energy is 
ultimately dissipated as heat. Their ability to direct the 
de-excitation pathway has led to the use of these 
compounds to stabilize or destabilize polymers towards 
light. 

For all known bacteriochlorophylls there is such a 
stabilizing 'ortho'  substituent, e.g., the 12-CH 3 group 
(in syn-conformation). This could play the same stabi- 
lizing role in quenching excited states as an ortho 
methyl substituent in aryl carbonyl compounds. It is 
clear that, under normal photosynthetic conditions, 
this is an undesirable process. On the other hand, this 
quenching could become important in an environment 
or under conditions where the absorbed energy cannot 
be used in regular energy transfer (e.g., during biosyn- 
thesis or high light intensity conditions) or when they 
are functional in electron transfer. The functionality of 
the 'vinylogous' 12-CH.~ group depends on the envi- 
ronment; by interaction with this group, the reactivity 
of the excited state could be modulated. One such 
modulation may occur by the interaction of Glu-L141 
and 13 ~ C=O of BPhe-H a in reaction centers. 

Irrespective of the mechanistic details the results 
show how the reactivity of bacteriochlorophylls could 
be influenced sensitively by substituents of the macro- 
cycle, and probably also, by the environment of these 
substituents. This, then, may provide for switching or 
modulating the photophysical and photochemical prop- 
erties of the pigment molecules in a reversible, envi- 
ronment-controlled, manner, it may be relevant to the 
different functions of bacteriochlorophylls in photo- 
synthesis, and, in a dynamic manner, for the diode 
properties of reaction centers. 
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Appendix 

Pigment isolation, synthesis and characterization 
BChl a (1). Isolated from Rhodobacter sphaeroides 

2.4.1, as described before [12] as a C-13-" epimer mix- 
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lure with R / S  around 90/10. Spectra: absorption in 
ether, A ...... [nm] (relative iwcnsifics): S x * 357 111.78). 
St~ ~ .'.91 (0.5d). Ox 573 (0.23l, O~ 771 nm (I): (~-:l = 
(105+5 . ( ) ) - I0~ .M I .cm I in ether); ~H-NMR in 
pyridinc-d~: 6[ppm] (proton): 9.52 15-1t): 8.64 (IO-H): 
b~.50 (2(I-H): 6.56 (132R-H): 6.42 (13-'S-H): 3.45 (2- 
CH3); 3.12 (3-'-CH ~): 1.711 (7-CH~, d. J = 7.2 ttz): 3.56 
(12-CH~I: 1.53 (18-CH~, d. J =  7.1 Hz): 3.78 1132- 
COOCH31; 4.75 (Pi): 5.45 (P,):_ 1.65 (P3). 

13-'-Demethoxvcarbonvl-B~Td a (= ~ 'ro-BChl  a) (2). 
Synthesized as described in Ref. 24. Spectra: absorp- 
tion in ether A,,,,, [nm] (relative intensities): S A 35 
10.77), St+ 39t1 (11.431, Ox 576 (0.22). O,, 771 nm (I): 
t H-NMR in pyridinc-d~: ~[ppm] (proton): 0.49 (5-H); 
8.72 (10-H): 8.61 (20-tt): 5.29 (13-' R-H. d. J =- 19.5 Hz): 
5.07 (13-'S-|t, d, J = 19.6 Hzl: 3.52 (2-CI!3l: 3.1(i (3-'- 
( ' H 0 : 1 . 7  (7-( ' t t  ~): 3.68 (12-CH ~): 1.65 (18-CH,): 4.75 
(P~); 5.47 (P,): 1.67 (P~). 

13:-Itydr~xy-t~(/;/a (3). Synthesized as described in 
Rcf. 25. Spectra: absorption in ether A ...... [nm] (rela- 
tive intensities): S+x 357 (0.78). St+ 391 (0.551, Qx 568 
(0.22), Qv 771 nm ( 11: t H-NMR in pyridinc-d~: 3[ppm] 
(proto0): 9.65 (5-1-t): 8.71 (IO-H): 8.60 (211-H); 3.48 
(2-CH]): 3.15 (3:-CH.0:1.74 (7-CH~, d, J = 7.1 Hz): 
3.56 (12-CH3): 1.39 (18-CH, d, J = 7.1 Hz); 3.57 113:- 
COOC|-I.0; 9.66 (13:-OH); 4.65 (P~); 5.35 (P:); 1.58 
(PO- 

[3-c~-ltydroxyethyl]-BChl a (4) (modified afwr R~[: 
26): ! (3-5  rag) was dissolved in 100 ml ethanol and 
stirred under nitrogen at 4°C. After 10 min, NaBFIa (10 
mg) was added and the reaction mixture kept stirred. 
The reaction is followed by Vis-NIR absorption spec- 
troscopy (blue-shift of the Ov band from 771 nm to 
714 nm in the reaction mixture) and was generally 
complete after 311-611 rain. The mixture was then sepa- 
rated between dicthyl ether and water. The ether phase, 
which contains the pigments, was washed repeatedly 
with water and then dried over NaCI. The products 
wcrc purified on a DEAE-cclhdosc column [27]; the 
fimr 3~/132 diastereomcrs wcrc m~t separated by this 
procedure. Spectra: absorption in ether A ...... [nm] (rel- 
ative intensities): S A 346 (1.031, S~ 387 (0.64), Qx 555 
(0.39), Q,, 728 nm (1); e72s (66.1 _+3.2" 10 M t cm- t  
in ether): ~H-NMR in pyridine-ds: 6[ppm] (proton): 
8.88 *, 8.84 *, 8.83 * (5-tt); 8.37 *, 8.35 * (Ill-H); 
8.112 * 8.00 * 7.99 * (211-H): 6.41 ' * • , (13"R-H); 6.26 , 
6.25 * (132S-H): 3.23 *, 3.18 * (2-CH 0; 1.63 (7-CH 0: 
3.51 *, 3.48 * (12-CH0; 1.46 (18-CH3); 375 *, 3.83 * 
3.74 ~ :~' ( I . - -COOCH3):  6.45 (3t-H): 7.38 (3t-OH)" (* 
split signal due to presence of 31/132 diastereomers). 

[, -(t-itydroxyethyl]-13--demethoxycarbonyI-BChl a 

~ Sxj  ~ = mare ¢onlponcnts  of  the Sorer hand s~,stcm, Ox. , ,  = visible 
and near - IR absorption bands. PL2.3 = ph~tol hydrogen NMR sig- 
nals C I ( H  : ). ( ' 2 1 t l ) a n d  C311"1t 0 .  rcspeclivcly. 

¢5). Synthesized by chemical reduction of (2), as de- 
scribed fl~r the synthesis of (4) from (1). Spectra: ab- 
sorption in ether A ..... [nm] (relative intensities): S A 346 
(l.(Jl5), Sl+ 385 (11.641. Qx 555 111.358), Qv 729 nm (11; 
t H-NMR in pyridine-de: 6[ppm] (proton): 8.76 *, 8.75 * 
(5-Hi: 8.47 (10-H); 8,13 (20-H); 5.20 (132-H); 6.26 1132- 
H): 3.30 *, 3.27 * (2-CH31:!.61 17-CH3); 3.63 (2-CH3); 
1.55 (18-CH3); 6.43 (31H): 7.31 (31-OH): (* split signal 
due to mixture of 3 ~ epimers). 

[3-a-Hydroxyethyl]-i32-hydroxy-BChl a (6). (4) (5 
rag) was dissolved in methanol (250 mi) and kept for 4 
days at 4°C in the presence of air [25]. There were 
several products which were separated on a D E A E - c e l -  
lulose column [27]. The main band contained a mixture 
of 3~/132 diastereomers of (6). which were not sepa- 
rated. A subsequent repurification on RP-18 columns 
(Adsorbcx, Merck) is sometimes necessary to remove 
by-products. Spectra: absorption in ether A ...... [nm] 
(relative intensities): S A 346 (I.14), S a 386 (0.84), Qx 
5511 (11.4111, Q ~  728 nm (l):  tH-NMR in pyridine-d.~: 
¢~[ppm] (proton): 9.1111 *. 8.97 * (5-H): 8.46 (10-H); 
8.12 ~. 8.11 * 1211-H); 5.37 (132R-H); 3.26 *, 3.21 * 
(2-CH 0: 3.52 (2-CH3); 3.54 (132-COOCH3); 6.51 (3 I- 
H): (* split signal duc to mixture of 3~/132 diastere- 
omers). 

[3-l/inyl]BChl a (7). Purified (4) (I mg) was dried in 
vacuum over CaCI,  for 12 h and then dissolved in 
toluene (50 ml), dried over molecular sieve (3 ,~). The 
mixture was refluxed under argon for 1 -2  h. Th e  
reaction was usually fl~llowed by absorption spec-  
troscopy (red-shift of the Qv band from 739 to 750 nm 
in the reaction mixture). After the reaction was com- 
pleted, the solvent was removed by 35°C in vacuum. 
The final product, which was already rather pure, was 
purified on a DEAE-cellulose column [27]. The 132 
epimers were not separated. The high yield of the 
reaction was confirmed by HPLC analysis with a diode 
array absorption detector [14]. The silica gel system 
used [28], allows the separation of the 3 t and 132 
diastereomers of (4) and the 132 epimers of (7). There 
are no colored by-products detectable by HPLC analy- 
sis of the final product. Spectra: absorption in ether 
A ...... [nm] (relative intensities): S,x 351 (1.13), S~ 389 
(11.67). Qx 56[I (0.35), Qv 745 (1); e745 (82.5 _+ 2.5 • 103 
M - i  c m  ~ in ether); IH-NMR in pyridine-ds: ~5[ppm] 
(proton): 8.45 (5-H): 8.41 (10-H); 8.14 (20-H); 8.03 (H x 
d, J =  11.6 Hz); 5.94 (H A d, J =  11.6 Hz); 6.21 (H B, 
d , J =  17.91; 6.44 (132R-H); 6.29 (132S-H); 3.20 (2- 
CH~): 1.68 (7-CH,~, d, J =  7.2); 3.53 (12-CH3); 1.47 
( I~,~;-CH 3, d, J = 7.2 Hz); 3.75 (132-COOCH3); 4.74 (Pt); 
5.44 (P21; 1.64 (P31: FAB-mass: 896 ( M +  2H, 38%); 
895 (M + H, 67~);  894 (M +, 70%); 616 (M-phytol  + 
H, 1009~); 154 (30%); 136 m / z  (24%). 
. [3-Vinyl]-13Z-demetho~3'carbonyl-BChl a (8). Ob- 

tained from (7) according to Ref. 24, by refluxing in 
pyridine under argon for 18 h. Spectra: absorption in 
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e t h e r  A . . . .  [nm] (relat ive in tens i t ies) :  S A 351 (1.07), S B 
388 (0.65), Q x  562 111.321, Q. ,  747 nm (1): J H - N M R  in 
pyr id ine -ds :  f i [ppm] (pro ton) :  8.56 (5-H); 8.38 (I l l -H):  
8.29 (20-H):  8.112 (H  x,  JAx = i 1 Hz, JB = 18 Hz); 5.911 
( H  A , d , J =  i l . 6  H z ) ; 6 . 1 9 ( H  u d , J =  17.7 Hz),  5.211 
( 1 3 " R - H ,  d, J =  19.5 Hz); 4.97 (13"S-H,  d, J = 19.4 Hz); 
3.27 (2-CH3) ;  1.64 (7 -CH 3, d. J = 9.6 Hz):  3.65 112- 
CH3) ;  1.61 (18 -CH 3 d, J = 7.4 Hz): 4.74 (P~): 5.45 (P21; 
1.66 (P3)- 

13-Vinyl]-132-hydroxy-BChl a 19). (7) (5 mg) was 
d i s so lved  in m e t h a n o l  12511 ml) a n d  k e p t  in t h e  d a r k  for 
6 days  at  4°(7 in t h e  p r e s e n c e  o f  air. T h e r e  a re  severa l  
p r o d u c t s  wh ich  w e r e  s e p a r a t e d  on  a D E A E - c e l l u l o s e  
c o l u m n  [27]. T h e  ma in  f r ac t ion  con t a in s  t h e  132 iso- 
m e r e s  o f  19), wh ich  were  no t  s e p a r a t e d .  A s u b s e q u e n t  
r epu r i f i c a t i on  on  RP-18  c o l u m n s  ( A d s o r b e x ,  Merck )  
was  s o m e t i r a e s  necessary .  Spec t ra :  a b s o r p t i o n  in e t h e r  
,~ . . . .  [nm] ( re la t ive  in tens i t ies) :  S a 350 (1.091, S a 387 
(0.791, Q x  555 10.331, Q v  744 nm (1); t H - N M R  in 
pyr id ineMs:  ~5[ppm] (p ro ton) :  8.56 (5-H);  8.55 (I l l -H);  
8.27 (20-H);  8.09 (H  x.  JAx = 11 H z . . / B  = 18 Hz): 5.96 
( H  A, d , J =  11.5 Hz):  6.24 (H B, d, J =  7.9 Hz); 3.23 
12-CH31; 1.71 ( 7 - C H  3, d, J = 7.2 Hz);  3.54 (12 -CH3k  
1.33 (18 -CH 3 d, J = 7.1 Hz);  3.54 (13- ' -COOCH3) :  9.45 
(132-OH);  4.63 (P~); 5.34 (P2); 1.57 (P31; F A B - m a s s :  912 
( M + 2 H ,  26%);  911 ( M +  H, 44%);  9111 ( M  ÷, 50C~-): 
632 ( M - P h y t o l +  H, 21)C41; 155 (100%),  136 m / z  
1100%). 

Modified bacteriopheophytins. All m e t a l - f r e e  p r o d -  
uc ts  a r e  o b t a i n e d  by d e m e t a l a t i o n  in d ie thyl  e t h e r  
u n d e r  n i t r ogen  wi th  15% HCI at 4"C f rom the  co r r e -  
s p o n d i n g  m a g n e s i u m - c o n t a i n i n g  p i g m e n t s  I - 9 .  T h e  fi- 
nal  p r o d u c t s  w e r e  pur i f i ed  by p r e p a r a t i v e  th in- layer  
c h r o m a t o g r a p h y  on  silica gel. T h e  a b s o r p t i o n  spec t r a  
in d ie thyl  e t h e r  Am,.~ trim] ( re la t ive  in tens i t i es )  are  
given below.  F u r t h e r  spec t ro scop iea l  da ta  a re  given in 

Ref .  29. 
BPhe a (!0): S A 357 (1.60), S a 384 (11.88). O x  525 

(0.40), Q,~ 749 nm (11. 
13e-Demethoa3,carbonyI-BPhe a 1111: S a 357 11.471, 

S B 383 (0.79), Q x  527 (0.36), Q,,, 749 nm (1). 
13-LHydro.~3,-BPhe a 1121: S A 358 11.541. S B 383 

10.94), Q x  521 (0.37), Q y  7511 nm (11. 
[3-a-Hydroxvethyl]-BPhe a 1131: S A 351 (2.25), S B 

378 11.341. Q x  509 (0.761, Q v  712 n m  (11. 
[ 3,a-Hydroxyethyl]-13 e-demethoxycarbonyI-BPhe a 

114): S A 350 (2.22), Su 377 11.233), Q x  511 (0.701, Q v  
713 n m  (11. 

[3-ot-Hydroa3,ethyl]-13'-hydroa3'-BPhe a 1151: S A 350 
(2.20), S B 376 (1.461, Q x  506 (11.7111, Q v  713 nm (1). 

[3-Vinyl]-BPhe a 116): S A 353 12.311, S B 380 (1.241, 

Q x  513 (0.70), Q v  725 n m  (1). 
[3, Vinyl]- 13 "-demethoxycarbonyI-BPhe a 117): S A 353 

(2.371, Sn  380(1.311,  Q x  514(0.651.  Q v  725 nm (1). 
[3,Vinyl]-13Lhydro.~3,-BPhe a 1181: S A 353 12.171, Su 

379 (1.341, Q x  510 ((/.641, Q v  726 n m  (11. 
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