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Photosynthetic antennas are capable of efficient light absorp-
tion and excitation energy transfer to the reaction centers
over distances of several tens of nanometers. Light capture is
realized by a variety of strongly absorbing chromophores embed-
ded 1in a protein matrix. These chromophores have absorption
maxima that are typically closely spaced. Energy transfer pro-
ceeds in a stepwise fashion among these chromophores. For these
steps, two extreme mechanisms are generally considered (1).
Weak exciton coupling is operative over short distances (typic-
ally <lnm), and Férster transfer remains efficient over much
longer distances (typically <énm). In both cases, orientation
and distances among the chromophores are critical parameters,
on which little information is available in most antenna sys-

tems.

C-Phycocyanin (PC) is one of the few cases where the necessary
structural information 1is known. Based on the prelihinary
crystal structure of PC from the cyanobacterium Agmenellum
quadruplicatum (2), rate constants for pairwise energy transfer
and the derived sets of differential equations have been deter-
mined (3) by using exclusively the Fdérster model (4). The fair

agreement with experimentally determined absorption and

Photosynthetic Light-Harvesting Systems
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; Coordinates

Transfer Step New 0ld
:B—Subunit
; 1B155 --> 1B84 | 34.4 (7.6) 28.5 (6.3)
}aB—Monomer
| 1a84 --> 1B84 ' 13.9 (10.6) 0.037 (0.028)
‘ 1B155 --> 1A84 : 2.15 (0.52) 3.44 (0.84)
| (aB)s -Trimer i
‘ 3a84 --> 1B84 | 1527. (1160.) 59.0 (44.8)
| 2884 --> 1B84 8.8 (8.8) 46.2 (46.2)
| 2a84 --> 1BS84 2.14 (1.62) 0.18 (0.138)
| 2B155 --> 1A84 2.4 (0.58) 16.9 (4.1)
! 2A84 --> 1A84 1.25 (1.25) 0.42 (0.42)
! 38155 --> 1B84 0.82 (0.18) 6.2 (1.37)
! 2B155 --> 1B84 0.59 (0.131) 1.55 (0.35)
| 2B155 --> 1B155 0.29 (0.29) 0.37 (0.37)
! 3B155 --> 1A84 0.092 (0.023) 0.054 (0.0131)
i(aB)s—Hexamer
! 4a84 --> 1A84 391. (391.) 185.4 (185.4)
! 6B155 --> 1B155| 186.3 (186.3) 174.8 (174.8)
! 6B155 --> 1A84 68.8 (16.7) | 20.7 (5.0)
| 6A84 --> 1B84 40.7 (30.9) 1.64 (1.24)
! 6B84 --> 1B84 10.6 (10.6) l 10.9 (10.9)
| 6B155 --> 1B84 9.2 (2.04) 2.01 (0.45)
| sBg4 --> 1B84 9.0 (9.0) 53.6 (53.6)
| 4884 --> 1BS84 ] 4.5 (4.5) 10.2 (10.2)
| 5B155 --> 1B84 3.8 (0.83) 1.11 (0.244)
! 4aa84 --> 1B84 | 1.31 (0.99) 0.059 (0.045)
! 6a84 --> 1A84 ! 0.94 (0.94) 0.58 (0.58)
' 4B155 --> 1B84 | 0.79 (0.176) 1.31 (0.29)
| 5a84 --> 1B84 | 0.72 (0.54) 0.044 (0.033)
| 4B155 --> 1A84 | 0.55 (0.134) 3.5 (0.85)
| 58155 --> 1a84 | 0.52 (0.127) 0.0033 (0.0009)
| sA 84 --> 1a84 | 0.37 (0.37) 0.134 (0.134)
! 5B155 ~-> 1B155]| 0.0112 (0.0112) 0.035 (0.035)
{ 4B155 --> 13155} 0.0094 (0.0094) 0.045 (0.045)
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fluorescence kinetic data suggested that this model might be

sufficient to describe energy transfer in PC.

However, more recent experimental results (5-7) indicated a
conflict. Whereas theory predicted transfer between the two
chromophores of lowest energy, e.g. a84 and B84, as the fastest
process, Wwavelength-resolved decay kinetics suggested that
transfer from the high-energy B155 chromophcre to the low-
energy ones contributes strongly to the fastest resolved comp-

onent of appx. 20-40 ps.

The recent refinement of the crystal structures of trimeric PC
from Mastigocladus laminosus and hexameric PC from A. quadru-
plicatum (8), prompted wus to reinvestigate this problem. The
refined structures gave a much better definitior. of the chromo-
phores, in particular of the previously only poorly resolved
-84 chromophore. This resulted in minor changes in the
distances, but considerable <changes in the orientation para-
meters. We have now recalculated the energy transfer and shown
that the Forster mechanism may not be sufficient to describe
the system, and that strong coupling has to be invoked at least

for three symmetrically equivalent pairs of chromophores.

The rate constants for pairwise energy transfer according to
Férster theory are listed in Table 1 ("new") for revised coord-

inates of PC from A. quadruplicatum. The rate constants for

Table 1: Rate Constants for Fdrster Excitation Transfer in PC

Rate constants calculated using the Férster inductive resonance
transfer expression and spectroscopic overlap integrals, as
described previously (3), but wusing a refractive index value
n=1.34 (10). Results which are compared are based on the "old"
(2) and "new" (8) coordinates. Rate constants for backward
transfer are indicated in parenthesis. For increasing extent of
aggregation, values from the top of the table are to be incl-
uded in a cumulative manner. All other transfer constants are
related by symmetry (2,8) to the ones shown.
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M. laminosus, are very similar (not shown), in agreement with
the very similar structures. The largest differences are calc-
ulated for rates involving chromophore B155, whose conformation
seems to be somewhat affected by crystal packing (9). As comp-
ared with the rate constants based on the previous structural
data Table 1, "old"), changes up to a factor of 40 are obs-
erved. Although this increase was largest for some of the minor
rate constants, some of the fastest and hence most important
ones are affected as well. In aggregates,a rate of greater than

lps-! is calculated for transfer between adjacent a-84 and 3-84

chromophores situated on different monomeric units. This rate
is now by far the fastest, which is even more pronounced
Table 2: Excited State Exponential Decay Time Constants

Calculated for Forster Excitation Transfer in C-Phycocyanin

pum—

3 B-subunit Monomer Trimer Hexamer

T, | 24 21 0.37 0.36

b, - 45 22 7.5

!an ! 1500 1500 1500 1500
Calculated values listed are time constants in ps for the fast
(T and intermediate (72) components of a three exponential
analysis, with kr input as 0.67 ns-! for the rate constant of

radiative and non-radiative decay corresponding toG .

Table 3: Exciton Energies of Pairwise Interaction Calculated
for Chromophores of C-Phycocyanin (only values 25cm-! listed)

Exciton energies cal-

!Chromophores V., cm'1]! culated from the re-
| lation V. =Dk/&eR?
B-Subunit ;18155/1B84 7.3 (11), with orient-

ation factors, k, and

|
i
|
(aB) -Monomer l1A84/1B84 5.3 ! interchromophore dis-
! | tances, R, taken from
(aB)s -Trimer |1A84/2B84 56.0 : Schirmer, et al (8).
H
| |
|
1
{

Dipole strength (D,

(aB)s ~Hexamer }1A84/4A84 32.0 in Debye?) determined
i1B155/6B155 23.8 from the spectrosco-
I1A84/6B155 10.8 pic deconvolution
i1A84/6B84 9.1 (3), with dielectric

l _J constant n=1.34 (10).
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because the originally second fastest rate within the trimer
(B-84->B-84) is strongly decreased.

The occurence of these fast rates raised the possibility that
other mechanisms of energy transfer must be considered. This is
supported by calculations of exciton interactions using point-
dipole approximation (table 3). Pairwise interactions are in
particular substantial for o84/B84 on adjacent monomers, and
for a84/a084 on different trimer disks in the hexamer. Similar

results were reported using point-monopole approximation (12).
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