Photosynthetic Light-Harvesting Systems Organization and Function

Proceedings of an International Workshop October 12–16, 1987 Freising, Fed. Rep. of Germany

Editors Hugo Scheer · Siegfried Schneider

Walter de Gruyter · Berlin · New York 1988

CONTENTS

List of Participants	XIII
SECTION I. ORGANIZATION: BIOCHEMICAL METHODS	
Introduction: The Biochemistry of Light-Harvesting Complexes by R.J. Cogdell	1
Phycobilisome-Thylakoid Interaction: The Nature of High Molecular Weight Polypeptides by E. Gantt C.A. Lipschultz and F.X. Cunningham Jr	11
On the Structure of Photosystem II-Phycobilisome Complexes of Cyanobacteria by E. Mörschel and GH. Schatz	21
Structure of Cryptophyte Photosynthetic Membranes by W. Wehrmeyer	35
Structural and Phylogenetic Relationships of Phycoerythrins from Cyanobacteria, Red Algae and Cryptophyceae by W. Sidler and H. Zuber	49
Isolation and Characterization of the Components of the Phycobilisome from <u>Mastigocladus</u> <u>laminosus</u> and Cross- linking Experiments by R. Rümbeli and H. Zuber	61
C-Phycocyanin from Mastigocladus laminosus: Chromophore Assignment in Higher Aggregates by Cystein Modification by R. Fischer, S. Siebzehnrübl and H. Scheer	71
Photochromic Properties of C-Phycocyanin by G. Schmidt, S. Siebzehnrübl, R. Fischer and H. Scheer	77
Concerning the Relationship of Light Harvesting Bili- proteins to Phycochromes in Cyanobacteria by W. Kufer	89
Subunit Structure and Reassembly of the Light-Harvesting Complex from Rhodospirillum rubrum G9+ by R. Ghosh, Th. Rosatzin and R. Bachofen	93
Primary Structure Analyses of Bacterial Antenna Polypeptides - Correlation of Aromatic Amino Acids with Spectral Properties - Structural Similarities with Reaction Center Polymentides	
by R.A. Brunisholz and H. Zuber	103

The Structure of the "Core" of the Purple Bacterial Photo- synthetic Unit by D.J. Dawkins, L.A. Ferguson and R.J. Cogdell	115
A Comparison of the Bacteriochlorophyll CBinding Proteins of Chlorobium and Chloroflexus by P.D. Gerola, P. Højrup and J.M. Olson	129
Interactions between Bacteriochlorophyll c Molecules in Oligomers and in Chlorosomes of Green Photosynthetic Bacteria by D.C. Brune, G.H. King and R.F. Blankenship	141
Light-Harvesting Complexes of Chlorophyll c-Containing Algae by A.W.D. Larkum and R.G. Hiller	153
Isolation and Characterization of a Chlorophyll a/c-Hetero- xanthin/Diadinoxanthin Light-Harvesting Complex from Pleurochloris meiringensis (Xanthophyceae)	167
The Antenna Components of Photosystem II with Emphasis on the Major Pigment-Protein, LHC IIb by G.F. Peter and P. Thornber	175
SECTION II: ORGANIZATION: MOLECULAR GENETICS AND CRYSTALLOGRAPHY	
Molecular Biology of Antennas by G. Drews	187
High-Resolution Crystal Structure of C-Phycocyanin and Polarized Optical Spectra of Single Crystals by T. Schirmer, W. Bode and R. Huber	195
Crystallization and Spectroscopic Investigation of Purple Bacterial B800-850 and RC-B875 Complexes by W. Welte, T. Wacker and A. Becker	201
Structure of the Light-Harvesting Chlorophyll a/b-Protein Complex from Chloroplast Membranes by W. Kühlbrandt	211
Phycobilisomes of Synchechococcus Sp. PCC 7002, Pseudanabaena Sp. PCC 7409, and Cyanophora paradoxa: An Analysis by Molecular Genetics by D.A. Bryant	217
Organization and Assembly of Bacterial Antenna Complexes by G. Drews	233

The Use of Mutants to Investigate the Organization of the Photosynthetic Apparatus of <u>Rhodobacter</u> sphaeroides by C.N. Hunter and R. van Grondelle
Mechanisms of Plastid and Nuclear Gene Expression During Thylakoid Membrane Biogenesis in Higher Plants by P. Westhoff, H. Grüne, H. Schrubar, A. Oswald, M. Streubel, U. Ljungberg and R.G. Herrmann
SECTION III: ORGANIZATION: SPECIAL SPECTROSCOPY TECHNIQUES AND MODELS
Assigment of Spectral Forms in the Photosynthetic Antennas to Chemically Defined Chromophores by A. Scherz 277
Linear Dichroism and Orientation of Pigments in Phycobilisomes and their Subunits by L. Juszcak, N.E. Geacintov, B.A. Zilinskas and J. Breton 281
Low Temperature Spectroscopy of Cyanobacterial Antenna Pigments by W. Köhler, J. Friedrich, R. Fischer and H. Scheer
Chromophore Conformations in Phycocyanin and Allophycocyanin as Studied by Resonance Raman Spectroscopy by B. Szalontai, V. Csizmadia, Z. Gombos, K. Csatorday and M. Lutz
Coherent Anti-Stokes Raman Spectroscopy of Phycobilisomes, Phycocyanin and Allophycocyanin from <u>Mastigocladus</u> laminosus
by S. Schneider, F. Baumann, W. Steiner, R. Fischer, S. Siebzehnrübl and H. Scheer
Optical Absorption and Circular Dichroism of Bacteriochlorophyll Oligomers in Triton X-100 and in the Light-Harvesting-Complex B850; A Comparative Study by V. Rozenbach-Belkin, P. Braun, P. Kovatch and A.Scherz 323
Absorption Detected Magnetic Resonance in Zero Magnetic Field on Antenna Complexes from <u>Rps. acidophila</u> 7050 - The Temperature Dependence of the Carotenoid TripTet State Properties by J. Ullrich, J.U. Y. Schütz and H.C. Wolf
Effect of Lithium Dodecyl Sulfate on B 800-850 Antenna Complexes from <u>Rhodopseudomonas</u> acidophila: A Resonance Raman Study by B. Robert and H. Frank

Bacteriochlorophyll a/b in Antenna Complexes of Purple Bacteria by B. Robert, A. Vermeglio, R. Steiner, H. Scheer and M. Lutz	355
Bacteriochlorophyll c Aggregates in Carbon Tetrachloride as Models for Chlorophyll Organization in Green Photo- synthetic Bacteria by J.M. Olson and J.P. Pedersen	365
Orientation of the Pigments in the Reaction Center and the Core Antenna of Photosystem II by J. Breton, J. Duranton and K. Satoh	375
Non-Linear Absorption Spectroscopy of Antenna Chlorophyll a in Higher Plants by D. Leupold, H. Stiel and P. Hoffmann	387
SECTION IV: FUNCTION: ELECTRONIC EXCITATION AND ENERGY TRANSFER	
Excitation Energy Transfer in Photosynthesis by R. van Grondelle and V. Sundström	403
Fluorescence Spectroscopy of Allophycocyanin Complexes from Synechococcus 6301 Strain AN112 by P.Maxson, K. Sauer and A.N. Glazer	439
Picosecond Energy Transfer Kinetics in Allophycocyanin Aggregates from <u>Mastigocladus</u> laminosus by E. Bittersmann, W. Reuter, W. Wehrmeyer and A.R. Holzwarth	451
Picosecond Time-Resolved Energy Transfer Kinetics within C-Phycocyanin and Allophycocyanin Aggregates by T. Gillbro, A. Sandström, V. Sundström, R. Fischer and H. Scheer	457
Energy Transfer in "Native" and Chemically Modified C-Phyco- cyanin Trimers and the Constituent Subunits by S. Schneider, P. Geiselhart, F. Baumann, S. Siebzehnrübl, R. Fischer and H. Scheer	469
Effect of Protein Environment and Excitonic Coupling on the Excited-State Properties of the Bilinchromophores in C-Phycocyanin by S. Schneider, Ch. Scharnagl, M. Dürring, T. Schirmer and W. Bode	483
Excitation Energy Migration in C-Phycocyanin Aggregates Isolated from Phormidium luridum: Predictions from the Förster's Inductive Resonance Theory by J. Grabowski and G.S. Björn	491

Energy Transfer Calculations for two C-Phycocyanins Based on Refined X-Ray Crystal Structure Coordinates of Chromophores by K. Sauer and H. Scheer	507
Energy Transfer in Light-Harvesting Antenna of Purple Bacteria Studied by Picosecond Spectroscopy by V. Sundström, H. Bergström, T. Gillbro, R. van Grondelle, W. Westerhuis, R.A. Niederman and R.J. Cogdell	513
Excitation Energy Transfer in the Light-Harvesting Antenna of Photosynthetic Purple Bacteria: The Role of the Long-Wave- Length Absorbing Pigment B896 by R. van Grondelle, H. Bergström, V. Sundström, R.J. van Dorssen, M. Vos and C.N. Hunter	519
The Function of Chlorosomes in Energy Transfer in Green Photo- synthetic Bacteria by R.J. van Dorssen, M. Vos and J. Amesz	531
Energy Transfer in <u>Chloroflexus</u> aurantiacus: Effects of Temperature and <u>Anaerobic Conditions</u> by B.P. Wittmershaus, D.C. Brune and R.E. Blankenship	543
Interpretation of Optical Spectra of Bacteriochlorophyll Antenna Complexes by R.M. Pearlstein	555
Time Resolution and Kinetics of "F680" at Low Temperatures in Spinach Chloroplasts by R. Knox and S. Lin	567
Picosecond Studies of Fluorescence and Absorbance Changes in Photosystem II Particles from <u>Synechococcus</u> <u>Sp.</u> by A.R. Holzwarth, G.H. Schatz and H. Brock	579
Analysis of Excitation Energy Transfer in Thylakoid Membranes by the Time-Resolved Fluorescence Spectra by M. Mimuro	. 589

V. CONCLUDING REMARKS

Future Problems on Antenna Systems and Summary Remarks by E. Gantt	601
Author Index	605
Subject Index	609

ENERGY TRANSFER CALCULATIONS FOR TWO C-PHYCOCYANINS BASED ON REFINED X-RAY CRYSTAL STRUCTURE COORDINATES OF CHROMOPHORES

K. Sauer

Laboratory of Chemical Biodynamics, University of California, Berkeley, CA94720, USA

H. Scheer

Botanisches Institut der Universität, Menzinger Str. 67, D-8000 München 19, FRG

Photosynthetic antennas are capable of efficient light absorption and excitation energy transfer to the reaction centers over distances of several tens of nanometers. Light capture is realized by a variety of strongly absorbing chromophores embedded in a protein matrix. These chromophores have absorption maxima that are typically closely spaced. Energy transfer proceeds in a stepwise fashion among these chromophores. For these steps, two extreme mechanisms are generally considered (1). Weak exciton coupling is operative over short distances (typically ≤1nm), and Förster transfer remains efficient over much longer distances (typically ≤6nm). In both cases, orientation and distances among the chromophores are critical parameters, on which little information is available in most antenna systems.

C-Phycocyanin (PC) is one of the few cases where the necessary information is structural known. Based on the preliminary structure of PC from the cyanobacterium Agmenellum crystal quadruplicatum (2), rate constants for pairwise energy transfer and the derived sets of differential equations have been deter-The fair mined (3) by using exclusively the Förster model (4). and agreement with experimentally determined absorption

		Coordinates			
Transfer S	Step	New		old	
β-Subunit					
1B155>	1B84	34.4	(7.6)	28.5	(6.3)
αβ-Monomer					
1284>	1894	13 9	(10.6)	0 0 2 7	(0.028)
1B155>	1A84	2.15	(0.52)	3.44	(0.84)
(ap) ₃ - Trime	er				
3A84>	1B84	1527.	(1160.)	59.0	(44.8)
2B84>	1B84	8.8	(8.8)	46.2	(46.2)
2A84>	1B84	2.14	(1.62)	0.18	(0.138)
2B155>	1A84	2.4	(0.58)	16.9	(4.1)
2A84>	1A84	1.25	(1.25)	0.42	(0.42)
38155>	1004	0.82	(0.18)	6.2	(1.37)
20155>	10155	0.59	(0.131)	1.55	(0.35)
38155>	1284	0.29	(0.29)	0.37	(0.37)
35133	TYOA	0.092	(0.023)	0.054	(0.0131)
(αβ)6-Нехал	ner				
4A84>	1A84	391.	(391.)	185.4	(185.4)
6B155>	1B155	186.3	(186.3)	174.8	(174.8)
6B155>	1A84	68.8	(16.7)	20.7	(5.0)
6A84>	1B84	40.7	(30.9)	1.64	(1.24)
6B84>	1B84	10.6	(10.6)	10.9	(10.9)
6B155>	1884	9.2	(2.04)	2.01	(0.45)
5B84>	1884	9.0	(9.0)	53.6	(53.6)
4B84>	1884	4.5	(4.5)	10.2	(10.2)
DB100>	1884	3.8	(0.83)	1.11	(0.244)
4A84>	1 3 0 <i>1</i>	1.31	(0.99)	0.059	(0.045)
4B155>	1R84	0.94	(0.94) (0.176)	0.58	(0.58)
5A84>	1B84	0.72	(0.170)		(0.23)
4B155>	1A84	0.55	(0.134)	3.5	(0.85)
5B155>	1A84	0.52	(0.127)	0.0033	(0.0009)
5A 84>	1A84	0.37	(0.37)	0.134	(0.134)
5B155>	1B155	0.0112	(0.0112)	0.035	(0.035)
4B155>	1B155	0.0094	(0.0094)	0.045	(0.045)
L					

fluorescence kinetic data suggested that this model might be sufficient to describe energy transfer in PC.

However, more recent experimental results (5-7) indicated a conflict. Whereas theory predicted transfer between the two chromophores of lowest energy, e.g. $\alpha 84$ and $\beta 84$, as the fastest process, wavelength-resolved decay kinetics suggested that transfer from the high-energy $\beta 155$ chromophore to the low-energy ones contributes strongly to the fastest resolved component of appx. 20-40 ps.

The recent refinement of the crystal structures of trimeric PC from Mastigocladus laminosus and hexameric PC from A. quadruplicatum (8), prompted us to reinvestigate this problem. The refined structures gave a much better definition of the chromoin particular of the previously only poorly resolved phores, $\beta-84$ chromophore. This resulted in minor changes in the distances. but considerable changes in the orientation parameters. We have now recalculated the energy transfer and shown that the Förster mechanism may not be sufficient to describe the system, and that strong coupling has to be invoked at least for three symmetrically equivalent pairs of chromophores.

The rate constants for pairwise energy transfer according to Förster theory are listed in Table 1 ("new") for revised coordinates of PC from <u>A. quadruplicatum</u>. The rate constants for

Table 1: Rate Constants for Förster Excitation Transfer in PC

Rate constants calculated using the Förster inductive resonance transfer expression and spectroscopic overlap integrals, as described previously (3), but using a refractive index value n=1.34 (10). Results which are compared are based on the "old" (2) and "new" (8) coordinates. Rate constants for backward transfer are indicated in parenthesis. For increasing extent of aggregation, values from the top of the table are to be included in a cumulative manner. All other transfer constants are related by symmetry (2,8) to the ones shown. <u>M. laminosus</u>, are very similar (not shown), in agreement with the very similar structures. The largest differences are calculated for rates involving chromophore β 155, whose conformation seems to be somewhat affected by crystal packing (9). As compared with the rate constants based on the previous structural data Table 1, "old"), changes up to a factor of 40 are observed. Although this increase was largest for some of the minor rate constants, some of the fastest and hence most important ones are affected as well. In aggregates, a rate of greater than $1ps^{-1}$ is calculated for transfer between adjacent α -84 and β -84 chromophores situated on different monomeric units. This rate is now by far the fastest, which is even more pronounced

Table 2: Excited State Exponential Decay Time ConstantsCalculated for Förster Excitation Transfer in C-Phycocyanin

	ß-subunit	Monomer	Trimer	Hexamer
τ,	24	21	0.37	0.36
22		45	22	7.5
τ_3	1500	1500	1500	1500

Calculated values listed are time constants in ps for the fast (\mathcal{T}_1) and intermediate (\mathcal{T}_2) components of a three exponential analysis, with k_F input as 0.67 ns⁻¹ for the rate constant of radiative and non-radiative decay corresponding to \mathcal{T}_2 .

Table 3: Exciton Energies of Pairwise Interaction Calculated for Chromophores of C-Phycocyanin (only values $\geq 5 \text{ cm}^{-1}$ listed)

	Chromophores	$[V_{\pm}, cm^{-1}]$
ß-Subunit	1B155/1B84	7.3
(αβ) -Monomer	1A84/1B84	5.3
$(\alpha\beta)_3$ -Trimer	1A84/2B84	56.0
(αβ) ₆ - <u>Hexamer</u>	1A84/4A84 1B155/6B155 1A84/6B155 1A84/6B84	32.0 23.8 10.8 9.1

Exciton energies calculated from the re- $V_{t} = Dk / \epsilon R^{3}$ lation (11), with orientation factors, k, and interchromophore distances, R, taken from Schirmer, et al (8). Dipole strength (D, in Debye²) determined from the spectroscopic deconvolution (3), with dielectric constant n=1.34 (10).

because the originally second fastest rate within the trimer $(\beta-84->\beta-84)$ is strongly decreased.

The occurence of these fast rates raised the possibility that other mechanisms of energy transfer must be considered. This is supported by calculations of exciton interactions using pointdipole approximation (table 3). Pairwise interactions are in particular substantial for $\alpha 84/\beta 84$ on adjacent monomers, and for $\alpha 84/\alpha 84$ on different trimer disks in the hexamer. Similar results were reported using point-monopole approximation (12).

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 143, Forschergruppe "Pflanzliche Tetrapyrrole", and by the CIP botany computer facilities, H.S.), by the Alexander-von-Humboldt Stiftung, Bonn (award to K.S.) and by the Director, Office of Energy Research, Office of Basic Energy Sciences, Division of Biological Energy Conversion of the U.S. Department of Energy under Contract DE-AC03-76SF00098 (K.S.).

References

- Sauer, K. 1975. In: Bioenergetics of Photosynthesis (Govindjee, ed.). Academic Press New York, p. 115.
- Schirmer, T., R. Huber, M. Schneider, W. Bode, M. Miller, M.L. Hackert. 1986. J.Mol.Biol. 188, 651.
- 3. Sauer, K., H. Scheer, P. Sauer. 1987. Photochem.Photobiol. 46, 427.
- Förster, T. 1967. In: Comprehensive Biochemistry, Vol 22, (M. Florkin and E.H. Stotz, eds.). Elsevier Amsterdam, p.61.
- 5. Holzwarth, A.R., J.Wendler, G.W.Suter. 1987. Biophys.J. 51,1.
- 6. Sandström, A., T. Gillbro, V. Sundström, R. Fischer, H. Scheer: Biochim.Biophys.Acta. (in press)
- 7. Schneider, S., P. Geiselhart, S. Siebzehnrübl, R. Fischer, and H. Scheer, contribution to this volume
- 8. Schirmer, T., W. Bode, R. Huber. 1987. J.Mol.Biol. 196, 677.
- 9. Dürring, M., R.Huber (1987) Private communication
- Moog, R.S., A. Kuki, M.D. Fayer, S.G. Boxer. 1984. Biochemistry 23, 1564.
- 11. Tinoco, I, Jr. 1963. Radiation Research 20, 133.
- 12. Schneider, S., C.Scharnagl, M.Dürring, T.Schirmer, W.Bode, contribution to this book.