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P H O T O C H E M I S T R Y A N D P H O T O P H Y S I C S O F C - P H Y C O C Y A N I N 

Hugo Scheer, Botanisches Institut der Univers i tät , Menzinger Str.67 
D-8000 M ü n c h e n 19, Federal Republic of Germany 

Introduction 

Phycocyanin (PC) belongs to a group of pigments functional for light-harvesting in 
cyanobacteria, red and cryptophyte algae. In the former two classes of organisms, it is a 
major constituent of phycobilisomes, the light-harvesting complexes located at the outer 
surface of the photosynthetic membrane. There, it absorbs light energy in the spectral 
ränge between 580 and 640 nm, and transfers it via a second biliprotein, allophycocyanin 
(APC), to the Chlorophyll within the membrane. In many species, PC also accepts energy 
from a third type of biliprotein, e.g. phycoerythrin (PE), thus acting as an intermediate 
carrier in the energy transfer from the latter to A P C . 

The simplest P C , which is found in cyanobacteria (C-PC), contains three 
chromophores of the dihydrobilindion type, each of them being attached covalently to the 
apoprotein via a Single thioether bond to cysteine. The same chromophore is present in 
APC, and a chromophore differing only in one of the /3-pyrrolic substituents is found in 
the plant photomorphogenetic pigment, phytochrome. According to the different functions 
of these three pigments, the properties of the chromophores in each of them are quite 
different from each other, and they all differ considerably from the properties of free 
pigments bearing this type chromophore (1). The factors responsible for the different 
adaptations of these structurally so similar chromophores are still only partly understood. 
From reversible denaturation studies in C - P C , it appears that they are mostly due to 
non-covalent protein-chromophore interactions. 

The recent elucidation of the x-ray structures (2,3) of C-PCs from two different 
organisms, has greatly advanced our knowledge of these pigments. It has for the first time 
in any photosynthetic antenna System become possible to Mook* at the native chromophore 
structures on a molecular level, and to obtain direct information on their conformations 
and relative orientations. This renders it possible to test the viability of theoretical 
models applied in the calculation of the their spectral properties, of the energy transfer 
pathways, the kinetics among them, etc., by using the structural data as input Parameters. 

This report summarizes recent work carried out along these lines in M ü n c h e n . It 
contains data on the photochemistry of C - P C from the cyanobacterium, Mastigocladus (M.) 
laminosus. which are compared to the respective properties of the photochromic plant 
photoreceptor, phytochrome, as well as theoretical and experimental results on the energy 
transfer in aggregates of different sizes from this chromoprotein. 

Biggens, J. ( e d . ) , Progress i n Photosynthesis Research, V o l . I. I S B N 9 0 2 4 7 3 4 5 0 9 
© 1 9 8 7 M a r t i n a s N i j h o f f Pablishers, Dordrecht. P r i n t e d i n the Netherlands. 
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Chromophore structure 

The three chromophores of C - P C are bound to the protein via S i n g l e thioether bonds 
to cysteine 84 on the a-subunit (cys a-84), and to cys /?-84 and cys ß-\55 on the 
0-subunit. A l i n k a g e to the C-3 e t h y l - s u b s t i t u e n t of the h y d r o g e n a t e d r i n g A had been 
established for chromophores of all type of plant biliproteins including phytochrome (1,4). 
A more complex binding pattern has recently been proposed, which involves a different 
linkage and structure for the chromophore ß-\55 (5). Instead of being hydrogenated at 
ring A , this chromophore is hydrogenated at ring D and bound via the 'exo1 18-thioethyI 
substituent. 

Al l chromophores are present in more or less extended conformations (2,3), which 
account for the observed absorption increase of the red bands, and a concomitant decrease 
of the near-uv bands (l). It is also likely, that the chromophores have a reduced 
conformational mobility, which accounts for their high fluorescence quantum yields, and 
for their inertness to a variety of chemical reagents (metal ions, reducing agents) known 
to react readily with the free chromophores (see l for leading references). The 
confirmation of this general structural principle in the crystal structure of C-PCs from 
two different organisms (M. laminosus and Agmenellum (A.) quadruplicatum). makes it 
likely that the spectrally similar chromophores of A P C and phytochrome have similar 
native structures as well. 

Chromophore assignment 

While the x-ray results supported this general structure principle, they show on the 
other hand pronounced differences among the details of the chromophore conformations, of 
the binding sites and of likely interactions with the apoprotein. Such differences account 
for a variety well documented spectroscopic and chemical results indicatihg the presence 
of a set of distinct chromophores in almost any phycobiliprotein (l). In C - P C , these 
allowed the definition of three distinct chromophores, e.g. a - l , ß-\ and ß-2. 

In the case of C - P C from M . laminosus. the following data were combined for the 
spectral resolution: The integral pigment can be separated into two subunits, the a-subunit 
bearing only one chromophore, and the /?-subunit bearing two chromophores. Since the 
absorption spectra of the two subunits -weighted properly according to the subunit 
s t o i c h i o m e t r y - add up to the spectrum of the monomeric pigment, i t is likely that the 
States of the chromophores remain unchanged during subunit S e p a r a t i o n , and that strong 
inter-subunit chromophore-chromophore interactions are absent. This yields directly the 
required absorption and fluorescence spectra of the a-subunit, and reduces the problem to 
the resolution of the ß - subuni t spectrum. The presence of two spectrally distinct 
chromophores is this subunit is derived from several lines of evidence: 

Reversible photochemistry: Native PC has a high fluorescence quantum yield. Its 
photochemistry is characterized by an irreversible bleaching, which has a low quantum 
yield (0.4%) and proceeds probably via the triplet State because it is slowed down in the 
presence of oxygen. This irreversible reaction occurs with a similar quantum yield also in 
phytochrome (Scheer, unpublished results). Addition of urea to PC causes a gradual, 
reversible unfolding of the protein and a concomitant Ioss of its interactions with the 
chromophore. At 8 M urea, the prutein is completely denalured, and the chromophores 
then attain the properties characteristic of free bile pigments (l). Here, the fluorescence 
is greatly reduced (<ß < 10"3). The photochemical reactivity is increased, but it is again 
irreversible, leading to a variety of tri- and tetrapyrroles absorbing at shorter wave 
Iengths. The onset of unfolding at intermediate urea concentrations is characterized by a 
reduction of fluorescence and the concomitant occurrence of a reversible photochemical 
reaction, which is maximum at about 5 M urea. Similar reactions have been observed as 
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w e l l with other denaturants at moderate concentrations, and they have been related to the 
reversible Z,E-isomerization of the phytochrome chromophore, and to the primary reactions 
of the less well understood phycochromes (see 1). If the isolated subunits of C - P C from 
M . laminosus a r e titrated with urea this reaction is negligibly in the a-subunit, but much 
m o r e pronounced in the 0-subunit. The absorption difference spectrum of the latter shows 
a S i n g l e negative band in the visible spectral ränge peaking at 624 nm, which is 
considerably to the red of the absorption maximum at 606 nm, and its shape is similar to 
that of a typical bile pigment (6). This suggests, that only one of the two chromophores 
on the 0-subunit is susceptible to this reaction, and that this chromophore absorbs at 
longer wavelengths than the second, inactive one. 

Fluorescence polarization: The fluorescence polarization spectra of nearly all 
phycobiliproteins show distinct discontinuities, and the anisotropy rises in discrete S teps 

towards longer wavelengths (13, 14, see also 1). Since the red absorption band of bile 
pigments corresponds to a Single electronic transition, this has been interpreted as the 
result of several distinct chromophores being present, with different orientations and 
different absorption spectra, among which energy transfer occurs. The fluorescence 
polarization spectrum of the 0-subunit of C - P C from M . laminous shows two distinct 
regions of anisotropy (7). Below 600 nm, it is nearly wavelength independent about 0.2, 
and then rises sharply to 0.4. There are, therefore, at least two chromophores present 
absorbing below and above this threshold wavelength. Assuming a similar Stokes' shift for 
the fluorescing chromophore of the 0-subunit (Aj^JJ01* = 643 nm) and the one of the a-
subunit (AjJ^ = 616, A{n

1

aJJor = 641 nm), an absorption around 620 nm can be estimated for 
the former. 

Circuiar dichroism: The cd spectrum of the a-subunit shows a S i n g l e positive band in the 
visible spectral region peaking close to its absorption maximum. The cd-spectrum of the ß-
subunit also shows a S i n g l e positive peak. Its intensity is decreased by 40% on a molar 
basis, increased by 20% on a chromophore basis, and centered well to the blue (590nm) of 
the absorption maximum. At longer wavelengths, the band trails slightly and indicates the 
presence of a smaller, much less intense band. This result, which has been reported 
independently by Mimuro et al. (7), is again, best interpreted as to arise from two 
different chromophores, one of them is strongly optically active and absorbs around 595 
n m , the second one is much less active and absorbs above 610 nm. 

Curve resolution of absorption spectrum: To better define the absorption bands of these 
chromophores, the spectrum of the 0-subunit was resolved by Computer analysis. It was 
assumed, that the shape and width of the bands were identical to that of the alpha 
chromophore, and the starting wavelengths for the analysis were estimated from the 
aforementioned data. The absorption band was fit best with two bands peaking at 598 and 
622 nm, with molar absorptivities of 92 and 60%, respectively, of that of the a-subunit. 
For an estimation of the individual fluorescence spectra, similar Stokes' shifts and 
fluorescence lifetime was furthermore assumed. The resulting spectral data are given in 
table 1 and compared to a similar analysis by Mimuro et al. (7). 

Chemical reactivity and assignment to binding sites 

Whereas the aforementioned results allowed the distinction of two spectrally defined 
chromophores on the 0-subunit, the correlation between the different chromophores 
defined above (a - l , ß-\ and ß-\), and the ones defined by their binding sites (a-84, 0-84, 
0-155), respectively, was still lacking. Following a Suggestion by Schirmer, Bode and Huber 
(2,3), we have been able to make this assignment by treatment of C - P C with organic 
mercurials (8). There is only a Single free cysteine present in C - P C located at Position 
ß-\ \ 1 (9), which is very close to the chromophore 0-84, but more than 22A from 
chromophores 0-155 and 0-84 (2,3). This cysteine is the only site to which mercurials were 
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bound in heavy-atom derivatives of C - P C crystals, and it was expected that a binding of 
the bulky reagent at this position would have a discernible effect on the spectral 
properties of the neighboring chromophore, and only on this one. In Solution, titration of 
C - P C from M . laminosus leads to a decrease of absorption at about 620nm, and a 
concomitant, albeit smaller, increase around 650nm, and a general absorption increase in 
the near-uv spectral region (Fig. 1). In the 0-subunit, the same spectral changes are 
observed, but the relative amplitudes are increased. Titration experiments showed, that the 
reaction is complete after the addition of 1 ± 0.2 moles of the mercurial (p-chloro-
mercuribenzenesulfonate, PCMS) per mole of C - P C or 0-subunit , respectively, and that 
the reaction can be reversed to more than 80% by addition of thiols. In the a-subunit, the 
reaction is negligible (Fig.l). 

These findings are interpreted in the following way: 

1: The reaction site is the Single free cys- III on the 0-subunit, similar to the Situation in 
the crystal. 
2: No irreversible reaction occurs between mercurials and the chromophores, because the 
a-subunit is inert. 
3: Since the difference absorption maximum is on the red side of the absorption maximum 
in the 0-subunit, it must be related to a spectral change of the long-wavelength absorbing 
chromophore, e.g. the one defined above spectroscopically as 0-1. 
4: Due to the spatial relationships, this chromophore is the one bound to cys-0-84, e.g. 
chromophore 0-84 is identical with chromophore 0-1. 
5: The indirect effect of the mercurial binding on the absorption of chromophore 0-84 
involves probably a conformational change from the native, extended to a more denatured, 
cyclic-helical conformation, as indicated by the overall decrease of absorption in the red, 
and an increase in the near-uv spectral region (1). 
6: The resulting spectral data for the three chromophores are summarized in table 1. 
7: Due to the inertness of the chromophores to a direct reaction with mercurials, these 
reagents are suitable to test the accessibility of cys-111 in higher aggregates, and at the 
same time to identify the absorption of the 0-84 chromophores. 

This work 
Mimuro et al. (7) 

a-84 

616(120) 
618(108) 

0-1 = 0-84 

622( 72) 
624(103) 

0-2 = 0-155 

598(106) 
594(113) 

Table 1: Absorption maxima [ A m a x (e x 10"3)] of the individual chromophores of 
C-phycocyanin from Mastigocladus laminosus. 

The assignment (0-1 = 0-84, 0-2 = 0-155) agrees with the ad-hoc assignment of by 
Mimuro et al. (7), and there is also a reasonable agreement of the spectral data of the 
individual chromophores. The most pronounced differences are the position of the 0-155 
absorption, which is displaced to the blue by appx. 4nm by these authors, and a lower 
absorptivity of the 0-84 absorption in our calculations. 
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X (nm) 

1: Reaction of trimeric C-phycocyanin from Mastigocladus laminosus (A), its cc- (B) and 
0-subunit (C). Figure (A) shows both the absorption spectra before (a) and after 

(b) reaction with PCMS (1 mole / mole C - P C ) , and the difference spectra during the 
titration (c,d,e). The other figures show the absorption spectrum before addition of 
PCMS, and the absorption difference spectrum after its addition (1 mole / mole 
subunit). Al l reactions in potassium phosphate buffer (50mM, pH 7.5). 
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Kinetics of energy transfer 

Energy transfer in phycobiliproteins has been suggested to occur mainly via the 
induced dipole or Förster type mechanism. The main arguments to this have came 
originally from the absence in most biliproteins, including C - P C from M . laminosus. of 
strong, s-shaped Signals indicative of strong exciton couplings, and from polarization 
spectroscopy (see 1). Over the past 5 years, the amount of kinetic data on energy transfer 
has tremendously increased. It has been found in particular, that the fastest energy 
transfer processes take place on a time scale in the order of tens of picoseconds or even 
less (10,11). With all the necessary information at hand, it was then intriguing to test if 
such fast kinetics could be matched by theory on the basis of a pure Förster transfer 
mechanism. 

The rate constant for energy transfer is described by: 

The major variables in this equation are the distance R between the transition dipoles o f 
the donor and acceptor chromophores, the relative orientations factors /c of the two, and 
the overlap of the fluorescence of the donor ( F D o n o r ) with the absorption of the acceptor 
( A A c c e p t o r ) . The only other variable in the equation, e.g., the refractive index of the 
medium, is hidden in the proportionality constant. A value of 1.56 has been used 
throughout. The first two pieces of information have been taken from the x-ray data of 
Schirmer et ai. for C - P C from A. auadruplicatum (3). This pigment has a very similar 
chromophore arrangement as C - P C from M . laminosus (2), but it has been resolved to 
higher accuracy. Moreover, it crystallizes as S t a c k s of hexamers rather than trimers, so 
that orientations and distances between chromophores on different trimers and hexamers 
are available. These authors have tabulated the distances of the centers of gravity of the 
7r-systems for all chromophores, as well as the relative orientations of chromophores as 
defined by the masses of the atoms present in the chromophore 7r-systems projected on a 
straight line. These distances and orientations do, therefore, not strictly correspond to the 
transition dipoles, but rather to their reduced masses. In view of the elongated structure 
of the chromophores, it is likely, however, that the deviations are reasonable. The overla, 
integral was finally calculated from the individual absorption and fluorescence bands of 
the three different chromophores as given in the top row of table 1. 

The details of these calculations, which are the result of a continuing C o o p e r a t i o n 

between K . Sauer and our group, are being published elsewhere (12), and a summary is 
presented in the poster abstracts of this C o n f e r e n c e . There is a good agreement with 
most of the currently available experimental data. The calculations show an increased 
transfer rate with increasing aggregate size. They support, in particular, a preferential 
energy transfer along the rods of trimer-stacks, as compared to energy transfer within 
trimers. Such a preferential transfer would greatly facilitate the funelling of energy 
towards the reaction centers. According to these results, the energy transfer in C - P C can 
be accounted for well by the Förster mechanism, and the flow of excitation energy in 
these moderately complex aggregates can be analyzed on a molecular basis. Since the 
data can be transformed readily to mimic a variety of experimental conditions (different 
excitation and emission wavelengths, static and dynamic depolarization), a comparison with 
new data and/or assistance in the choice of experimental conditions are expected to 
further evaluate this conclusion critically. 

F i Donor • A 'Acceptor 



1.1.149 

Acknowledgements 

This work was supported by the Deutsche Forschungsgemeinschaft, Bonn (SFB 143 
and Forschergruppe "Pflanzliche Tetrapyrrole"). The C o o p e r a t i o n with K . Sauer, Berkeley, 
was rendered possible by an Alexander-von-Humboldt Award. The following coworkers 
were involved in this work as detailed in the references: R. Fischer, W. John, G . 
Schmidt, G . Schoy, S. Siebzehnrübl (all Botanisches Institut der Univers i tät M ü n c h e n ) and 
P.Sauer (Carlton College). 

References 

1. Scheer, H . (1982) in Light Reaction Path of Photosynthesis (Fong, F . K . , ed.) pp. 7-
45, Springer-Verlag, Berlin. 

2. Schirmer, T. , Bode, W., Huber, R., Sidler, W. and Zuber, H . (1985) J. Mol. Biol. 184, 
257-277. 

3. Schirmer, T . , Huber, R., Schneider, M . , Bode, W., Miller, M . and Hackert, M . L . 
(1986) J. Mol. Biol. 188, 651-676. 

4. Rüdiger , W. and Scheer, H . (1983) in Handbook of Plant Physiology, Vol. 16 
(Shropshire, W. and Mohr, H . , eds), pp. 119-151, Springer Verlag, Berlin 

5. Bishop, J. E . , Lagarias, J. C , Nagy, J. O., Schoenleber, R. W., Rapoport, H . , Klotz, A . 
V. and Glazer, A . N. (1986) J. Biol. Chem. 261, 6790-6796. 

6. Siebzehnrübl , S., Fischer, R. and Scheer, H . (1985) Proc. Int. Symp. Energy Transfer, 
Charles University Press, Praha. 

7. Mimuro, M . , Füglistal ler, P., Rübe l i , R. and Zuber, H . (1986) Biochim. Biophys. Acta 
848, 155-166. 

8. Siebzehnrübl , S., Fischer, R. and Scheer, H . (1986) FEBS Lett., submitted. 
9. Zuber, H . (1985) in Antennas and Reaction Centers of Photosynthetic Bacteria 

(Michel-Beyerle, M . E . , ed.) pp. 3-25, Springer Verlag, Berlin. 
10. Scheer, H . (1986) in Handbook of Plant Physiology, Vol. 19 (Staehelin, L . A . and 

Arntzen, C. J . , eds.) pp. 327-337, Springer Verlag, Berlin. 
11. Earlier and related work has been reviewed in: Holzwarth, A . R. (1986) Photochem. 

Photobiol. 43, yearly review. 
12. Sauer, K . and Scheer. H . , this volume, p. 
13. Dale, R. E . and Teale, F. J. VV. (1970) Photochem. Photobiol. 12, 99-117 
14. Grabowski, J. and Gantt, E . (1978) Photochem. Photobiol. 28, 39-46 and 47-56 


