Progress in Photosynthesis Research

Volume 1

Proceedings of the VIIth International Congress on Photosynthesis Providence, Rhode Island, USA, August 10–15, 1986

edited by

J. BIGGINS

Division of Biology and Medicine, Brown University Providence, RI 02912, USA

1987 **MARTINUS NIJHOFF PUBLISHERS** a member of the KLUWER ACADEMIC PUBLISHERS GROUP DORDRECHT / BOSTON / LANCASTER

Distributors

for the United States and Canada: Kluwer Academic Publishers, P.O. Box 358, Accord Station, Hingham, MA 02018-0358, USA for the UK and Ireland: Kluwer Academic Publishers, MTP Press Limited, Falcon House, Queen Square, Lancaster LA1 1RN, UK for all other countries: Kluwer Academic Publishers Group, Distribution Center, P.O. Box 322, 3300 AH Dordrecht, The Netherlands

ISBN 90-247-3450-9 (vol. I) ISBN 90-247-3451-7 (vol. II) ISBN 90-247-3452-5 (vol. III) ISBN 90-247-3453-3 (vol. IV) ISBN 90-247-3449-5 (set)

Copyright

© 1987 by Martinus Nijhoff Publishers, Dordrecht.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publishers,

Martinus Nijhoff Publishers, P.O. Box 163, 3300 AD Dordrecht, The Netherlands.

PRINTED IN THE NETHERLANDS

GENERAL CONTENTS

Volume I

1.	Excitation Energy Transfer	1
2.	Primary Electron Transfer Reactions	151
3.	Chlorophylls and Model Systems	297
4.	Structure of Molecular Complexes: Chrystallographic and Physical Studies	353
5.	Oxygen Evolution	453

Volume II

1.	Components and Pigment Protein Complexes a) b) c) d)	1
2.	Stoichiometry of Photosystem I and Photosystem II	233
3.	Lateral Heterogeneity and Stacking	269
4.	Localization of Membrane Components	293
5.	Effects of Environmental Changes and Growth Conditions	339
6.	Quinone Acceptors	387
7.	Cytochromes (b-f) Complex	441
8.	Lateral Electron Transport, Connectivity Between Photosystems	501
9.	Plastocyanin	521
10.	PSI-cyclic Electron Transport	537
11.	Inhibition and Environmental Effects	553
12.	General Aspects	613
13.	Higher Plants	669
14.	Organisms Containing Phycobilins	757
15.	Membrane Protein Kinases	797

Volume III

1.	Proton ATP-ase	1
2.	Electrochemical Proton Gradients and ATP Synthesis	127
3.	Light-dark Regulation of Carbon Metabolism	233
4.	Metabolite Regulation of Carbon Metabolism	273
5.	Ribulose 1,5 Bisphosphate Carboxylase Oxygenase	371
6.	Other Chloroplast Enzymes	435
7.	Metabolism of C4 and CAM Plants	503
8.	Integration of Carbon and Nitrogen Metabolism	535
9.	Photorespiration	549
10.	Carbon partitioning	675
11.	Herbicide Action	763

Volume IV

1.	Photoinhibition	1
2.	Temperature	99
3.	Water Potentials	147
4.	Salinity and Nutrient Deficiency	185
5.	Regulation of Gas Exchange	209
6.	Mechanisms of CO ₂ Concentration	289
7.	Crop Productivity	361
8.	Biosynthesis of Photosynthetic Pigments	423
9.	Photoregulation of Chloroplast Development	511
10.	Chloroplast Molecular Genetics	617
11.	Photosynthetic Bacteria	691
12.	Gyanobacteria	749

VI

CONTENTS TO VOLUME I

General Contents	V
Contents Volume I	VII
Preface	XXI
Acknowledgments	XXIII
Local Organizing Committe	XXV

1. Excitation Energy Transfer

Picosecond Absorption and Fluorescence Spectroscopy of Energy Transfer and Trapping in Photosynthetic Bacteria R. van Grondelle	1
Excitation Energy Transport in the Antenna Systems of Purple Bacteria, Studied by Low-intensity Picosecond Absorption Spectroscopy V. Sundström, R. van Grondelle, H. Bergström, E. Åkesson, T. Gillbro	9
The Organization of the Light Harvesting Antenna of Purple Bacteria M. Vos, R.J. van Dorssen, R. van Grondelle, C.N. Hunter, J. Amesz, L.N.M. Duysens	13
Photochemical and Non-photochemical Holeburning Studies of Energy and Electron Transfer in Photosynthetic Reaction Centers and Model Systems Steven G. Boxer, Thomas R. Middendorf, David J. Lockhart, David S. Gottfried	17
The Temperature Dependence of Electron Back-transfer from the Primary Radical Pair of Bacterial Photosynthesis David E. Budil, Stephen V. Kolaczkowski, James R. Norris	25
Supramolecular Organisation of Light-harvesting Pigment-protein Complexes of <i>Rhodobacter Sphaeroides</i> Studied by Excitation Energy Transfer and Singlet-singlet Annihilation at Low Temperature in Phospholipid-enriched Membranes Willem H.J. Westerhuis, Marcel Vos, Rob J. van Dorssen, Rienk van Grondelle, Jan Amesz, Robert A. Niederman	29

VIII

Correlation between the Efficiency of Energy Transfer and the Polyene Chain Structure of Carotenoids in Purple Photosynthetic Bacteria H. Hayashi, K. Iwata, T. Noguchi, M. Tasumi	33
Triplet Energy Transfer between Photosynthetic Pigments: An ESR Study of B800-850 Light-harvesting Complexes and Synthetic Carotenoporhyrin Molecules Harry A. Frank, Barry W. Chadwick, Chaoying Zhang, Jung Jin Oh	37
Picosecond Excitation Energy Transfer between Different Light- harvesting Complexes and Reaction Centres in Purple Bacteria V.I. Godik, A. Freiberg, K. Timpmann, A.Yu. Borisov, K.K. Rebane	41
Spectral Dependence of the Fluorescence Lifetime of <i>Rhodospirillum</i> <i>Rubrum</i> . Evidence for Inhomogeneity of B880 Absorption Band A. Freiberg, V.I. Godik, K. Timpmann	45
Protein Phosphorylation: A Mechanism for Control of Excitation Energy Distribution in Purple Photosynthetic Bacteria Nigel G. Holmes, John F. Allen	49
A Model for the Functional Antenna Organization and Energy Distribution in the Photosynthetic Apparatus of Higher Plants and Green Algae Alfred R. Holzwarth	53
Picosecond Transient Absorbance Spectra and Fluorescence Decay Kinetics in Photosystem II Particles A.R. Holzwarth, H. Brock, G.H. Schatz	61
Picosecond Time Resolved Chlorophyll Fluorescence Spectra from Pea Chloroplast Thylakoids G.H. Schatz, A.R. Holzwarth	67
Picosecond Fluorescence Spectra of Synchronous Cultures of the Green Alga <i>Scenedesmus Obliquus</i> E. Bittersmann, H. Senger, A.R. Holzwarth	71
Measurements and Kinetic Modeling of Picosecond Time-resolved Fluorescence from Photosystem I and Chloroplasts Bruce P. Wittmershaus	75
Time-resolved Fluorescence Decay Kinetics in Photosystem I. Experimental Estimates of Charge Separation and Energy Transfer Rates T.G. Owens, S.P. Webb, D.D. Eads, R.S. Alberte, L. Mets, G.R. Fleming	83
Spectral Properties of Photosystem I Fluorescence at Low Temperatures J. Wachtveitl, H. Krause	87

Analysis of Pigment System I Chl <i>a</i> Fluoresence at Room Temperature by the Steady State Spectrum and the Time Resolved- spectrum in Picosecond Time Range Mamoru Mimuro, Iwao Yamazaki, Naoto Tamai, Tomoko Yamazaki, Yoshihiko Fujita	91
Spectral Shifts in Picosecond Transient Absorption Spectra Due to Stimulated Emission from Chlorophyll <i>in vitro</i> and in Protein Complexes D.R. Klug, B.L. Gore, L.B. Giorgi, G. Porter	95
Fast Fluorescence and Absorption Measurements of Photosystem 1from a CyanobacteriumE. Hilary Evans, Raymond Sparrow, Robert G. Brown,David Shaw, John Barr, Martin Smith and William Toner	99
Anomalous Fluorescence Induction on Subnanosecond Time Scales and Exciton-exciton Annihilations in PSII A. Dobek, J. Deprez, N.E. Geacintov, J. Breton	103
Laser Flash-induced Non-sigmoidal Fluorescence Induction Curves in Chloroplasts Nicholas E, Geacintov, Jacques Breton, Lee France, Jean Deprez, Andrzej Dobek	107
Is Variable Fluorescence Due to Charge Recombination? I. Moya, M. Hodges, J-M. Briantais	111
Time Resolved Chlorophyll Fluorescence Studies of Photosynthetic Pigment Protein Complexes: Characterisation of Five Kinetic Components M. Hodges, I. Moya, J-M. Briantais, R. Remy	115
Multivariate Analysis of Photosystem II Chlorophyll Fluorescence Quenching by Quinones K.K. Karukstis, S.C. Boegeman, S.M. Gruber, C.R. Monell, J.A. Fruetel, M.H. Terris	119
Energy Transfer in Chlorophyll Antennae of Isolated PSII Particles Tomas Gillbro, Åke Sandström, Villy Sundström, Michael Spangfort, Bertil Andersson, Göran Lagenfelt	123
Polarized Spectra of PS2 Particles in PVA Films D. Frackowiak, W. Hendrich, M. Romanowski, A. Szczepaniak, R.M. Leblanc	127
The Dependence of the Energy Transfer Kinetics of the Higher Plant Light Harvesting Chlorophyll-protein Complex on Chlorophyll/ Detergent Resolubilisation Ratios J.P. Ide, D.R. Klug, B. Crystall, B.L. Gore, L.B. Giorgi, W. Kuhlbrandt, J. Barber, G. Porter	131

Characterization of the Fluorescence Decays of the Chlorophyll a/b Protein D.D. Eads, S.P. Webb, T.G. Owens, L. Mets, R.S. Alberte, G.R. Fleming	135
Fluorescence Decay and Depolarization Kinetics Calculated Using Förster Inductive Resonance and the Molecular Coordinates for C-phycocyanin Kenneth Sauer, Hugo Scheer	139
Photochemistry and Photophysics of C-phycocyanin Hugo Scheer	143
2. Primary Electron Transfer Reactions	
Primary Reactions of Photosynthesis: Discussion of Current Issues Paul Mathis	151
Selective Reduction and Modification of Bacteriochlorophylls and Bacteriopheophytins in Reaction Centers from <i>Rhodopseudomonas Viridis</i> V.A. Shuvalov, A.Ya. Shkuropatov, M.A. Ismailov	161
Spectroscopic and Primary Photochemical Properties of Modified Rhodopseudomonas Sphaeroides Reaction Centers Dewey Holten, Christine Kirmaier, Leanna Levine	169
Fourier Transform Infrared (FTIR) Spectroscopic Investigations of the Primary Reactions in Purple Photosynthetic Bacteria E. Nabedryk, B.A. Tavitian, W. Mäntele, W. Kreutz, J. Breton	177
Picosecond Characterization of Primary Events in <i>Rhodopseudomonas Viridis</i> Whole Cells by Transmembrane Potential Measurements J. Deprez, HW. Trissl, J. Breton	181
Excitation of Antenna Pigments and Electron Transfer upon Picosecond Flash Illumination of Membranes of <i>Chloroflexus Aurantiacus</i> A.M. Nuijs, H. Vasmel, L.N.M. Duysens, J. Amesz	185
Electron Transport in <i>Heliobacterium Chlorum</i> H.W.J. Smit, J. Amesz, M.F.R. van der Hoeven, L.N.M. Duysens	189
A Possible Mechanism for Electron Transfer in the Diquinone Acceptor Complex of Photosynthetic Reaction Centers S.K. Buchanan, K. Ferris, G.C. Dismukes	193
Triplet-minus-singlet Absorption Difference Spectra of Some Bacterial Photosynthetic Reaction Centers with and without Carotenoids Recorded by Magneto-optical Difference Spectroscopy (MODS) at 290 and 20 K E.J. Lous, A.J. Hoff	197

X

An E.P.R. Signal Arising from Q_B^- Fe in <i>Chromatium Vinosum</i> Strain D P. Heathcote, A.W. Rutherford	201
Photochemical Reduction of either of the Two Bacteriopheophytins in Bacterial Photosynthetic Reaction Centers Sandra Florin, David M. Tiede	205
Reconstitution of Reaction Centers in Planar Bilayer Lipid Membranes (BLM) H. Ti Tien	209
³ (P ⁺ I ⁻) Lifetime as Measured by B ₁ Field Dependent RYDMR Triplet Yield Stephen Kolaczkowski, David Budil, James R. Norris	213
Electron Transfer in Reaction Center Protein from <i>R. Sphaeroides</i> : Generation of a Spin Polarized Bacterio-chlorophyll Dimer EPR Signal Whose Formation is Modulated by the Electron Transfer Rate from Bacteriopheophytin to Q_A M.R. Gunner, D.E. Robertson, R.L. LoBrutto, A.C. McLaughlin, P.L. Dutton	217
Electric Field Dependence of Electron Transfer in Photosynthetic Reaction Centers from <i>Rhodopseudomonas Sphaeroides</i> G.A. Alegria, P.L. Dutton	221
Hydrocarbon Tail Structure and its Effect on the Affinity and Kinetic Performance of Quinones at the Q_A Site in Reaction Centers of <i>Rhodobacter Sphaeroides</i> R26 K. Warncke, M.R. Gunner, B.S. Braun, CA. Yu, P.L. Dutton	225
Excited States and Primary Photochemical Reactions in Photosystem I A.M. Nuijs, V.A. Shuvalov, H.W.J. Smit, H.J. van Gorkom, L.N.M. Duysens	229
Characterization of the Electron Acceptor A_1 in Photosystem I by Flash-absorption Spectroscopy at Low Temperature: Evidence that A_1 is Vitamin K_1 K. Brettel, P. Setif, P. Mathis	233
EPR Evidence that the Photosystem I Acceptor A ₁ is a Quinone Molecule M.C. Thurnauer, P. Gast, J. Petersen, D. Stehlik	237
Investigation of the Chemical Nature of Electron Acceptor A ₁ in Photosystem I of Higher Plants R.W. Mansfield, J.H.A. Nugent, M.C.W. Evans	241
Evidence for the Existence of Electron Acceptors A_0 and A_1 in Cyanobacterial Photosystem 1 N.S. Smith, R.W. Mansfield, J.H.A. Nugent, M.C.W. Evans	245

XI

XII

Iron X-ray Absorption Spectra of Acceptors in PS I Ann E. McDermott, Vittal K. Yachandra, R.D. Guiles, R. David Britt, S.L. Dexheimer, Kenneth Sauer, Melvin P. Klein	249
Photosystem I Charge Separation in the Absence of Centers A & B: Biochemical Characterization of the Stabilized P700 A2(X) Reaction	253
Center John H. Golbeck, Kevin G. Parrett, Leslie L. Root	255
Picosecond Transient Absorption Spectroscopy of Photosystem 1 Reaction Centres from Higher Plants L.B. Giorgi, B.L. Gore, D.R. Klug, J.P. Ide, J. Barber, G. Porter	257
Light-induced Fourier Transform Infrared (FTIR) Spectroscopic Investigations of Primary Reactions in Photosystem I and Photosystem II R.A. Touition, E. Nebedruk, W. Mäntele, L. Broton	261
B.A. Tavitian, E. Nabedryk, W. Mäntele, J. Breton	
Chlorophyll Organization in Photosystem-I Reaction-center of Spinach Chloroplasts Isamu Ikegami, Shigeru Itoh	265
Bound Quinones in the Reaction Centres of Bacteria and Plants M.C.W. Evans	269
How Close is the Analogy between the Reaction Centre of PSII and that of Purple Bacteria? 2. The Electron Acceptor Side A.W. Rutherford	277
Depletion and Reconstitution of the Quinone at the Q _B Site in Photosystem II: A Thermoluminescence Study T. Wydrzynski, Y. Inoue	285
Chemically-induced Dynamic Electron Polarization in Photosystem 2 Reaction Centers Joseph T. Warden, Nathan M. Lacoff, Károly Csatorday	289
The Mechanism of Fatty Acid Inhibition in Photosystem 2 Károly Csatorday, Claire Walczak, Joseph T. Warden	293
3. Chlorophylls and Model Systems	
<i>In vivo</i> Spectral Peaks Related to New Chemical Species of Chlorophylls: 4-Vinyl-4-Desethyl Maarib B. Bazzaz	297
Chlorophyll a' in Photosynthetic Apparatus: Reinvestigation Tadashi Watanabe, Masami Kobayashi, Masataka Nakazato, Isamu Ikegami, Tetsuo Hiyama	303

Are Chlorinated Chlorophylls Components of Photosystem I Reaction Centers? J. Fajer, E. Fujita, H.A. Frank, B. Chadwick, D. Simpson,	307
K.M. Smith	
Environmental Effects on the Properties of Chlorophylls <i>in vivo</i> Theoretical Models L.K. Hanson, M.A. Thompson, J. Fajer	311
Effects of Structure and Geometry of Pigment-Protein Complexes on Experimental Quantities in Primary Processes of Photosynthesis K. Vacek, M. Ambroz, O. Bilek, J. Hala, V. Kapsa, P. Pancoska, I. Pelant, L. Skala, L. Souckova	315
Infrared Study of Solid Chlorophyll <i>a</i> Absorbing Near 700 nm at Room Temperature Camille Chapados	321
Borohydride Reduction of Bacteriochlorophyll <i>a</i> in the Light Harvesting Protein of <i>Rhodospirillum Rubrum</i> Patricia M. Callahan, Therese M. Cotton, Paul A. Loach	325
Fourier-transform Infrared (FTIR) Spectroelectrochemistry of Bacteriochlorophylls W. Mäntele, A. Wollenweber, E. Nabedryk, J. Breton, F. Rashwan, J. Heinze, W. Kreutz	329
Solvent Effects on the Transfer Kinetics of Bacteriochlorophyll Oxidation Therese M. Cotton, Randall L. Heald	333
X- and Y-polarized Absorptions of Chlorophyll <i>a</i> and Pheophytin <i>a</i> Oriented in a Lamellar Phase of Glycerylmonooctanoate/water M. Fragata, T. Kurucsev, B. Nordén	337
The Bacteriochlorophyll <i>c</i> Dimer in Carbon Tetrachloride J.M. Olson, G.H. van Brakel, P.D. Gerola, J.P. Pedersen	341
Superoxide Photogeneration by Chlorophyll <i>a</i> in Water/Acetone Solutions. Electron Spin Resonance Studies of Radical Intermediates in Chlorophyll <i>a</i> Photoreactions <i>in vitro</i> Jun-Lin You, Karen S. Butcher, Angela Agostiano, Francis K. Fong Resonant Energy Transfer between Bulk Chlorophyll <i>a</i> and	345
Chlorophyll <i>a</i> Dihydrate Dimers in Water/Acetone Mixtures. A Model of Sensitized Excitation in Plant Photosynthesis Angela Agostiano, Karen A. Butcher, Michael S. Showell, Jun-Lin You, Albert J. Goth, Michael S. Showell	349

XIII

4. Structure of Molecular Complexes: Crystallographic and Physical Studies

The Structural Organization of Photosynthetic Reaction Centers 353 Hartmut Michel, Johann Deisenhofer

ΧΙΧ

Relating Structure to Function in Bacterial Photoreaction Centers J.R. Norris, D.E. Budil, D.M. Tiede, J. Tang, S.V. Kolaczkowski, C.H. Chang, M. Schiffer	363
Crystallographic Studies of the Photosynthetic Reaction Center from <i>R. Sphaeroides</i> CH. Chang, D. Tiede, J. Tang, J. Norris, M. Schiffer	371
Structure Analysis of the Reaction Center from <i>Rhodopseudomonas</i> Sphaeroides: Electron Density Map at 3.5Å Resolution J.P. Allen, G. Feher, T.O. Yeates, D.C. Rees	375
Evidence of the Primary Charge Separation in the D_1D_2 Complex of Photosystem II from Spinach: EPR of the Triplet State M.Y. Okamura, K. Satoh, R.A. Isaacson, G. Feher	379
Crystallization and Spectroscopic Investigations of the Pigment- protein Complexes of Rhodopseudomonas Palustris T. Wacker, K. Steck, A. Becker, G. Drews, N. Gad'on, W. Kreutz, W. Mäntele, W. Welte	383
Spectroscopy, Structure and Dynamics in the Reaction Center of Rhodopseudomonas Viridis J. Breton, J. Deprez, B. Tavitian, E. Nabedryk	387
Interspecific Structural Variations of the Primary Donor in Bacterial Reaction Centers Qing Zhou, Bruno Robert, Marc Lutz	395
Linear-Dichroic Absorbance Detected Magnetic Resonance (LD-ADMR) Spectroscopy of the Photosynthetic Reaction Center of <i>Rhodopseudomonas Viridis</i> . Spectral Analysis by Exciton Theory E.J. Lous, A.J. Hoff	399
Optical Properties of the Reaction Center of <i>Chloroflexus Aurantiacus</i> at Low Temperature. Analysis by Exciton Theory H. Vasmel, R.F. Meiburg, J. Amesz, A.J. Hoff	403
The Photochemical Reaction Center of <i>Chloroflexus Aurantiacus</i> : Isolation and Protein Chemistry of the Purified Complex Judith A. Shiozawa, Friedrich Lottspeich, Reiner Feick	407
Structures of Antenna Complexes and Reaction Centers from Bacteriochlorophyll b-containing Bacteria: Resonance Raman Studies Bruno Robert, Robert Steiner, Qing Zhou, Hugo Scheer, Marc Lutz	411
Strong Orientational Ordering of the Near-infrared Transition Moment Vectors of Light-harvesting Antenna Bacterioviridin in Chromatophores of the Green Photosynthetic Bacterium Chlorobium Limicola, Strain c Z.G. Fetisova, S.G. Kharchenko, I.A. Abdourakchmanov	415

Light Absorption and Fluorescence of BChl c in Chlorosomes from Chloroflexus Aurantiacus and in an in vitro Model Daniel C. Brune, Robert E. Blankenship	419
Serrs as a Probe for Pigments Located near the Surfaces of Bacterial Photosynthetic Membranes Rafael Picorel, Randall E. Holt, Therese M. Cotton, Michael Seibert	423
Optical Excited Triplet States in Antenna Complexes of the Photosynthetic Bacterium Rhodopseudomonas Capsulata A1a ⁺ Detected bij Magnetic Resonance in Zero-field A. Angerhofer, J.U. von Schütz, H.C. Wolf	427
Singlet Energy Transfer in Photosynthetic Bacteria: Absorption and Fluorescence Excitation of B800-850 Complexes Barry W. Chadwick, Harry A. Frank, Chaoying Zhang, Shahriar S. Taremi, Richard J. Cogdell	431
Properties of the Core Complex of Photosystem II J.J. Plijter, R.J. van Dorssen, J.P. Dekker, F.T.M. Zonneveld, H.J. van Gorkom, J. Amesz	435
Pigment Arrangement in Photosystem II R.J. van Dorssen, J.J. Plijter, A. den Ouden, J. Amesz, H.J. van Gorkom	439
Three-dimensional Crystals of the Light-harvesting Chlorophyll a/b Protein Complex from Pea Thylakoids W. Kuehlbrandt	443
Interpretation of Transient Linear Dichroism Spectra of LHC Particles Robert S. Knox, Su Lin	445
Resonance Raman Spectroscopy of Chlorophylls and the Light-harvesting Chlorophyll a/b Protein H.N. Fonda, G.T. Babcock	449
5. Oxygen Evolution	
Oxygen-evolving Complex of Photosystem II in Higher Plants Norio Murata, Mitsue Miyao	453
Kinetics and Structure on the High Potential Side of Photosystem II G.T. Babcock, T.K. Chandrashekar, D.F. Ghanotakis, C.W. Hoganson, P.J. O'Malley, I.D. Rodriguez, C.F. Yocum	463
Endor Characterization of H_2O/D_2O Exchange in the D ⁺ Z ⁺ Radical in Photosynthesis I.D. Rodriguez, T.K. Chandrashekar, G.T. Babcock	471

I.D. Rodriguez, T.K. Chandrashekar, G.T. Babcock

XVI

Endor Characterization of the Z ⁺ /D ⁺ Species in Photosystem II and Relevant Model Compounds T.K. Chandrashekar, P.J. O'Malley, I.D. Rodriguez, G.T. Babcock	475
Time-resolved ESR Spectrum of Z ⁺ in Oxygen-evolving Photosystem II Membranes C.W. Hoganson, Y. Demetriou, G.T. Babcock	479
Spatial Relationship between the Intramembrane Components (D ⁺ , Z ⁺) which Give Rise to Signal II and the Membrane Peripheral Proteins Working in Photosystem II Oxygen Evolution Studied by the Effect of Spin-relaxing Reagent Dysprosium Shigeru Itoh, Yasuhiro Isogai, Xiao-Song Tang, Kimiyuki Satoh	483
The Effects of Chemical Oxidants on the Electron Transport Components of Photosystem II and the Water-oxidizing Complex J. Tso, D. Hunziker, G.C. Dismukes	487
On the Mechanism of Photosynthetic Water Oxidation Gary W. Brudvig, Julio C. de Paula	491
Coordination of Ammonia, but not Larger Amines, to the Manganese Site of the O_2 -evolving Center in the S_2 State Warren F. Beck, Gary W. Brudvig	499
EPR Studies of the Oxygen-evolving system. The Interaction with Amines Lars-Erik Andreasson, Örjan Hansson	503
Cooperative Binding of Hydroxylamine and Hydrazine to the Water-oxidizing Complex Verena Förster, Wolfgang Junge	511
Reaction Mechanisms of H ₃ O Substrate Analogues at the PS II-donor Side in Thylakoids and PS II-particles B. Hanssum, G. Renger	515
Proton Release by Photosynthetic Water Oxidation Ralf Diedrich-Glaubitz, Manfred Völker, Gernot Renger, Peter Gräber	519
On the Cleavage of Water Pattern of Charges and Protons. States of Water and Manganese. Routes and Rate of Intermediates H.T. Witt, Ö. Saygin, K. Brettel, E. Schlodder	523
Absorption Changes with Periodicity Four, Associated with Photosynthetic Oxygen Evolution Jan P. Dekker, Johan J. Plijter, Hans J. van Gorkom	533
State of Manganese During Water Splitting Ö. Saygin, H.T. Witt	539
New Results about the Molecular Mechanism of Photosynthetic Water Oxidation G. Renger, B. Hanssum, W. Weiss	541

The Modification of the Donor Side Reaction Pattern in PS II Membrane Fragments by Trypsin and CaCl ₂ M. Völker. H.J. Eckert, G. Renger	545
Studies on Water Oxidation by Mass Spectrometry in the Filamentous Cyanobacterium Oscillatoria Chalybea Klaus P. Bader, Pierre Thibault, Georg H. Schmid	549
Flash-induced Enhancements in the ¹ H-relaxation Rate of Photosystem II Particles A.N. Srinivasan, R.R. Sharp	553
The State of Manganese in the Photosynthetic Apparatus: An X-ray Absorption Spectroscopy Study Vittal K. Yachandra, R.D. Guiles, Ann McDermott, James Cole, R. David Britt, S.L. Dexheimer, Kenneth Sauer, Melvin P. Klein	557
Structural Features of the Manganese Cluster in Different States of the Oxygen Evolving Complex of Photosystem II: An X-ray Absorption Spectroscopy Study R.D. Guiles, Vittal K. Yachandra, Ann E. McDermott, R. David Britt, S.L. Dexheimer, Kenneth Sauer, Melvin P. Klein	561
Characterization of the MN-containing O ₂ Evolving Complex from the Cyanobacterium <i>Synechococcus</i> Using EPR and X-ray Absorption Spectroscopy Ann McDermott, Vittal K. Yachandra, R.D. Guiles, R. David Britt, S.L. Dexheimer, Kenneth Sauer, Melvin P. Klein	565
The Flash Number Dependence of EPR Signal II Decay As a Probe for Charge Accumulation in Photosystem II James Cole, Kenneth Sauer	569
Electron Spin Echo Studies of PSII Membranes R. David Britt, Kenneth Sauer, Melvin P. Klein	573
EPR Studies at 9 and 34 GHz of the Multiline and $g = 4.1$ S, Signals Roland Aasa, Örjan Hansson, Tore Vänngård	577
Structural and Functional Aspects of Electron Transfer in Photosystem 2 of Oxygen-evolving Organisms V.V. Klimov, I.B. Ganago, S.I. Allakhverdiev, M.A. Shafiev, G.M. Ananyev	581
The Study of Effects on Strongly-bound Manganese of Oxygen Evolving Complex in Wheat Chloroplasts by EPR Sun Qi, Luo Chang-Mei, Zhang Li-Li, Fang Zhao-Xi, Mei Zhen-An	585
Evidence for the Role of Functional Manganese in Hydrogen-peroxide-stimulated Oxygen Production of the First Flash in CACL ₂ -washed Photosystem II Membranes Steven P. Berg, Michael Seibert	589

XVII

XVIII

Interaction between Manganese and the 33-kilodalton Protein in Spinach PS II Yasusi Yamamoto	593
Manganese and Calcium Binding Properties of the Extrinsic 33 kDa Protein and of Photosystem II Membranes D. Hunziker, D.A. Abramowicz, R. Damoder, G.C. Dismukes	597
The 33 kDa Extrinsic Polypeptide of Photosystem II is not a Ligand to Manganese in the O_2 Evolving Complex Anne-Frances Miller, Julio C. de Paula, Gary W. Brudvig	601
Effect of Release of the 17 and 23 kDa Polypeptides of Photosystem II on Cytochrome b ₅₅₉ Julio C. de Paula, Brian W. Wu, Gary W. Brudvig	605
Cytochrome b ₅₅₉ Plays a Structural Role in the Oxygen Evolving Complex of Photosystem II Lynmarie K. Thompson, Julian M. Sturtevant, Gary W. Brudvig	609
Effect of the 33-kDa Protein on the S-state Transition in the Oxygen-evolving Complex M. Miyao, N. Murata, B. Maison-Peteri, A. Boussac, AL. Etienne, J. Lavorel	613
PSII Ca Abundance and Interaction of the 17,24 kD Proteins with the C1 ⁻ /Ca ²⁺ Essential for Oxygen Evolution Kirk Cammarata, George Cheniae	617
Photoactivation of the Water Oxidizing Complex by Photosystem 2 Membranes N. Tamura, G. Cheniae	621
Numbers of Calcium Ions Associated with Oxygen Evolving Photosystem II Preparations with Different Affinities Sakae Katoh, Kazuhiko Satoh, Takashi Ohno, Jian-Ren Chen, Yasuhiro Kasino	625
Involvement of Ca ²⁺ and the 33 kD Polypeptide in Cl ⁻ Binding to the Oxygen Evolving Complex of Photosystem II W.J. Coleman, Govindjee, H.S. Gutowsky	629
Inhibition at the CA ²⁺ Sensitive Site of the Oxygen Evolving Center by Ruthenium Red Sylvie Lemieux, Robert Carpentier	633
Thermoluminescence Studies of the Abnormal S-states Formed in Cl ⁻ -depleted or 33 kDa Extrinsic Protein-depleted PSII Yorinao Inoue	637
Temperature Dependence of the S-state Transition in a Thermophilic Cyano-bacterium Measured by Thermoluminescence Hiroyuki Koike, Yorinao Inoue	645

649
653
657
661
665
669
673
677
681
685
689
693
697

ΧΙΧ

XX

Partial Amino Acid Sequences of the Proteins of Pea and Spinach Photosystem II Complex N. Murata, H. Kajiura, Y. Fujimura, M. Miyao, T. Murata, A. Watanabe, K. Shinozaki	701
Proline-rich Structure at Amino-terminal Region of the 18-kDa Protein of Photosynthetic Oxygen-evolving Complex Tomohiko Kuwabara, Teruyo Murata, Mitsue Miyao, Norio Murata	705
Topographical Studies on Subunit Polypeptides of Oxygen-evolving Photosystem II Preparations by Reversible Crosslinking: Functions of Two Chlorophyll-carrying Subunits Isao Enami, Takeshi Miyaoka, Sahoko Igarashi, Kazuhiko Satoh, Sakae Katoh	709
Tenacious Association of the 33kDa Extrinsic Polypeptide (Water Splitting) with PS II Particles Edith L. Camm, Beverley R. Green	713
Thermodynamic Constraints to Photosynthetic Water Oxidation Lee Spencer, Donald T. Sawyer, Andrew N. Webber, Robert L. Heath	717
Binuclear and Tetranuclear Manganese Complexes: As Models for the Site for Photosynthetic Water Oxidation J.E. Sheats, B.C. UnniNair, V. Petrouleas, S. Artandi, R.S. Czernuszewicz, G.C. Dismukes	721
Models for Manganese Centers in Metalloenzymes Vincent L. Pecoraro, Dimitris P. Kessissoglou, Xinhua Li, William M. Butler	725
Molecular Orbital Study (IV) on the 'Microsurface' Model of Catalytic Binuclear Manganese Complex in Photosynthetic Water- splitting and Oxygen-evolving Reaction Masami Kusunoki	729
Dynamic Linearity of the Bare Platinum Electrode for Oxygen Exchange Measurements in Marine Algae S.I. Swenson, C.P. Meunier, K. Colbow	733
A Dynamic Model for the Bare Platinum Electrode C.P. Meunier, S.I. Swenson, K. Colbow	737
Index of names	741

FLUORESCENCE DECAY AND DEPOLARIZATION KINETICS CALCULATED USING FÖRSTER INDUCTIVE RESONANCE AND THE MOLECULAR COORDINATES FOR C-PHYCOCYANIN

KENNETH SAUER, CHEMISTRY DEPARTMENT, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA, 94720, USA; AND HUGO SCHEER, BOTANISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN, MENZINGERSTR. 67, D-8000 MÜNCHEN 19, FRG

1. INTRODUCTION

Excitation energy transfer among photosynthetic antenna pigments is an ubiquitous process in nature for producing efficient photon capture. The transfer of excitation to the photosynthetic reaction centers occurs rapidly, within a few hundred picoseconds, and with minimal loss of energy to fluorescence or heat. It has been proposed that this transfer occurs through a combination of exciton interactions among closely coupled chromophores and inductive resonance interactions among weakly coupled chromophores of pigment protein complexes. Detailed descriptions of the nature of this process have been lacking because, until recently, the molecular structures of the pigment proteins have not been known. The first publications of such structures with sufficient resolution to determine both the positions and orientations of the intrinsic chromophores were presented by Schirmer, et al. for C-phycocyanins (C-PC) from two different organisms (1,2). Examination of the structures supports the conclusion from spectroscopic measurements that exciton interactions probably do not play an important role in C-PC (3).

We have applied the inductive resonance mechanism of Förster to C-PC to calculate the rate constants for successive pairwise excitation transfer steps among the chromophores. Because C-PC consists of two distinct subunits—the α -subunit with one covalently attached phycobilin chromophore and the β -subunit with two, and because these can be prepared in ($\alpha\beta$)-monomeric, ($\alpha\beta$)₃-trimeric and ($\alpha\beta$)₆-hexameric forms (3), the calculations have been carried out for aggregates of different sizes. Experimental data are available for the kinetics of fluorescence intensity decay and for the rate of depolarization of fluorescence on the picosecond to nanosecond time scale for a variety of these preparations (4-9). Comparison of the calculated results with the best time resolved data indicates that the Förster transfer mechanism is sufficient to account for essentially all of the excitation energy transfer in C-PC.

2. PROCEDURE

Details of the method of calculation are described in a related publication (10). Briefly, the molecular structure information for C-PC from <u>Agmenellum quadruplicatum</u> was used to specify the interchromophore separations and the transition dipole moment orientations (2). The spectral overlap integrals were determined using absorption and emission spectral components obtained from a deconvolution of the experimental spectra of the α - and β -subunits and of the $\alpha\beta$ -monomer. Values of the extinction coefficients and fluorescence yields were taken from Mimuro <u>et</u> <u>al</u> (11). Fluorescence lifetimes of the chromophores were based on measurements of the α -subunit by Switalski and Sauer (12) and by Hefferle <u>et al</u>. (5). Chromophore assignments were α -84 = intermediate (λ ,max 616 nm), β -84 = fluorescer (λ ,max 622) and β -155 = sensitizer (λ ,max 598)(13).

Biggens, J. (ed.), Progress in Photosynthesis Research, Vol. 1. ISBN 9024734495 © 1987 Martinus Nijhoff Publishers, Dordrecht. Printed in the Netherlands.

1.1.**140**

A set of simultaneous differential equations was formulated to describe the kinetics of excited state populations for each chromophore in the pigment protein. Because of the extensive symmetry of the larger aggregates, the calculational procedure could be appreciably simplified. Where desired, specification of the excitation and emission wavelengths was accounted for in terms of weighting parameters associated with the different chromophores. The differential equations were solved by an iterative (reverse Euler) method using a personal computer. (The authors wish to acknowledge the contribution of Peter Sauer, Carleton College, Northfield, MN in writing most of the programs used in the calculations). Programs were developed to calculate the time evolution of the excited state lifetimes and of the fluorescence emission expected. These results were then analyzed in terms of two or three exponentials, as required by the symmetry of the molecular species.

Depolarization kinetics were calculated using the data describing the time evolution of the excited state population of each chromophore in the complex. Excitation was assumed to initiate on one of the three chromophore types, and fluorescence was assumed to be depolarized by a factor of $(3 \cos^2 \theta - 1)/2$, where θ is the angle between the chromophore initially excited and the fluorescing chromophore (14). The sum of contributions from each chromophore in the complex, normalized by the corresponding excited state population, produced a time-dependent depolarization profile.

3. RESULTS AND DISCUSSION

Relaxation kinetics to compare with experimental fluorescence (isotropic) lifetime measurements were calculated for the separate β -subunit, the $\alpha\beta$ -monomer, the $(\alpha\beta)_3$ -trimer and the $(\alpha\beta)_6$ -hexamer. In the kinetic model the excitation was localized initially on one chromophore in the complex, and the transfer to other chromophores was calculated using the transfer rate constants obtained from the Förster formulation. Radiative plus non-radiative decay processes led to a loss of excited state population with a rate constant $k_F = 0.67$ ns⁻¹, corresponding to the experimental longest lifetimes of approximately 1.5 ns. This entire calculation was then repeated for excitation present initially on a chromophore of a second class and, (except for the β -subunit), then on a chromophore of the third class. The results of these two or three calculations were multiplied by weighting parameters appropriate to the particular excitation and emission wavelengths. From these results describing the time evolution of the excited state population of all chromophores present, those for the individual chromophore classes or for the total excited state population were obtained by appropriate summations. The symmetry requires that the calculated decays are the sums of no more than three exponential components (two in the case of the β -subunit), one of which is the excited state decay with a 1.5 ns lifetime (15). The other shorter lifetimes are presented along with some recent results of time-resolved fluorescence relaxation in Table I. Relative amplitudes of the individual decay components are not included; they will depend on the particular excitation and emission wavelengths. Holzwarth (personal communication) has solved the sets of differential equations by inverting the matrix of coefficients (rate constants) and obtained identical values for the lifetimes and amplitudes of the exponential components.

The data are compared to experimental results on C-PC of different aggregate sizes isolated from the cyanobacteria, Synechococcus 6301 (4,15)

and <u>Mastigocladus</u> <u>laminosus</u> (5,7,16). The known structure of the latter PC (1) is similar to that of <u>A</u>. <u>quadruplicatum</u> (2), and a similar arrangement is also believed for the former on the basis of extensive sequence homologies (17). The experimental decay profiles have been resolved into a sum of 2-4 exponentials. General agreement is seen between the calculated and observed lifetimes, especially in the decreasing value of the short lifetime with increasing extent of aggregation. The intermediate decay component is not well matched by the experimental data; however, there is a fourth component resolved experimentally in several studies and that is not predicted by our model. This fourth component may be related to the second one seen for the isolated ∞ -subunit, where only one chromophore is present and only one decay component is expected (5,12). Resolution of these problems must await further study.

<u>Table 1</u>. Comparison of calculated with measured lifetimes. Each calculated relaxation curve is the sum of three exponentials (except, only two for the β -subunit). The slowest ($\tau_{\rm F}$ = 1500 ps) reflects the overall excited state decay. Comparison is with wavelength-resolved experimental measurements. All lifetimes are given in psec.

	These Calculations	Synechococcus 6301 (4,15)	M. laminosus (7)	<u>M. laminosus</u> (16)
β -subunit	48, 1500			
αβ -	45	47		
Monomer	700	200		
	1500	675, 1320		
(αβ)2-	16	20	36	45-61
(αβ) ₃ - Trimer	27	122	203	
	1500	600, 1300	807, 1420	1130-1640
(αβ) ₆ -	15	10		
Hexamer	18	40-50		
	1500	1800		

The anisotropic fluorescence (depolarization) relaxation kinetics was extracted from the excited state populations by taking into account the relative orientations of the chromophore that initially absorbed the radiation and the one(s) that finally emit it (factorization with $(3 \cos^2 \theta - 1)/2)$. Again, symmetry may be invoked to decrease the number of initially excited chromophores to one member of each class, but now each emitting chromophore needs to be treated separately with respect to the orientation factor prior to the final summation. It was possible to "resolve" the time dependence of anisotropic fluorescence decay empirically into three exponential components. In this case none of the decays corresponds to the excited state lifetime, and there is no reason to expect that the deconvolution is exact. The results of this analysis are presented in Table II along with the available experimental data. The agreement is less satisfactory than for the isotropic fluorescence decay; however, more extensive experimental results are needed, especially with picosecond time resolution, before definite conclusions can be drawn. It is significant to compare the fastest (5-15 ps) depolarization calculated for the $(\alpha\beta)_6$ -hexamer with the experimental values of 10 ps for phycobilisomes from Synechococcus (8). The fastest depolarization steps were attributed to excitation transfer in C-PC in the phycobilisomes.

1.1.**142**

<u>Table II</u>. Comparison of calculated with measured depolarization lifetimes. Each calculated depolarization relaxation curve is resolved into 1 to 3 exponentials. Values obtained assuming (1) equal initial excitation and (2) equal emission intensity for each chromophore class. All values in psec.

-	These Calculations	M. laminosus (5)	<u>M. laminosus</u> (16)
β -subunit	50	403	
αβ-Monomer	46, 1300	580	
$(\alpha\beta)_3$ -Trimer	8, 24, 46	70	36-57, 800-1150
$(\alpha\beta)_6$ -Hexamer	5, 15, 31		

ACKOWLEDGEMENTS We wish to thank Peter Sauer for writing the programs used in solving the simultaneous differential equations. This work was supported by the Alexander-von-Humboldt Stiftung, Bonn (award to K.S.) and by the Deutsche Forschungsgemeinschaft (SB 143 and the CIP botany computer facilities, H.S.).

REFERENCES

- Schirmer, T., Bode, W., Huber, R., Sidler, W. and Zuber, H (1985) J. Mol. Biol. 184, 257-277
- 2 Schirmer, T., Huber, R., Schneider, M., Bode, W., Miller, M. and Hackert, M.L. (1986) J. Mol. Biol. 188, 651-676
- 3 Scheer, H. (1982) in Light Reaction Path of Photosynthesis (Fong, F.K. ed.) pp. 7-45, Springer-Verlag, Berlin
- 4 Holzwarth, A.R. (1985) in Antennas and Reaction Centers of Photosynthetic Bacteria (Michel-Beyerle, M.E. ed.), pp. 45-52, Springer-Verlag, Berlin
- 5 Hefferle, P., Geiselhart, P., Mindl, T., Schneider, S., John, W. and Scheer, H. (1984) Z. Naturforsch. 39c, 606-616
- 6 Hefferle, P., John, W., Scheer, H. and Schneider, S. (1984) Photochem. Photobiol. 39, 221-232
- 7 Wendler, J., John, W., Scheer, H. and Holzwarth, A.R. (1986) Photochem. Photobiol. 44, 79-86
- 8 Gillbro, T., Sandström, Å., Sundström, V., Wendler, J. and Holzwarth, A.R. (1985) Biochim. Biophys. Acta 808, 52-65
- 9 Earlier and related work is reviewed in: Holzwarth, A.R. (1986) Photochem. Photobiol. 43, 707-725
- 10 Sauer, K., Scheer, H. and Sauer, P. (1986) Photochem. Photobiol. Submitted for publication
- 11 Mimuro, M., Füglistaller, P., Rümbeli, R. and Zuber, H. (1986) Biochim. Biophys. Acta 848, 155-166
- 12 Switalski, S.C. and Sauer, K. (1984) Photochem. Photobiol. 40, 423-427
- 13 Siebzehnrübl, S., Fischer, R. and Scheer, H. (1986) Z. Naturforsch. C. Submitted for publication, see also: Scheer, H., these proceedings
- 14 Dale, R.E. and Eisinger, J. (1975) in Biochemical Fluorescence: Concepts (Chen, R.F. and Edelhoch, H., eds.) Vol 1, pp 115-284, Marcel Dekker, NY
- 15 Holzwarth, A.R. (1986) Biophys. J. In press
- 16 Schneider, S., Geiselhart, T., Scharnagl, C., Schirmer, T., Bode, W., Sidler, W. and Zuber, H. (1985) Book, ref. 4, pp. 36-44
- 17 Zuber, H. (1985) Book, ref 4, pp. 2-14