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Abstract

This paper covers the aspect of using statistical methodology for the monitoring
of routinely collected surveillance data in veterinary public health. An account of
the Farrington algorithm and Poisson cumulative sum schemes for the detection of
aberrations is given with special attention devoted to the occurrence of seasonality
and spatial aggregation of the time series. Modelling approaches for retrospective
analysis of surveillance counts are described. To illustrate the applicability of the
methodology in veterinary public health, data from the surveillance of rabies among
fox in Hesse, Germany, are analysed.
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1 Introduction

Understanding and controlling infectious diseases is a problem that needs to be
addressed by a collaboration of scientists in human and veterinary medicine,
mathematical modelling, economy and social sciences. This paper covers the
aspect of using statistical methodology for the monitoring of routinely col-
lected surveillance data, which has become increasingly important as the
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amount of data gathered through automatic surveillance increases. Statisti-
cal surveillance methods have predominately originated from applications in
human public health surveillance, but they find increased utilization in vet-
erinary public health. The aim of this paper is to explain concepts behind
prospective and retrospective statistical surveillance and illustrate use and
potential in veterinary epidemiology.

Examples from human epidemiology include the monitoring of notifiable dis-
eases, congenital malformations, surgical outcomes and bioterrorism syndromes
(Widdowson et al., 2003; Chen, 1978; Steiner et al., 2000; Bravata et al., 2004).
In veterinary epidemiology applications often correspond to the human equiv-
alent, e.g. Kosmider et al. (2006) monitor salmonella in livestock reports and
Carpenter et al. (2007) look at abortions in dairy cattle. One issue in adapting
surveillance from humans to animals is the fundamental differences in terms:
Animal surveillance has to deal with diverse species and completely different
conditions of living (e.g. production, wild, or companion animal) resulting in
different entities of interest (e.g. individual or herd) and different profession-
als interacting with the population. As a consequence the possibility and cost
of investigation and control strategy depends heavily on character of living.
However, as much as the human and veterinary surveillance differ, zoonoses
like salmonellosis, rabies or emerging zoonoses (e.g. avian flu) underline the
need for a comparative and co-operative approach in surveillance.

Data quality is a major practical concern in the analysis of surveillance data,
e.g. lack of clear case definition, under-reporting or reporting delays and lack
of denominator data complicate the statistical analysis. In this paper the focus
is however on the statistical challenges of analysing the resulting univariate
and multivariate time series containing daily, weekly or monthly counts.

The first part of the article deals with prospective surveillance for count data.
One important question in this process is deciding on the best level of ag-
gregation – to this end a simple scheme for hierarchical disease detection is
introduced. Our presentation thus emphasizes the time series nature of the
data as an alternative to spatial and spatio-temporal cluster detection meth-
ods, e.g. scan statistics (Kulldorff, 2001; Rogerson, 2001). The second part
describes a stochastic model for the analysis of multivariate surveillance data.
This model can be used to detect temporal and spatio-temporal dependencies
in multivariate time series of surveillance counts. Applicability of the pre-
sented methods is illustrated through data from the monitoring database of
the WHO rabies surveillance program (WHO Collaboration Centre for Rabies
Surveillance and Research, 2007).
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2 Prospective surveillance

In this section, statistical methods for univariate and hierarchical disease
surveillance are discussed with a focus on outbreak detection for count data
with seasonality. Broader surveys of outbreak detection methods can be found
in Farrington and Andrews (2003); Sonesson and Bock (2003); Lawson and
Kleinman (2005); Buckeridge et al. (2005).

2.1 Univariate surveillance

For many surveillance problems univariate time series of counts are readily
available. If not some preprocessing is performed, e.g. by aggregating geo-
referenced outbreak data to an appropriate level or by time-wise aggregation
of event time data. We denote the resulting univariate time series by {yt ; t =
1, 2, . . .}. Online outbreak detection can be seen as a classification task: based
on the observed values y1, . . . , yn it is to be decided if there is an aberration at
time n or not. In what follows two classes of methods that address the problem
are described.

2.1.1 Farrington Method

Core of the method by Farrington et al. (1996) is to predict the observed value
yn using a set of reference values taken from the observed values y1, . . . , yn−1.
To handle long term trends and seasonality, only values from a window of size
2w + 1 around time n up to b years back in time are taken. Thus, the set of
reference values consists of recent values with similar conditions as at time n
and can formally be defined as

R(w, b) =

 b⋃
i=1

w⋃
j=−w

yn−i·r+j

 ,
where r is the period of the observations, e.g. for monthly data r is 12. Thus no
observations from the current year are used. Poisson regression with overdis-
persion is then used to model the (2w+1)b reference values, i.e. for yt ∈ R(w, b)

E(yt) = µt, with log µt = α+ βt and Var(yt) = φµt.

Based on the estimated model a one-sided (1 − κ) · 100% prediction interval
for yn can be formed. The classical way to compute such a prediction interval
is based on the normal distribution, however, as the skewness of the Poisson
distribution with mean µ is 1/

√
µ, for low valued µ this is a bad approximation.

Therefore a 2
3
-power transformation is applied to normalize the distribution
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before computing the interval. The resulting back-transformed upper limit of
the prediction interval for yn is then

Un = µ̂n

1 +
2

3
z1−κ ·

√√√√ φ̂µ̂n + Var(µ̂n)

µ̂2
n


3/2

,

where µ̂n = exp(α̂+nβ̂) and z1−κ is the 100(1− κ)% quantile of the standard
normal distribution. Subsequently, if yn > Un an alarm is sounded. To ease
exposition some details of the algorithm have been left out in the above de-
scription; e.g. the linear trend is only included if it is significant at the 5% level
and a second round of estimation is performed with observations weighted by
their inverse residuals. The latter corrects for possible past outbreaks in the
reference values. Furthermore, protection against preposterous alarms is made
by post-processing alarms and only reporting those where enough cases have
been seen.

Big virtue of the Farrington procedure is its simple yet flexible modelling de-
pending on only one user specified parameter κ, which is of great advantage
when applying the method to multiple surveillance time series. One shortcom-
ing is that only a moving window of historical values is taken for estimation
with no values taken from the current year. A simple extension would be to
include seasonal terms into the linear predictor of the Poisson regression

log µt = α+ βt+
S∑

s=1

[
γs sin

(
2π

r
s · t

)
+ δs cos

(
2π

r
s · t

)]
, (1)

where r is a known period (e.g. 12 for monthly data). Reference values could
then consist of historical values or all values within a moving window of b
years. However, sequential estimation becomes more complicated and care-
ful selection of the parameter S is required. Only when a few series, where
performance is vital, are of interest such modelling becomes advantageous.

Another shortcoming is the recomputing of prediction-intervals at every time
instance. As a consequence, sustained shifts become hard to detect as devi-
ations are not accumulated. Performance on such shifts can be improved by
exploiting methods from statistical process control (SPC), which accumulate
information. The cumulative sum (CUSUM) scheme described in the following
section is such a method.

2.1.2 CUSUM likelihood ratio detectors

Statistical process control has its root in the quality control of manufactured
goods, but has since found numerous application in health care (Woodall,
2006) by providing a more formal setting for surveillance methods. In our
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treatment we shall put special emphasis on the count data character of the
time series – a feature which is less typical for SPC methods.

Central in SPC is the online detection of change-points. With n observations
and known change-point τ one assumes the following model:

yt|zt, τ ∼

 fθ0(·|zt) for t = 1, . . . , τ − 1 (in-control)

fθ1(·|zt) for t = τ, τ + 1, . . . (out-of-control)

where zt denotes known covariates at time t and fθ is e.g. the Poisson prob-
ability function with its mean µ being a function of θ and zt. Objective of
online change-point detection is to use the observations y1, . . . , yn to decide
at time n whether a change-point has occurred during 1, . . . , n. One approach
to do this is to use the so called cumulative sum (CUSUM) likelihood ratio
detector (Lai, 1995; Frisén, 2003)

N = min

{
n ≥ 1 : max

1≤τ≤n

[
n∑

t=τ

log

{
fθ1(yt|zt)

fθ0(yt|zt)

}]
≥ c

}
. (2)

For a specific n the above detector computes the log likelihood ratio (LR)
statistic for testing the hypothesis that all observations originate from the
in-control distribution against the alternative that they from change-point τ
on stem from the out-of-control distribution. Maximizing the LR statistic for
each possible change-point 1 ≤ τ ≤ n means finding the maximum likelihood
estimator, τ̂ , for the most likely location of the change-point. If LR(τ̂) is above
a pre-specified threshold c, then there is enough information at time n to say
that a change-point happened at τ̂ . Otherwise, no decision is made and the
monitoring continues at time n+ 1.

Without covariates and pre-specified θ0 and θ1 the above detector can be
written in the well known CUSUM recursive form

l0 = 0, ln = max

(
0, ln−1 + log

{
fθ1(yn)

fθ0(yn)

})
, n ≥ 1 (3)

where the first alarm is given at time N = min{n : ln ≥ c}. This detector
can be shown to be optimal (in some technical sense) for the detection of
a shift from θ0 to θ1. Evaluating the performance of the proposed schemes
is a question about which performance criterion to consider. Typical choices
are location parameters of the run length distribution, e.g. the average run
lengths (ARLs) ARL0 = E(N |τ = ∞), i.e. expected waiting time until the
first false alarm, or ARL1 = E(N |τ = 0), i.e. expected time until detection
of the change, when this chance occurs immediately. Alternatives include the
conditional expected delay E(N − τ |τ,N ≥ τ) or the probability of false
alarm within the first m time points P (N ≤ m|τ = ∞). Frisén (2003) gives
a thorough treatment of the various criteria and available optimality results.
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One can also use the classification framework to discuss performance using
sensitivities, specificities and ROC curves (Kleinmann and Abrams, 2006).

Lucas (1985) covers the CUSUM likelihood ratio method for the Poisson
distribution with constant parameters µ0 = θ0 and µ1 = θ1. In a surveil-
lance context main interest is in detecting upward changes, thus typically
θ1 > θ0. Dividing by an appropriate constant in (3) one obtains for this
upward detection the equivalent form Sn = max(0, Sn−1 + (yn − k)), where
k = (µ1 − µ0)/(log(µ1)− log(µ0)) and S0 = 0. A common way to select µ0 is
to use a period known to be in-control to estimate µ0. In addition, µ1 is the
change, which is to be detected quickly. Note that if the in-control assumption
in the µ0 estimation is violated, e.g. if the training data contain outbreaks, an
incorrect in-control parameter is estimated.

When the in-control mean is time varying due to long term and short term
trends (such as seasonality) matters become more complicated. Two methods
operating with time-varying parameters for count data are the method by
Rossi et al. (1999) and Rogerson and Yamada (2004a). Letting µ0,t be the
time varying in-control mean the first suggests a transformation to normality
by looking at

xt =
yt − 3µ0,t + 2

√
µ0,t · yt

2
√
µ0,t

(4)

and applying a Gaussian CUSUM to these transformed values. However, simu-
lation studies show that in case of low-counts the resulting ARLs are far away
from the anticipated ARLs as computed for the Gaussian CUSUM (Rogerson
and Yamada, 2004a; Höhle and Paul, 2007). This lead Rogerson and Yamada
(2004a) to propose time-varying control parameters of the Poisson CUSUM in
order to obtain a specific in-control ARL0 value of γ. Their CUSUM is

Sn = max(0, Sn−1 + hn(xn − kn)), with kn =
µ1,n − µ0,n

log(µ1,n)− log(µ0,n)
,

and µ1,n being a multiple of standard deviations larger than µ0,n. The factor
hn = c/cn scales the contribution of (xn − kn) at each time point. The thresh-
old cn is determined at each time point as the threshold of a time-constant
Poisson CUSUM with reference value kn having ARL0 equal to γ, which can
be computed e.g. by the algorithm of Hawkins (1992). Finally, c is the thresh-
old of an ordinary Poisson CUSUM with constant in-control mean parameter
µ0, e.g. selected as the mean of the training period observations. An alarm is
given if Sn ≥ c.

As an alternative Höhle and Paul (2007) suggest using (2) directly, which
makes allowance for quite flexible models for µ1,t at the cost of loosing the
recursive computation in (3) and having to compute performance criterion by
Monte-Carlo simulation. Big advantage of the CUSUM methods is their ability
for optimal detection of change-points from µ0,t to µ1,t, however relying on
these models being adequate. Care thus has to be exercised in order to specify

6



m0 = 1

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

......... m2 = l1 + l2 + · · · + ll0
yl0ll0 ,tyl01,ty1l2,ty21,ty1l1,ty11,t

@
@

@

�
�

�

@
@

@

�
�

�

@
@

@

�
�

�

XXXXXXXXXXXX

������������

�
�


�

�
�

�
�

�
�

�
�

�
�

�
�

2

1

0

lvl

yl0,ty2,ty1,t ... m1 = l0

yt

#series

�
�

�
�

Fig. 1. Hierarchical time series structure. Each time series yX,t is formed by aggre-
gating its immediate descendants in the graph, e.g. yt =

∑l0
i=1 yi,t.

a reasonable in-control model such as (1). When monitoring massive amounts
of time series such care is not always possible. Also, for extremely low counts it
can be beneficial to monitor the number of zero count periods before a period
with one or more counts by the geometric distribution (Bourke, 1992).

2.2 Multivariate and hierarchical surveillance

Practical surveillance typically means monitoring multiple time series simulta-
neously, e.g. series for different diseases and serotypes, age groups or distinct
geographical regions. A naive way to perform multivariate monitoring of m
time series {yi,t; i = 1, . . . ,m} is to apply the univariate method of choice
to each time series separately and report all alarms. However, this approach
ignores any correlations between the time series and thus leads to inferior
detection. Multivariate change-point detection methods such as multivariate
CUSUMs take correlations into account, but they are only developed for the
continuous case – Rogerson and Yamada (2004b) investigate one of several
proposals for a multivariate CUSUM in a surveillance context. However, the
more detailed the partition due to serotype, age or region, the rarer the cases.
Continuous approximations are thus unsound, but methods for handling cor-
related multivariate count data time series, e.g. Tourneret et al. (2002), are
still scarce. As a consequence, operating with multiple univariate detectors is
still the pragmatic choice.

One issue also not dealt with in the literature is the important question of
choosing the appropriate level of aggregation for the surveillance. Figure 1
shows a hierarchy of time series resulting from aggregation of three levels, e.g.
spatial aggregation with top level being the total aggregated number of cases
in a country and lower levels representing the series for administrative regions
and districts.

The simple, yet very effective idea is now to monitor all m time series indepen-
dently by univariate methods. To keep in-control alarm rates comparable be-
tween levels one would use higher thresholds at the lower levels. A subsequent
plot showing all generated alarms provides a good overview of aggregation
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Fig. 2. Monthly number of rabies cases in Hesse, Germany.

effects and outbreak sizes.

2.3 Results

As an example of surveillance in veterinary public health, Fig. 2 shows the
1985-2006 time series of monthly incidence of rabies among fox in the federal
state of Hesse, Germany. These data are part of the monitoring database
kept by the Collaboration Centre for Rabies Surveillance and Research (WHO
Collaboration Centre for Rabies Surveillance and Research, 2007).

A drastic decrease in the number of cases is seen as a consequence of the oral
rabies vaccination program started in 1985 using Tübingen baits. However,
several set-backs for the boarder region between Hesse and Bavaria occurred
as mentioned in Müller et al. (2005) and shown in the following analyses.
To illustrate seasonality of the time series we proceed as in Harnos et al.
(2006) and divide the monthly cases by the respective yearly average and
compute monthly means of this detrended time series as shown in Fig. 3.
Strong seasonality of the rabies data can be seen – the increased incidence of
up to 1.5 times the yearly average in spring and autumn corresponds to the
mating season and dispersal of young foxes (Thulke et al., 2000).

Figure 4 shows the result of online surveillance for the Hesse time series,
beginning from January 1998. To obtain the time varying µ0,t values for each
time point t, a seasonal Poisson model as in (1) is fitted to the observed
values from January 1985 up to December 1997. As observations close to t
are considered more informative, a weighted Poisson regression is performed,
where each observation is weighted according to its distance to t in time. This
thusly fitted model is then used to compute the predicted in-control mean for
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Fig. 4. Surveillance of the Hesse data using the CUSUM LR method.

all future yt. Lines show the resulting µ0,t values and the resulting value of the
LR(n) statistic for a 50% increase, i.e. with µ1,t = 3

2
·µ0,t. With a threshold of

c = 4.0 the probability for a false alarm within the monitored 98 timepoints
is calculated to be 0.05 – with this threshold the first outbreak is detected
March 2000. After the alarm the detector is reset by re-estimating the Poisson
model now using values up to March 2000 as historical values. Subsequent
predictions for the in-control mean are then used to continue monitoring from
April 2000 until the next alarm. This procedure continues until the end of
the monitoring period is reached – resulting alarms (triangles) and in-control
mean, µre

0,t, obtained after re-fitting following each alarm, are shown in Fig. 4.

As a second step taking spatial aggregation into account we consider the three
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26 (14+5+7) districts of Hesse.

levels of aggregation arising from the administrative division in Hesse, see
Fig. 5. However, due to an administrative reform data on district level only
available from 1990. Figure 6 shows surveillance of all time series of the hier-
archy beginning from January 1998. To avoid careful tuning, the Farrington
method with w = 2 and b = 4 is used.

One promptly sees that outbreak during 2000 for entire Hesse is due to prob-
lems in the region south – especially district 06435 (Main-Kinzig-Kreis) located
at the border to Bavaria. Investigations showed that there were problems with
synchronising aerial and hand distribution of the oral rabies vaccination in this
and the neighbouring city of Offenbach (06413) (Müller et al., 2005). Figure 7
summarizes the results in a so called alarm plot, which shows a problem in
district 06532 (Lahn-Dill-Kreis), causing alarms for region middle at the turn
of 1999.

3 Retrospective analysis of surveillance data

The focus of prospective surveillance, described in the previous section, is on
outbreak detection. In contrast, retrospective surveillance tries to explain tem-
poral and spatio-temporal patterns in the data through statistical modelling.
Following Held et al. (2005), one possible model approach for the analysis of
multivariate surveillance data is presented.
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Fig. 6. Surveillance results for each of the m = 30 time series having at least one
case in the monitored period. Top-left plot is of all cases in Hesse followed by the
three administrative regions and the districts. For better visualization the y-axis is
truncated at the value 20.

3.1 Multivariate modelling

As in Sect. 2.2, let yi,t, i = 1, . . . ,m, t = 1, . . . , n, denote a multivariate
time series of counts. The main feature of the model proposed by Held et al.
(2005) is the additive decomposition of the incidence into an endemic and
an epidemic component with rates ηi,t and νi,t, respectively. In the simplest
case, the observed counts yi,t in region i at time t are assumed to be Poisson
distributed with mean

µi,t = ηi,t + νi,t .

Endemic incidence is persistent with a stable temporal pattern. The endemic
component νi,t thus may include terms for long-term trends and seasonality
and is basically modelled as in (1). Region-specific intercepts allow for different
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Surveillance using farrington(2,0,4)
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Fig. 7. Alarm plot resulting from the hierarchical surveillance of the m = 1+3+26
time series using the Farrington method. The solid lines divide the series according
to their hierarchy (at bottom is lvl. zero), dotted lines group descendants.

incidence levels in the m regions. All in all, νi,t is specified as

log νi,t = αi + βt+
S∑

s=1

[
γs sin

(
2π

r
s · t
)

+ δs cos

(
2π

r
s · t
)]

.

The epidemic component ηi,t should be able to explain occasional outbreaks
and capture spatio-temporal dependence caused by the spread of the disease
across regions. One possible approach is to let the number of previous counts
in the region and in neighbouring regions enter as autoregressive covariates in
the epidemic component, i.e.

ηi,t = λyi,t−1 + φ
∑
j∼i

yj,t−1

where j ∼ i denotes all regions adjacent to region i.

In many applications the Poisson assumption of equal mean and variance is
not realistic. To adjust for possible overdispersion, Held et al. (2005) suggest
a negative binomial model with additional dispersion parameter ψ > 0, where
the mean remains the same but the variance increases to µi,t + µ2

i,t/ψ.
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3.2 Results

To illustrate the modelling approach of Held et al. (2005) we consider the
monthly number of rabies cases in Hesse and Bavaria. The data are analysed on
two aggregation levels: state level and district level. Data on district level are
not available until 1990, hence we only use data for 1990− 2006. As described
in Sect. 2.3, there is a strong seasonality and the number of cases is decreasing
as a consequence of the vaccination program. Therefore, seasonal terms and a
linear time trend are always included.

Separate univariate analyses of the counts in Hesse and in Bavaria showed that
incidence levels and the slopes of the linear trend differ whereas seasonality
is similar in both federal states. Likelihood-ratio tests suggest to use S = 2
seasonal terms. Furthermore, there is evidence for overdispersion because the
negative binomial models result in a significant increase in terms of maximised
log-likelihood compared to the corresponding Poisson models.

Table 1 shows results for the joint analysis on state level. In all models, S = 2
seasonal terms and a state-specific linear trend are included in the endemic
component. Inclusion of an autoregressive parameter λ leads to a pronounced
increase of the likelihood. The maximum likelihood (ML) estimate of λ is 0.69
(0.05), clearly indicating a temporal dependence after adjustment for seasonal
effects. Inclusion of the autoregressive parameter φ does improve the fit only
slightly and is not required according to the AIC model choice criterion.

On district level, we restrict our attention to 12 districts in the boarder re-
gion between Hesse and Bavaria (nine districts in Hesse and three districts
in Bavaria). Two districts have been defined to be adjacent if they share a
common border. Results for several models are shown in Tab. 2. As above,
we chose the negative binomial model and included a linear trend and S = 1
seasonal terms in the linear predictor, higher terms for seasonality did not
lead to a significant improvement in the likelihood. Again, there is evidence
for temporal dependence. In addition, there exists spatial dependence: the au-
toregressive parameter φ that captures the influence of neighbouring districts
contributes markedly to a better fit. This finding is consistent with the spread
of the disease across districts described in Müller et al. (2005).

4 Discussion

Surveillance in veterinary public health is an important contribution for the
detection and control of diseases in veterinary epidemiology. An important
criterion for selecting the appropriate surveillance method is the number of
time series to monitor. If performance is premium making the cost of tuning
second-rank, the Rogerson and Yamada (2004a) or the direct LR-CUSUM
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Table 1
Summary of ML estimates (standard errors) of different negative binomial models
for the rabies data in Hesse and Bavaria (state level), logL denotes the maximised
log likelihood, p is the number of parameters and AIC = −2 logL+ 2p.

λ̂ML (se) φ̂ML (se) ψ̂ML (se) logL p AIC

- - 1.04 (0.12) -829.1 9 1676.2

0.69 (0.05) - 4.76 (0.96) -702.8 10 1425.6

0.68 (0.05) 0.022 (0.019) 4.87 (0.99) -701.9 11 1425.8

Table 2
Summary of ML estimates (standard errors) of different models for the rabies data in
12 districts in the boarder region of Hesse and Bavaria, logL denotes the maximised
log likelihood, p is the number of parameters and AIC = −2 logL+ 2p.

λ̂ML (se) φ̂ML (se) ψ̂ML (se) logL p AIC

- - 0.22 (0.02) -1359.2 16 2750.5

0.57 (0.05) - 0.82 (0.12) -1167.8 17 2369.7

0.55 (0.05) 0.041 (0.008) 0.91 (0.14) -1146.6 18 2329.3

method from Sect. 2.1.2 should be used. When there is uncertainty about
the correct parameter of the alternative so called generalized likelihood ratio
(GLR) detectors can be used, which estimate the unknown parameter (Höhle
and Paul, 2007).

Multivariate surveillance of count time series is still an area of active research.
Our approach of multiple univariate surveillance ignores correlations between
the series. With an appropriate time series model explaining seasonality the
remaining correlation is often negligible or caused by auto-regression due to
disease transmission. One possibility is thus to let the out-of-control model con-
tain an autoregressive component for transmission within and between units
as suggested in Sect. 3.2.

A retrospective analysis of surveillance data may give clues about temporal
and spatio-temporal patterns of the disease considered. In our example, con-
sidered in Sect. 3.2, we were able to identify a significant spatio-temporal
autoregressive coefficient, which gives evidence of spatio-temporal interaction
of fox rabies. However, the model considered is quite simplistic. In current
work we consider more realistic model approaches for the analysis of spatio-
temporal surveillance data.

All methods covered in this paper are available in surveillance (Höhle, 2008)
– a software package for surveillance methods using the free software environ-
ment for statistical computing and graphics ”R”.
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Held, L., Höhle, M., Hofmann, M., 2005. A statistical framework for the analy-
sis of multivariate infectious disease surveillance data. Statistical Modelling
5, 187–199.

15
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