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Summary. Generalized linear models have become a standard technique in the
statistical modelling toolbox for investigating relationships between variables. The
assumption of homogeneity of regression coefficients over all observations can be
relaxed by incorporating generalized linear models into the finite mixture framework.

The model class consisting of finite mixtures of generalized linear models is pre-
sented. Model identification is discussed given that difficulties might be encountered
due to trivial and generic identifiability problems. These problems have already been
observed for mixtures of distributions, but the extension to mixtures of regression
models introduces additional identifiability problems. Details on model estimation
are given and the application is illustrated on several examples.

Key words: finite mixture models, generalized linear models, unobserved hetero-
geneity

1 Introduction

Finite mixture models have now been used for more than hundred years (New-
comb, 1886; Pearson, 1894). They are a very popular statistical modelling
technique given that they constitute a flexible and easily extensible model
class for (1) approximating general distribution functions in a semi-parametric
way and (2) accounting for unobserved heterogeneity. The number of appli-
cations has tremendously increased in the last decades as model estimation
in a frequentist as well as a Bayesian framework has become feasible with the
nowadays easily available computing power.

The simplest finite mixture models are finite mixtures of distributions
which are used for model-based clustering. In this case the model is given by
a convex combination of a finite number of different distributions where each of
the distributions is referred to as component. More complicated mixtures have
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been developed by inserting different kinds of models for each component. An
obvious extension is to estimate a generalized linear model (GLM, McCullagh
and Nelder, 1989) for each component. Finite mixtures of GLMs allow to relax
the assumption that the regression coefficients and dispersion parameters are
the same for all observations. In contrast to mixed effects models, where it
is assumed that the distribution of the parameters over the observations is
known, finite mixture models do not require to specify this distribution a-
priori but allow to approximate it in a data-driven way.

In a regression setting unobserved heterogeneity for example occurs if im-
portant covariates have been omitted in the data collection and hence their
influence is not accounted for in the data analysis. In addition in some areas
of application the modelling aim is to find groups of observations with similar
regression coefficients. In market segmentation (Wedel and Kamakura, 2001)
one kind of application among others of finite mixtures of GLMs aims for
example at determining groups of consumers with similar price elasticities in
order to develop an optimal pricing policy for a market segment.

Other areas of application are biology or medicine, see Aitkin (1999); Foll-
mann and Lambert (1989); Wang et al (1996); Wang and Puterman (1998).
An example for a biological application is illustrated by the “Aphids” data set
in Boiteau et al (1998). The data contains the results of 51 independent exper-
iments in which varying numbers of aphids were released in a flight chamber
containing 12 infected and 69 healthy tobacco plants. After 24 hours, the flight
chamber was fumigated to kill the aphids, and the previously healthy plants
were moved to a greenhouse and monitored to detect symptoms of infection.
The number of plants displaying such symptoms was recorded. The relation-
ship between the proportion of infected plants given the number of released
aphids is depicted in Figure 1.

Clearly the proportion of infected plants in dependence of the number of
released aphids does not cluster around a single regression line, but around
two different regression lines. For one regression line no infection takes place
while for the other the proportion of infected plants increases with the number
of aphids. Fitting a finite mixture of binomial logit models allows to determine
the expected number of infected plants given the number of released aphids
for each of the components and the proportion of times where no infection
takes place.

In Section 2 the finite mixture model of GLMs is specified starting with
the standard GLM formulation. The general mixture model class is presented
and several special cases which are included in this model class are discussed.
In Section 3 the identifiability of finite mixtures of GLMs is analyzed and
sufficient conditions to guarantee “generic” identifiability are given. As addi-
tional problems to the case of finite mixtures of distributions can occur in
the regression setting, model identification has to be again investigated and
results obtained for mixtures of distributions can not be directly transferred
without further consideration. After an outline of model estimation using the
EM algorithm and a brief overview on Bayesian methods in Section 4 the
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Fig. 1. “Aphids” data set.

application of the model class is illustrated in a cluster-wise regression setting
as well as in a situation where overdispersion in a Poisson standard GLM is
observed and a random intercept model is fitted to account for this overdis-
persion. An outlook on several possible extensions is given in the last section.
All computations and graphics in this paper have been done using package
flexmix (Leisch, 2004b; Grün and Leisch, 2006, 2007) in R, an environment
for statistical computing and graphics (R Development Core Team, 2007).

2 Model specification

In the standard linear model the dependent variable y is assumed to follow
a Gaussian distribution where the mean value is determined through a linear
relationship given the covariates x:

E[y|x] = x′β,

where β are the regression coefficients. This signifies that y|x ∼ N(x′β, σ2).
The assumption that the dependent variable follows a Gaussian distribu-

tion is relaxed in the generalized linear model framework. The distribution of
the dependent variable is assumed to be from the exponential family of dis-
tributions (e.g. Gaussian, binomial, Poisson or gamma). This allows to take
certain data characteristics into account such as that the dependent variable
y is for example a counting variable with values in N which is then in general
assumed to follow a Poisson distribution.
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The density of a distribution from the exponential family is given by

f(y|θ, φ) = exp
{

yθ − b(θ)
a(φ) + c(y, θ)

}
for some specific functions a(·), b(·) and c(·). For the Gaussian distribution
N(µ, σ2) with mean µ and variance σ2 and the assumption that θ = µ and
φ = σ2 these functions are for example given by

a(φ) = φ, b(θ) =
θ2

2
, c(y, φ) = −1

2

{
y2

φ
+ log(2πφ)

}
.

The relationship between the linear predictor η and the expected value µ
of the dependent variable y is modelled via a link function

η = g (E[y|x]) = x′β,

where η is the linear predictor and g(·) the link function. Different link func-
tions are possible. A special link function is the canonical link which is given
by

η = x′β = θ.

For the Gaussian distribution the identity function is the canonical link, for
the Poisson the log function, for the binomial the logit function and for the
gamma distribution the reciprocal function.

The GLM framework is embedded in the finite mixture framework by
inserting GLMs into the components. The resulting models are also referred to
as GLIMMIX models (Wedel and Kamakura, 2001). A finite mixture density
of GLMs with K components is given by

h(y|x,Θ) =
K∑

k=1

πkfk(y|x, θk)

where Θ denotes the vector of all parameters for the mixture density h(). The
dependent variable is y and the independent variables are x. fk is the com-
ponent specific density function which is assumed to be univariate and from
the exponential family of distributions. The component specific parameters
are given by θk = (β′k, φk) where βk are the regression coefficients and φk is
the dispersion parameter. The mean of each component is given by

µk(x) = g−1
k (x′βk),

where gk() is the component specific link function.
For the component weights πk it holds

K∑
k=1

πk = 1 and πk > 0, ∀k. (1)
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Several special cases and extensions of this model class exist. Often it is
assumed that the component specific densities are from the same parametric
family for each component, i.e. fk ≡ f for notational simplicity, and that the
link function is also the same for all components (gk ≡ g). In a cluster-wise
regression setting this will be an obvious model choice as no a-priori knowledge
about differences in distributional families of the components is available.
Another popular extension is to have a so-called concomitant variable model
for the prior class probaibilities, such that the πi also depend on a set of
explanatory variables (e.g., using a multinomial logit model).

A special case where different component specific distributions are used
is a model where only a single component is specified to follow a different
distribution in order to allow this component to capture outlying observations
(Dasgupta and Raftery, 1998). This approach is similar to the specification
of zero-inflated models (Böhning et al, 1999). Even though the component
specific densities are in general assumed to be from the same parametric family
(e.g. Poisson or binomial), the parameters are fixed a-priori for one component
such that this component absorbs all excess zeros in the zero-inflated model.

In order to decrease the number of parameters equality constraints can be
imposed over the components for a subset of the component specific parame-
ters θk. A special case are random intercept models where only the intercept
follows a finite mixture distribution while all other regression coefficients are
constant over the components, see Follmann and Lambert (1989). These mod-
els are often used if overdispersion is encountered in Poisson or binomial GLMs
in order to determine a model which describes the data in an appropriate way.

3 Identification

Statistical models are in general represented by parameter vectors. For fi-
nite mixture models the parameter vector Θ which consists of the component
weights and the component specific parameters determines a mixture distri-
bution, i.e. there is a mapping from the parameter space to the model space.
For identifiability this mapping has to be injective, i.e. for each model in the
model space there is a unique parameter vector in the parameter space which
is mapped to the model. Lack of identifiability can be a problem for model
estimation or if parameters are interpreted.

In the following let Ω denote the space of admissible parameters for K-
component mixtures where the following conditions are fulfilled

• πk > 0 ∀k = 1, . . . ,K, and
• ∀k, l ∈ {1, . . . ,K}: k 6= l ⇒ θk 6= θl.

These two conditions prevent overfitting and identifiability problems which
occur due to empty components where θk cannot be uniquely determined and
due to components with equal component parameter vectors where different
values for πk are possible.
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Let AK = AK(f,Ω) be the set of all finite mixture models with K com-
ponents, component specific density function f and mixture densities of form
h(·|·, Θ), Θ ∈ Ω. Each parameter vector Θ ∈ Ω corresponds to one model
a ∈ AK , but each model a has at least K! parameterizations Θ due to all pos-
sible permutations of the components, also known as label switching (Redner
and Walker, 1984).

AK induces a system of equivalence classes Ξ on Ω where two elements of
Ω are in the same equivalence class if they correspond to the same model a:

Θ, Θ̃ ∈ Ξ ⇔ h(·|·, Θ) ≡ h(·|·, Θ̃).

The usual definition of model identifiability is that either all equivalence
classes contain only one element (which is trivially not true for mixture mod-
els), or that at least a unique representative for each equivalence class can be
selected.

Let ident(Ω) ⊂ Ω be the subset of parameterizations which contain only
one permutation of each possible set of component parameters. ident(Ω) can
be obtained from Ω by imposing an ordering constraint on the components
with respect to a certain parameter (or a combination of several parameters).
We refer to any identifiability problems which are present for ident(Ω) as
generic (Frühwirth-Schnatter, 2006).

3.1 Generic identifiability

Generic identifiability problems have already been analyzed for finite mixtures
of distributions by Titterington et al (1985). In nearly all cases only mixtures
where the component distribution is from the same distributional family have
been considered. General results for certain kinds of distribution as well as
specific results for a given component specific distribution function have been
derived. Generic identifiability is guaranteed for important continuous distri-
butions such as the Gaussian, gamma and Poisson distribution. A special case
are finite mixtures of binomial distributions which are only identifiable if the
number of components is limited. For the model class of finite mixtures of
binomial distributions Bi(π, T ) with success probability π and repetition pa-
rameter T a necessary and sufficient condition for identifiability is T ≥ 2K−1.

The analysis of identifiability of mixtures of Gaussian regression models
revealed that requiring a covariate matrix of full rank – as postulated previ-
ously for example by Wang and Puterman (1998) – is not sufficient (Hennig,
2000). Contrarily, it is necessary to check a coverage condition in order to
ensure identifiability. With respect to generic identifiability of finite mixtures
of regression models three influencing factors can therefore be distinguished:

• component distribution f ,
• covariate matrix and
• repeated observations/labelled observations.
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Repeated observations where the class membership is fixed are necessary for
mixtures of binomial distributions to be identifiable. In a regression setting
repetitions over different covariate points can help in making a mixture iden-
tifiable as it changes the set of feasible hyperplanes for the coverage condition.
Labels for some observations indicating that they belong to the same compo-
nent have the same influence.

In order to present a theorem on sufficient conditions for identifiability of
finite mixtures of GLMs a data representation is necessary which takes re-
peated observations of the same individual where the component membership
is fixed into account. The observations for an individual t are combined and
given by:

(yt, xt) = (yi, xi)i∈It
,

where It contains the set of indices corresponding to the observations of indi-
vidual t. In the following X and Y denote the matrix of all x and y observations
of all N individuals.

Theorem 1. The model defined by

h(Y |X,Θ) =
N∏

t=1

[ K∑
k=1

πk

∏
i∈It

f(yi|µk
i , φk)

]
and

g−1
(
µk

i

)
= x′iβk

is identifiable if the following conditions are fulfilled:

1. (a) ∃Ĩ 6= ∅: Ĩ ⊆ ⋃N
t=1 It: The mixture of distributions given by

K∑
k=1

πkf(yi|µk
i , φk)

is identifiable ∀i ∈ Ĩ.
(b) q∗ > K with

q∗ := min
{

q : ∀i∗ ∈ Ĩ : ∃Hj ∈ {H1, . . . ,Hq} :

{xi : i ∈ It(i∗) ∩ Ĩ} ⊆ Hj ∧Hj ∈ HU

}
where HU is the set of H(α) := {x ∈ RU : α′x = 0} with α 6= 0.

2. The matrix X has full column rank.
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The proof is straight-forward given the previous results for finite mixtures
of standard linear regression models by Hennig (2000) and finite mixtures
of GLMs and multinomial logit models with varying and fixed effects in the
regression coefficients by Grün (2006); Grün and Leisch (2007).

For Condition (1a) the generic identifiability of finite mixtures with the
given component specific distribution is essential. If the component spe-
cific distribution is either Gaussian, Poisson or gamma this condition is
no restriction as mixtures of these distributions are generically identifiable,
i.e. Ĩ =

⋃N
t=1 It. In the case of the binomial distribution the repetition param-

eter has to be checked for each observation in order to determine if it can be
included in Ĩ. Condition (1b) indicates that for each individual t there has to
be one of the q hyperplanes through the origin Hj which covers all identifi-
able observations of this individual. The rank condition (2) ensures that the
regression coefficients can be uniquely determined given the linear predictor.

These conditions indicate that identifiability problems can especially occur
if the covariate matrix contains categorical variables. We refer to identifiability
problems due to the violation of the coverage condition as

Intra-component label switching: If the labels are fixed in one covariate point
according to some ordering constraint, then labels may switch in other
covariate points for different parameterizations of the model.

For mixtures where the component distributions are identifiable this means
that the component weights and possible dispersion parameters are unique,
but the regression coefficients vary because they depend on the combination
of the components between the covariate points. This identifiability problem
is also of concern for prediction, because given the class membership the pre-
dicted value for new data depends on the chosen solution.

Unidentified mixture models with several isolated non-trivial (global)
modes in the likelihood are to some extent more of a theoretical problem,
because, e.g., minimal changes of the component weights πk often make the
model identified by breaking symmetry. However, models“close” to an uniden-
tified model will have multiple local modes.

The following example presents a simple mixture of regression models with
intra-component label switching. The model is unidentified (with two non-
trivial modes) only if both components have exactly the same probability.

Example 1. Assume we have a mixture of standard linear regression models
with one measurement per object and a single categorical regressor with two
levels. The usual design matrix for a model with intercept uses the two covari-
ate points x1 = (1, 0)′ and x2 = (1, 1)′. Furthermore, let the mixture consist
of two components with equal component weights. The mixture regression is
given by

h(y|x,Θ) =
1
2
fN (µ1(x), 0.1) +

1
2
fN (y|µ2(x), 0.1)
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Fig. 2. Balanced sample from the artificial example with the two theoretical so-
lutions. The solid lines correspond to solution 1 and the dashed lines to solution
2.

where µk(x) = x′βk and fN (y|µ, σ2) is the normal distribution with mean µ
and variance σ2.

Now let µ1(x1) = 1, µ2(x1) = 2, µ1(x2) = −1 and µ2(x2) = 4. As Gaussian
mixture distributions are generically identifiable the means, variances and
component weights are uniquely determined in each covariate point given the
mixture distribution. However, as the coverage condition is not fulfilled, the
two possible solutions for β are:

Solution 1: β
(1)
1 = (2, 2)′, β

(1)
2 = (1,−2)′

Solution 2: β
(2)
1 = (2,−3)′, β

(2)
2 = (1, 3)′

In Figure 2 a balanced sample with 50 observations in each covariate point is
plotted together with the two solutions for combining x1 and x2.

This mixture model would be identifiable if either

1. three different covariate points were available, or
2. observations for both covariate points for the same object were available,

or
3. the component weights were unequal, e.g. π1 = 0.6.

Condition 1 is not an option, for instance, for a single 2-level categorical
regressor. Condition 2 is not possible if the categorical regressor cannot change
for repeated observations of the same subject like, for instance, the gender
of a person. However, when developing a suitable measurement design, the
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possibility of these problems to occur should be considered in order to develop
a suitable design matrix.

The identifiability conditions given in Theorem 1 have the drawback that
they are only sufficient conditions for a certain model class. The conditions can
therefore only indicate if the model class contains at least one single model
which is not identifiable. In addition they are hard to verify in practice as
it is an NP hard problem (Hennig, 2000). In general it will be of interest if
a fitted model suffers from identifiability problems. This means that it has
to be checked if there exist several modes of the likelihood in the parameter
space ident(Ω) given data sets sampled from the fitted mixture model. In a
frequentist estimation setting bootstrap methods can be used to investigate
potential identifiability problems of a fitted finite mixture model, see Grün
and Leisch (2004, 2007).

4 Estimation

Finite mixture models can be either estimated within a frequentist frame-
work, within a Bayesian framework, with moment estimators (Lindsay, 1989)
or by applying graphical tools (Titterington et al, 1985). An important char-
acteristic of the estimation method is if the number of components has to be
fixed a-priori or is simultaneously estimated. In the following maximum like-
lihood estimation with the EM algorithm is described and a short overview
on Bayesian estimation using MCMC samplers is given.

4.1 Frequentist maximum likelihood with the EM algorithm

There exist different methods for frequentist estimation of finite mixture mod-
els. The most popular is the EM algorithm (Dempster et al, 1977; McLachlan
and Krishnan, 1997) which aims at determining the ML estimator for a finite
mixture model with a given number of components K. The EM algorithm has
the advantage that it provides a general framework for estimating different
kinds of mixture models as often only the M-step has to be modified if different
component specific models are used. In addition, already available tools for
weighted maximum likelihood estimation can be applied. Nevertheless, there
are also some known disadvantages such as slow convergence or that one might
get stuck in local optima, i.e. it is in general difficult to ensure that the root
corresponding to the maximum likelihood estimator was detected.

The EM algorithm uses a data augmentation scheme and is a general
estimation method in the presence of missing data. In the case of finite mixture
models the missing data is the latent variable Dt ∈ {0, 1}K for each individual
t which indicates the component membership. This means that Dtk equals 1
if individual t is from component k and 0 otherwise. The data is therefore
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augmented with estimates of the component memberships, i.e. the estimated
a-posteriori probabilities p̂tk.

For simplicity of notation it is in the following assumed that the com-
ponent density function f(·|·) takes all observations from each individual as
arguments. For a sample of N individuals {(y1, x1), . . . , (yN , xN )} the EM-
algorithm is given by:

E-step: Given the current parameter estimates Θ(j) in the j-th iteration, re-
place the missing data Dtk by the estimated a-posteriori probabilities

p̂tk =
π

(j)
k f(yt|xt, θ

(j)
k )

K∑
l=1

π
(j)
l f(yt|xt, θ

(j)
l )

.

M-step: Given the estimates for the a-posteriori probabilities p̂tk (which are
functions of Θ(j)), obtain new estimates Θ(j+1) of the parameters by max-
imizing

Q(Θ(j+1)|Θ(j)) = Q1(θ(j+1)|Θ(j)) + Q2(π(j+1)|Θ(j)),

under the restriction for the component weights given in Equation (1) and
where

Q1(θ(j+1)|Θ(j)) =
N∑

t=1

K∑
k=1

p̂tk log(f(yt|xt, θ
(j+1)
k ))

and

Q2(π(j+1)|Θ(j)) =
N∑

t=1

K∑
k=1

p̂tk log(π(j+1)
k ).

Q1 and Q2 can be maximized separately. The maximization of Q1 gives
new estimates θ(j+1) and the maximization of Q2 gives (π(j+1)

k )k=1,...,K .
Q1 is maximized using weighted ML estimation of GLMs and the param-
eter estimates π

(j+1)
k which maximize Q2 are given by

π
(j+1)
k =

1
N

N∑
t=1

p̂tk ∀k = 1, . . . ,K.

Before each M-step the average component sizes (over the given data
points) are checked and components which are smaller than a given (rela-
tively) small size are omitted in order to avoid too small components where
fitting problems might arise. This strategy has also been recommended for
the a variant of the EM algorithm, the stochastic EM (SEM; Celeux and
Diebolt, 1988), in order to determine the number of components. For the
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SEM algorithm an additional step between the E- and M-step is performed
where estimates for Dkt are determined by drawing a sample from the multi-
nomial distribution implied by the posteriors for each observations and these
estimates are then used as weights in the M-step. If the algorithm is started
with too many components they will be omitted during the estimation pro-
cess. The algorithm is stopped if the relative change in the likelihood is smaller
than a pre-specified ǫ or the maximum number of iterations is reached.

It has been shown that the values of the likelihood are monotonically in-
creased during the EM algorithm. This ensures the convergence of the EM
algorithm if the likelihood is bounded. Unboundedness of the likelihood, how-
ever, might occur at the edge of the parameter space, e.g., if the variance of
one component tends to zero for mixtures of Gaussian distributions. As even
in the case of boundedness only the detection of a local maximum can be
guaranteed, it is in general recommended to repeat the EM algorithm with
different initializations and to choose as final solution the one with the maxi-
mum likelihood. Different initialization strategies for the EM algorithm have
been proposed, as its convergence to the optimal solution depends on the
initialization.

4.2 Bayesian MCMC sampling

Estimation within a Bayesian framework has become popular with the advent
of MCMC methods, an overview on the different sampling approaches is given
in Frühwirth-Schnatter (2006, chap. 3). Gibbs sampling is the most commonly
used approach and it is done by augmenting the data with the unobservable
variable of class membership similar to the EM algorithm. A drawback of the
Gibbs sampler is that it might fail to escape the attraction area of one mode
and therefore does not explore the entire parameter space. It was therefore
suggested to use Metropolis-Hastings sampling schemes. Alternatively, the
permutation sampler may be used.

5 Application

Three different applications of finite mixtures of regressions are presented. As
the main purpose is to illustrate the application of the model class data sets
are chosen which can be easily visualized in order to facilitate the understand-
ing of the fitted models. In two cases (“Aphids” and “Movies” data set) the
presence of latent groups is assumed and clustering the observations is one
of the modelling aim. The difference between the two application however is
that for the “Aphids” data set the presence of two separate groups with dif-
ferent regression coefficients can already be visually distinguished while for
the “Movies” data set no separate groups can be observed even though con-
siderable heterogeneity in the regression coefficients is present between the
observations. If a mixed-effects model was fitted to the “Movies” data set this
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heterogeneity would be modelled through an a-priori specified distribution.
The advantage of finite mixtures in this application are that (1) it is not re-
quired to specify the distribution for modelling heterogeneity in regression
coefficients a-priori and (2) the components allow to easily inspect the range
of heterogeneity present in the data. For the third data set (“Fabric faults”) a
random intercept model is assumed in order to account for overdispersion in
the data.

5.1 Infection of tobacco plants

A finite mixture of binomial logit models is fitted to the “Aphids” data set
from Section 1. The model is given by

h(n.inf|n.aphids, Θ) =
K∑

k=1

πkfBi(n.inf|πk(n.aphids), 69),

where fBi(·|π, T ) denotes the binomial distribution with success probability π
and repetition parameter T which is in this application given by 69. n.inf is
the number of infected plants and n.aphids the number of released aphids.
The component specific mean value is given by

logit(πk(n.aphids)) = βk1 + n.aphidsβk2.

Figure 1 suggests that the number of components K = 2. In addition to
the visual inspection the number of components can be selected by fitting
mixtures with different number of components to the data and determine
the model with the minimum BIC. The BIC values for the mixtures with
components 1 to 5 are 424.04, 274.92, 284.18, 295.5 and 305.83 where each of
the mixtures is the best result of 5 different runs with random initialization
to avoid local optima. This criterion hence confirms the results of the visual
inspection. The fitted regression lines for each of the components together
with the data are given in Figure 3. The relative sizes πk of the 2 components
are 0.54 and 0.46.

As the repetition parameter T is equal to 69 the mixtures of binomial
distributions are identifiable in each observation point for mixtures with up
to 35 components as induced by the constraint T ≥ 2K − 1. Given that
observations are available for a range of different n.aphids values generic
identifiability is guaranteed for the fitted mixtures with up to 5 components.

The suitability of the fitted mixture to induce a clustering of the data
can be assessed by investigating the a-posteriori probabilities. If for each ob-
servation the maximum a-posteriori probability over all components is high
the observations can be with a high confidence assigned to one of the com-
ponents and hence a partitioning of the observations into K groups can be
reasonably done using the fitted mixture model. For the “Aphids”data set the
maximum a-posteriori probabilities have a mean of 0.98 with a standard de-
viation of 0.05 and a median of 1.00. This indicates that for each observation
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Fig. 3. “Aphids” data set with fitted regression lines for each component. The
observations are plotted in different symbols according to the assignment to the
component with the maximum a-posteriori probability.

(n.inf, n.aphids) it can be with high confidence decided to which component
it belongs. This also means that the two components are strongly separated
and in fact constitute two different regimes.

From a practitioner’s point of view further investigations are important to
identify reasons why and when the two different regimes emerge. One possi-
ble explanation is that some batches of aphids consisted of insects that had
passed their “maiden” phase. Low or zero levels of transmission of the virus
are observed in this case because after the maiden phase the aphids tend to
settle on the first plant they encounter.

5.2 Market share patterns of movies

Finite mixtures of Gaussian regression models have been previously fitted
to market share data of movies at the box office and theatres in the USA
to investigate different patterns of decay (Jedidi et al, 1998). The box of-
fice and theaters data for 407 movies playing between May 5, 2000 and
December 7, 2001 were collected from a popular website of movie records
(www.the-number.com), see Krider et al (2005). The gross box-office tak-
ings for the 40 most popular movies for each weekend in the time period
are recorded and transformed into market shares to account for the difference
in volume between weekends. The market share is used as dependent variable
and the number of weeks since release as covariate. For the data analysis the
data is restricted to the first 20 weeks after release of a movie. This reduces
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the number of movies in the data set to 394. On average 8 observations are
available for each movie which gives a total of 3149 observations.

The data is given in Figure 4. Each line represents a movie and its devel-
opment of market share over the weeks after release. Most of the movies have
a decline in market share over the weeks, but there also some films where an
increase in market share over the first weekends can be observed. Due to this
opposite trends and also due to the differences in decay for the movies loosing
market shares the overlap in market shares between the movies is high which
renders it impossible to discern different patterns of decay.
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0 5 10 15 20

Fig. 4. Market share patterns of the “Movies” data set.

As most movies exhibit an exponential decay in market share the following
mixture model is used to describe the data

h(share|week, Θ) =
K∑

k=1

πkfN (log(share)|µk(week), σ2
k),

with the mean given by

µk = β1k + weekβ2k.

As it is assumed that the component membership is fixed over the weeks for
the movies, the information which observations are from the same movie is
included in the estimation process.

Using an exponential decay model signifies that movies with a rise in mar-
ket share at the beginning and a decline afterwards can only be approximated
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through a straight line which is still reasonable considering the small recorded
time interval of 20 weeks. In addition we restrict the feasible mixtures to those
where all component weights are at least 0.1, i.e. each component represents
39 movies or more.

Finite mixtures with 1 to 10 components are fitted and for each number of
components the EM algorithm is repeated 10 times with random initialization
in order to insure that the global optimum is detected. The BIC criterion is
again used to determine the optimal number of components. The BIC suggests
5 components. However, it has to be noted that even though mixtures with
up to 10 components are initially specified the EM algorithm did not converge
to a mixture with more than 5 components as components with a weight of
less than 0.1 are omitted during the run of the algorithm.

The parameter estimates are given in Table 1. Ck indicates that the param-
eters in this column belong to the kth component. The components are sorted
in decreasing order with respect to parameter β1k. The predicted mean values
of market share for each component are depicted in Figure 5. The numbers
indicate the component to which the line corresponds. For ease of comparison
of the fitted parameters between the components they are plotted together
with approximate 95% confidence intervals in Figure 6.

Parameter C1 C2 C3 C4 C5

π 0.15 0.17 0.23 0.13 0.32
β1k -1.99 -2.39 -2.95 -4.73 -6.49
β2k -0.29 -0.42 -0.61 -0.03 -0.01
σ 0.80 0.66 0.74 1.21 0.62

Table 1. Estimated parameters for the mixture with 5 components fitted to the
“Movies” data set.

Comparing the intercepts given by β1k indicates that there are three com-
ponents with higher market shares at the release weekend. Components 1, 2,
and 3 start with market shares of around 8.7%. The other two components
achieve only market shares of 0.9% and 0.2% respectively on their release
weekend. With respect to β2k, which indicates the long-term success of a
movie, component 3 has the strongest decline over the weeks indicating that
in contrast to component 1 and 2 it is not able to stay on a high market share
level for a longer time period. Component 1 seems to consist of the successful
films which are also highly promoted leading to high market shares at the
beginning and a slow decay over the weeks. Component 4 and 5 both have
insignificant decay coefficients which indicates that they stay at about the
same low level of market share during the first 20 weeks after release.

The a-posteriori probabilities are determined for each movie and used to
assign them to the different components. Most of the films can be with high
confidence assigned to one of the components. The mean of the maximum
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Fig. 5. Mean market share patterns of the finite mixture fitted to the “Movies” data
set.
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Fig. 6. Fitted regression coefficients and their approximate 95% confidence intervals
for the “Movies” data set.

a-posteriori probabilities is 0.97 with a standard deviation of 0.08 and the
median is 1.00. Rootograms of the posteriors of each component are given in
Figure 7 (Leisch, 2004a). A rootogram is a modified version of a histogram
where the square roots of the frequencies instead of the frequencies are used as
heights for each bar. Please note that posteriors of less than 10−4 are omitted
in order to ensure that the bar at zero does not dominate the plot.

The overlap of the components can be investigated by plotting the pos-
teriors which correspond to observations assigned to a given component in a
different color. If the posteriors for component 5 are highlighted it can be ob-
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Fig. 7. Rootograms of the a-posteriori probabilities of the fitted mixture to the
“Movies” data set. The posteriors of observations which are assigned to component
5 are shaded in dark grey.

served that the overlap with component 1 which consists of the most successful
films is surprisingly high.

The proportions of movies assigned to each component using the maximum
a-posteriori probabilities are 0.34, 0.16, 0.11, 0.23 and 0.15. The quality of the
partition of the data achieved by using the fitted finite mixture model can be
investigated in Figure 8 where the market share patterns of the are plotted in
different panels for each cluster.

5.3 Fabric faults

The “Fabric faults” data set consists of 32 observations of number of faults in
rolls of fabric of different length (Aitkin, 1996). The dependent variable is the
number of faults (n.fault) and the covariate is the length of role in meters
(length). The data is given in Figure 9.

As the dependent variable is a counting variable in a first step a standard
GLM with Poisson distribution is fitted to the data where the logarithm of
the lengths is used as independent variable. The fitted regression line is given
in the left panel in Figure 10. An analysis of the model fit indicates that
substantial overdispersion is present with a residual deviance of 64.54 on 30
degrees of freedom. To account for this overdispersion a random intercept
model is fitted which is given by
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Fig. 8. Clustered market share patterns of the “Movies” data set.
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Fig. 9. “Fabric faults” data set.

h(n.fault|length, Θ) =
K∑

k=1

πkfPoi(n.fault|λk(length)).
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where fPoi(·|λ) denotes the Poisson distribution with mean λ. The mean λk

is in the random intercept model given by

log(λk) = β1k + log(length)β2.

Please note that the coefficient of the covariate does not have an index k which
means that it is constant over the components.

Again the optimal number of components is selected using the BIC cri-
terion after fitting the model with the EM algorithm for different number of
components ranging from 1 to 5 and 5 repeated fittings with random initializa-
tion and the number of components fixed. The BIC values are 194.77, 186.53,
193.46, 200.39 and 207.32 and consequently the mixture with 2 components is
selected. The resulting regression lines for each of the components separately
are the dashed lines in the right panel of Figure 10. The full line represents the
fitted regression line of the random intercept model to the complete data set.
The plotting symbols of the observations in the right panel are according to
an assignment of the observations to the two components given the maximum
a-posteriori probabilities.
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Fig. 10. Fitted regression lines to the “Fabric faults”data set for the standard GLM
and a random intercept model with 2 components.

6 Conclusion and outlook

Finite mixtures of GLMs are an important statistical modelling technique
which is an obvious extension of standard GLMs. They relax the assumption
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of homogeneity of parameters, but do not require to a-priori specify and fix the
distribution which accounts for the heterogeneity in parameters as in mixed-
effects models. In addition this flexible model class contains important special
cases such as zero-inflated or random intercepts models.

The model class of finite mixtures of GLMs can be easily specified within
the finite mixture model framework and the modification of existing estima-
tion methods is often straight-forward in order to be able to fit the models.
For the EM algorithm it is only necessary to adapt the M-step by determin-
ing the weighted ML estimator for the component specific model. Different
problems in model fitting and diagnostics than in standard mixtures of distri-
butions however might be encountered due to trivial and generic identifiability
problems.

Further extensions of finite mixtures are possible for the regression case. In-
stead of using GLMs as component specific models generalized additive models
can be used which allow to relax the assumption that the functional relation-
ship between covariates and dependent variable is a-priori known. Another
possibility is to relax the assumption of homogeneity within the components
and fit a mixed-effects model in each component.

In the future model identification and diagnostics need further investi-
gation in the regression case for finite mixtures. The performance of newly
proposed methods such as a new model selection criterion for mixtures of re-
gression models (Naik et al, 2007) needs for example to be validated in real
applications on different empirical data sets. In addition new visualization
techniques which enable the researcher to easily explore the characteristics of
a fitted model and compare competing models would be a valuable enhance-
ment of the finite mixture modelling toolbox.

Acknowledgement. This research was supported by the Austrian Science Foundation
(FWF) under grant P17382.

References

Aitkin M (1996) A general maximum likelihood analysis of overdispersion in
generalized linear models. Statistics and Computing 6:251–262

Aitkin M (1999) Meta-analysis by random effect modelling in generalized lin-
ear models. Statistics in Medicine 18(17–18):2343–2351
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