
Friedrich Leisch

R behind the scenes:
Using S the (un)usual way

Technical Report Number 012, 2007
Department of Statistics
University of Munich

http://www.stat.uni-muenchen.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12163037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/

R behind the scenes: Using S the (un)usual way

Friedrich Leisch
University of Munich, Department of Statistics
Ludwigstrasse 33
80539 Munich, Germany
E-mail: Friedrich.Leisch@stat.uni-muenchen.de

This is a preprint of an article published in:
Proceedings of the 56th Session of the International Statistical Institute, IPM36, Lisbon,
Portugal, 2007.

1 Introduction

Most users know R (R Development Core Team, 2007a) as a statistical computing en-
vironment presenting them a prompt or minimalistic GUI for data analysis. The user
enters data and commands, and R responds with figures, tables, fitted models, etc.. A
graphical representation of this beginner’s view of R is shown on the left side of Figure 1.
However, as every novice realizes soon (and sometimes not without pain), behind the
prompt R is first of all an interpreter for a programming language named S. The origin
of the language was the wish for interactive access to a set of Fortran data analysis
subroutines at Bell Labs (Becker, 1994), which gradually evolved into the full-featured
object-oriented language we know today as S version 4 (Chambers, 1996). “Nothing is
more important for the success of statistical software than enabling the transition from
user to programmer, and on to gradually more ambitious software design” (Chambers,
2000).

As a user makes progress in mastering R, he or she will soon realize that R cannot
only read data, but also write data, and that behind the S language there is code written
in Fortran or C to do the number crunching, visualized on the middle in Figure 1. Data
written out is not limited to mere copies of the date previously read in: R possesses a
number of string processing capabilities like regular expression handling, it can aggre-
gate and reshape data, perform join operations on multiple data sets, and much more.
Section 3 shows an application of using R as a text processor.

Another important aspect of the S language is that its origin – a set of macros
that could be used as a glue for independent software routines written in programming
languages like C or Fortran – is still a very good reason to use it. Many bits and pieces
of R are written in compiled languages. One reason is speed, number crunching in C can
be orders of magnitude faster than number crunching in S. Another important reason is
that R tries not to reinvent the wheel wherever possible. The statistical community has
developed a huge body of numerical routines over the last decades, ranging from distribu-
tion functions and random number generators to parameter estimation for complicated
models.

R provides access to these routines within a unified environment. The base distri-

1

Tables Figures

Data

Tables Figures

Data C, Fortran

Tables Figures

Data C, Fortran

Java Perl ...

GUI ... Spreadsheet

S
O

A
P

H
T

T
P

S
Q

L

S
w

eave
connections

...

Figure 1: A beginner’s view of R (left), a beginning developer’s view of R (middle), and
a full view of R (right).

bution ships many numerical routines which are copies (or based on copies of) well-tested
and published algorithms. Of course, permission by the respective copyright owners is
important here, see the file doc/COPYRIGHTS in the R sources for details. To give just
one example, quantiles of the normal distribution are based on algorithms AS 111 and
AS 241 (Beasley and Springer, 1977; Wichura, 1988). Because R can be easily extended
using R packages (R Development Core Team, 2007b), it nowadays forms not only the
glue between a set of independent software routines. It acts as a broker of methodol-
ogy in computational statistics, making both “old classics” and “new state-of-the-art”
available to everyone at a single prompt and within a single programming language.

The remainder of this article will give a short overview of how to use this huge
collection of statistical methodology in other ways than entering commands at the R
prompt. The prompt is only one way of utilizing R, and numerous other ways have
been developed over the last years: embedding R in other applications like spreadsheets,
dynamic statistical documents combining text and code, using R as a scripting language,
or as a webpage plugin offering a wide range of services from simple examples for teaching
to complete data analyses over the Internet. Of course only the tip of the iceberg can be
shown in 8 pages, and this article is not meant as a comprehensive survey. Rather than
listing all known applications, it will concentrate on a few examples and cover those in
more detail, including full code listings where possible.

2 Reasons for Embedding R

There are numerous reasons for using R “behind the scenes” of another application, but
the main motivation behind most is one or both of the following two:

1. Controlling R in other ways than entering commands at the prompt.

2. Directly use the results of R computations with another program.

The R console connects R’s input to the keyboard and output to the screen, by em-
bedding R we can use a program rather than a human at either end. If R produces a

2

table of numerical results and that table is meant to be part of a manuscript, then the
computer should insert the table into the manuscript. Manual copying costs time and
always has the risk of making a mistake. If a standardized analysis allows only for a
limited number of operations at a certain point, it may be more convenient to choose
among menu items in a graphical user interface rather than entering a command at the
prompt. The full power of the S language is convenient in many places, but limiting the
number of choices can reduce the probability of human error.

The following three examples from the author’s own practical work may give an
idea when using R at the prompt is not ideal:

Report Generation: A data analysis is finished, numerous tables and figures have
been created and form an integral part of the report. Now if the data change
slightly (e.g., a typing error in the original data is detected), then we do not need
a new interactive R session to redo the complete analysis. Recalculating an analysis
and inserting the new results at the right places can be fully automated such that
humans only have to check whether the conclusions drawn are still valid or need
to be updated.

Routine Analysis: In a cooperation project with a software company we developed a
statistical model for direct marketing actions. Based on purchase data, affinities
of consumers to product groups are identified and used by a recommender system.
The data warehouse of the client is updated every week with new data, R then
automatically recalculates the affinities of all registered costumers to all product
groups, stores the affinities back into the data warehouse, and sends an email with
a summary sheet to the marketing department. No human interaction is needed
unless the summary report indicates a problem.

Agent-based Simulations: As part of a research center of excellence on “adaptive
information systems in management science” our research group was conducting
large scale simulations on workstation clusters. Several R processes where running
simultaneously on different computers, each representing an agent in an artificial
economy (e.g., different companies trying to sell similar products to virtual cus-
tomers). In each iteration of the simulation, each agent analyzed the available
market data and positioned itself in the a seemingly profitable market segment.
The goal of the simulation was to see whether known stylized facts of real world
markets can be reproduced with simple (but non-trivial) artificial agents. Because
agents needed to be able to perform statistical analyses, using R to implement
the simulation was a natural choice. Connecting several R processes to a large
simulation allowed to efficiently use a cluster of workstations and also have some
agents written in Octave or MATLAB (Meyer et al., 2003).

3 Embedding R in Text Documents

As mentioned above, S is not merely a language for statistical data analysis, it is a
full-featured programming language designed for interactive use. The R implementation

3

is under the hood a Scheme interpreter (Ihaka and Gentleman, 1996), i.e., R belongs
to the Lisp family of programming languages, although this is not apparent from the S
syntax used. Over time, we have added many functionalities to R which are not directly
needed for analyzing or visualizing data in a strict sense. One can download files over the
Internet (install packages from CRAN, . . .), has access to the operating system (create,
list, copy and delete files, . . .), and much more. It takes only a few lines of code in R to
send serial emails, AKA spam.

Probably one of the most underused (in terms of user numbers) features of R is
using regular expressions for string processing, see help("regexp"). A simple version of
regular expressions are wildcards for listing files, the command ls *.tex will list all files
with extension .tex on a Unix system, because these files match the expression *.tex.
Regular expression adhere to the same principle, but have a much richer syntax and allow
to do very complicated match and replace operations. The user can search for certain
patterns in strings and replace them by other patterns. Several R functions use regular
expressions, grep() (find patterns), sub() (find&replace patterns) and help.search()
are perhaps the most prominent ones. Following the principle of not reinventing the
wheel, R does not have its own implementation of regular expressions, but uses the
GNU and PCRE regexp libraries.

One important application in statistics is for pre-processing data. But regular
expressions can also be used to do text processing in R. Sweave (Leisch, 2002) allows to
embed R code directly into latex documents. When Sweave processes such a document,
it identifies the R code, evaluates it, and inserts the resulting output (text, figures)
into the document. Figure 2 shows the code used to generate Figure 1. The regular
expression R uses to identify where a “code chunk” (piece of R code to evaluate) starts
is ^<<(.*)>>=.*. The ^ at the beginning means that the pattern must start in column
1, then there must be exactly two “less than” signs, followed by an arbitrary sequence,
followed by two “greater than” and one “equal” sign.

None of this is directly related to statistical data analysis, but it means that R
can do text processing, and hence can easily be used for reproducible research where
analysis code is tightly linked to reports describing the analysis (Leisch and Rossini,
2003). Packages R2HTML (Lecoutre, 2003) and odfWeave (Kuhn, 2006) on CRAN provide
adaptations of Sweave which allow to use HTML or OpenOffice for word processing
rather than latex. In addition, Figure 1 shows that R is not only useful for creating
statistical graphs like scatterplots or boxplots, but can be used as a programmable
drawing program, see Murrell (2005) for more examples, which are also available as
package RGraphics on CRAN.

Sweave and friends embed R code into text documents, not R itself. The code can
be dynamically replaced by the output of evaluating the code, but the document itself
is static. In many cases this is the right thing to do, but sometimes a more interactive
version is more appropriate. Package Rpad (Short and Grosjean, 2006) is one of several
implementations that embed R directly into a webpage: the browser connects to a
running R process, commands are entered through HTML forms as free text or through
elements like pulldown menus and radio buttons.

4

<<>>=
l ibrary (pixmap)
logo <− read .pnm(system . f i l e (” p i c t u r e s/ l ogo .ppm” ,

package=”pixmap”))
@

<<diag1 , f i g=TRUE >>=
par (mar=rep (0 , 4))
plot .new()
plot .window(xl im=c (0 , 1) , yl im=c (0 , 1))
addlogo (logo , c (0 . 4 2 , 0 . 5 8) , c (0 . 4 4 , 0 . 5 6))
text (0 . 2 5 , 0 . 8 , ”Tables ” , cex=2)
text (0 . 7 5 , 0 . 8 , ” F igures ” , cex=2)
text (0 . 2 5 , 0 . 2 , ”Data” , cex=2)
arrows (0 . 2 5 , 0 . 25 , 0 . 42 , 0 . 42 , lwd=2, code=2)
arrows (0 . 2 5 , 0 . 75 , 0 . 42 , 0 . 58 , lwd=2, code=1)
arrows (0 . 7 5 , 0 . 75 , 0 . 58 , 0 . 58 , lwd=2, code=1)
@

<<diag2 , f i g=TRUE >>=
<<diag1>>
text (0 . 8 , 0 . 2 , ”C, Fortran ” , cex=2)
arrows (0 . 2 5 , 0 . 25 , 0 . 42 , 0 . 42 , lwd=2, code=3)
arrows (0 . 7 5 , 0 . 25 , 0 . 58 , 0 . 42 , lwd=2, code=3)

Figure 2: Source code for Figure 1 as Sweave file.

5

#inc l ude <Rembedded . h>

i n t main (i n t ac , char ∗∗av)
{

Rf i n i t i a l i z e R(ac , av) ;
Rf mainloop () ; /∗ does not return ∗/
return 0 ;

}

Figure 3: Minimal C code to run the R interpreter.

4 Embedding R in Programs

Rpad is one example where the user communicates with R not directly via the R prompt
or by executing R scripts, but through an alternate frontend: in this case a webpage.
Embedding R into other programs is much simpler than many users or developers think,
and has been so for quite some time now (e.g., Temple Lang, 2001).

The most common usage for embedding R is to write alternative graphical user
interfaces to the interpreter, see http://www.r-project.org/GUI. R itself is written in
C, it can be built as a shared library and linked into any other application that can
access C code. Figure 3 shows the minimal C code necessary: compiling the code listed
and linking it against libR will result in an executable that starts the R engine and
presents the user a fully functional R prompt (if the right environment variables are
set, see the Writing R Extensions manual). In fact, the terminal version of R does in
essence the same thing, plus some additional setup and error handling. Of course it
makes only limited sense to replicate how one creates a terminal version of R. But the
example demonstrates that only few lines of code are necessary, e.g., to add a window
running an R process to another application.

Directory tests/Embedding of the R sources contains several examples of embed-
ding R in C, including how to directly communicate from C code with the R interpreter
(rather than starting a prompt waiting for user input). Communication with R works
not only for C programs, R has interfaces to many other programming languages, most
of which have been developed as part of the Omegahat project (Chambers and Temple
Lang, 2001). Urbanek (2007) discusses some more recent developments.

Linking R into an application is one way of embedding R, the other main way is
to talk to a running R process using a communication protocol. This has the advantage
that R and the embedding program need not necessarily run on the same computer, but
can also be started on different machines. Again, the basic ingredients are surprisingly
simple. Many R functions that can read or write from/to files accept also so-called
connections (Ripley, 2001) instead of a file on the local disk.

One connection type are sockets, which allow R to communicate with other
programs over a network. Figure 4 shows R code for a simple R server: function
simpleServer() first opens a connection on a user-specified port. Because we use
server=TRUE, R will wait for other processes to connect to it. When it receives a call, it

6

s imp leServer <− function (port =6543)
{

sock <− socketConnect ion (port=port , s e r v e r=TRUE)
on . exit (close (sock))
cat (”\nWelcome to R! \nR> ” , f i l e=sock)

while ((l i n e <− readLines (sock , n=1)) != ” qu i t ”)
{

cat (paste (” socket>” , l i n e , ”\n”))
out <− capture . output (try (eval (parse (text=l i n e))))
wr i t eL ine s (out , con=sock)
cat (”\nR> ” , f i l e=sock)

}
}

s h e l l > t e l n e t l o c a l h o s t 6543
Trying 1 2 7 . 0 . 0 . 1 . . .
Connected to l o c a l h o s t .
Escape charac t e r i s ’ ˆ] ’ .

Welcome to R!
R> summary(i r i s [, 3 : 5])

Peta l . Length Peta l . Width Spec i e s
Min . : 1 . 0 0 0 Min . : 0 . 1 0 0 s e t o s a :50
1 s t Qu. : 1 . 6 0 0 1 s t Qu. : 0 . 3 0 0 v e r s i c o l o r : 50
Median : 4 . 3 5 0 Median : 1 . 3 0 0 v i r g i n i c a : 50
Mean : 3 . 7 5 8 Mean : 1 . 1 9 9
3 rd Qu. : 5 . 1 0 0 3 rd Qu. : 1 . 8 0 0
Max. : 6 . 9 0 0 Max. : 2 . 5 0 0

R> qu i t
Connection c l o s ed by f o r e i g n host .

Figure 4: Talking to R via sockets: An R function implementing a minimalistic server
(top) and transcript of communication with the server (bottom).

7

first responds by returning a welcome message, then it enters an infinite loop. Every line
it receives will first be tested if it equals the special keyword "quit", in which case the
connection is closed and the function returns. All other text that is received is assumed
to be R commands, and simpleServer() tries to evaluate it. Textual results are sent
back to the client.

The lower panel of Figure 4 shows how a client can connect to our simple server.
Any program that can communicate over a socket could be used for this purpose, includ-
ing R itself. The example uses the telnet command line utility, which is available for
all major operating systems. First we need to start the server (not shown in Figure 4)
by executing simpleServer() at the prompt of an R process. After that, the client can
connect. If the client runs on the same machine, entering telnet localhost 6543 will
connect to our server. If the client runs on a different machine, then localhost needs
to be replaced by the IP address of the machine running the R server. The port number
6543 is arbitrary, any port not already used by another program could be used.

The server shown in the example is of course only good for demo purposes, be-
cause no client authentification whatsoever is done. Anybody who guesses machine and
port correctly can connect, and there are programs doing automatic port scans. So we
should at least ask the client for a password or use some other means of authentifica-
tion/protection. Behind a firewall or in an intranet socket communication without any
authentification may however be a simple and sufficient solution.

Package Rserve (Urbanek, 2006) provides more sophisticated support for connect-
ing to a running R process over a socket. It allows for multiple simultaneous connections
(with seperated workspaces), authentification and transparent transfer of complete R
objects. Client-side implementations are available for C, C++, Java and R. E.g., the
following code from the Rserve homepage at http://rosuda.org connects a Java pro-
gram to R and gets 10 Gaussian random variables from R into a Java array:

Rconnection c = new Rconnection () ;
double d []= c . eva l (”rnorm (10) ”) . asDoubleArray () ;

This now connects the full circle from the beginning: We go from Java to R, R it-
self interfaces several state-of-the-art random number generators implemented in C and
FORTRAN. Of course we could directly link the Java application to the random number
generator, and if only these 10 numbers are needed, that is certainly the way to go. But
if more statistical methods are needed, using R as an intermediate layer may be the
easier way.

Sockets are only one form of inter-process communication over the Internet, sev-
eral others exist. DCOM is a communication protocol for connecting applications on
Microsoft Windows systems (again either on the same or different machines). The R-
Excel interface (Baier and Neuwirth, 2007) embeds R into the Excel spreadsheet, see
Figure 5. R knowledge is only necessary to write sheets using R, but the pre-fabricated
sheets can then be passed on to other users who have no knowledge of R. Data are
entered directly into Excel, for the naive user there is no visible difference if R or Excel
calculates the results.

8

Figure 5: Screenshot of the R-Excel interface.

Acknowledgements

R is a is the result of a collaborative effort and much of the software presented in this
paper has been implemented by other members of the R Development Core Team than
the author of this article, or by members of the very active R developer community,
without whom R would not be what it is today.

References

Baier, T. and Neuwirth, E. (2007). Excel :: Com :: R. Computational Statistics, 22:91–
108.

Beasley, J. D. and Springer, S. G. (1977). Algorithm AS 111: The percentage points of
the normal distribution. Applied Statistics, 26:118–121.

Becker, R. A. (1994). A brief history of S. In Dirschedl, P. and Ostermann, R., editors,
Computational Statistics – Papers Collected on the Occasion of the 25th Conference
on Statistical Computing at Schlosz Reisensburg, pages 81–110. Physica, Heidelberg,
Germany.

Chambers, J. M. (1996). Evolution of the S language. In 20th Symposium on the
Interface.

9

Chambers, J. M. (2000). Users, programmers, and statistical software. Journal of
Computational and Graphical Statistics, 9(3):404–422.

Chambers, J. M. and Temple Lang, D. (2001). Omegahat packages for R. R News,
1(1):21–24.

Ihaka, R. and Gentleman, R. (1996). R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314.

Kuhn, M. (2006). Sweave and the open document format – the odfWeave package. R
News, 6(4):2–8.

Lecoutre, E. (2003). The R2HTML package. R News, 3(3):33–36.

Leisch, F. (2002). Sweave: Dynamic generation of statistical reports using literate data
analysis. In Härdle, W. and Rönz, B., editors, Compstat 2002 — Proceedings in
Computational Statistics, pages 575–580. Physica Verlag, Heidelberg. ISBN 3-7908-
1517-9.

Leisch, F. and Rossini, A. J. (2003). Reproducible statistical research. Chance, 16(2):46–
50.

Meyer, D., Buchta, C., Karatzoglou, A., Leisch, F., and Hornik, K. (2003). A simulation
framework for heterogeneous agents. Computational Economics, 22(2):285–301.

Murrell, P. (2005). R Graphics. Chapman & Hall / CRC, Boca Raton, USA.

R Development Core Team (2007a). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-
07-0.

R Development Core Team (2007b). Writing R Extensions. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-11-9.

Ripley, B. D. (2001). Connections. R News, 1(1):16–17.

Short, T. and Grosjean, P. (2006). Rpad: Workbook-style, web-based interface to R. R
package version 1.2.1.

Temple Lang, D. (2001). Embedding S in other languages and environments. In Hornik,
K. and Leisch, F., editors, Proceedings of the 2nd International Workshop on Dis-
tributed Statistical Computing, March 15-17, 2001, Technische Universität Wien, Vi-
enna, Austria. ISSN 1609-395X.

Urbanek, S. (2006). Rserve: Binary R Server. R package version 0.4-7.

Urbanek, S. (2007). How to talk to strangers: Ways to leverage connectivity between
R, Java, and Objective C. Unpublished manuscript submitted to proceedings of
DSC 2007, AT&T Labs Research, USA.

10

Wichura, M. J. (1988). Algorithm AS 241: The percentage points of the normal distri-
bution. Applied Statistics, 37:477–484.

RESUME

R is not only a program for analyzing and visualizing data, it is an open and pro-
grammable software environment. It can not only easily access other programs written
in a wide variety of languages, but also be accessed itself from other programs. As
such, it can be seen as the computational Swiss army knife of statistics. Connecting a
program to R can be surprisingly simple, and once the connection is established, the
perhaps largest existing collection of statistical methodology is available through a uni-
fied interface. Embedding R can save a lot of human time by automating routine tasks,
but more importantly, it often gives a simple way of making our methods accessible to
a much wider audience.

11

