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1 Introduction

The use of prior information in linear regression analysis is well known to provide
more efficient estimators of regression coefficients. Such prior information can
be available in different forms from various sources like as past experience of the
experimenter, similar kind of experiments conducted in the past, etc. The available
prior information sometimes can be expressed in the form of exact, stochastic or
inequality restrictions. The methods of restricted regression estimation, mixed
estimation (Theil and Goldberger (1961)) and minimax estimation are preferred
when prior information is available in the form of exact, stochastic and inequality
restrictions, respectively. More details about these estimation procedures can be
found in Rao, Toutenburg, Shalabh and Heumann (2008).

When the prior information is available in the form of stochastic restrictions,
then in many applications a systematic bias is also present. Such systematic bias
can arise from different sources and due to various reasons like personal judgements
of the persons involved in the experiment, in testing of general linear hypothesis
in linear models when null hypothesis is rejected, in imputation of missing values
through regression approach etc. Teräsvirta (1980) and Hill and Ziemer (1983)
have given some interesting examples for this type of information. How to in-
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corporate such systematic bias in the estimation procedure is an issue which is
addressed in this article. The method of weighted mixed regression estimation is
utilized for the purpose. How to choose the weights in this estimation procedure
so as to have gain in efficiency under the criterion of mean dispersion error matrix
is also addressed.

The plan of the paper is as follows. The model description and the estimation
of parameters are discussed in Section 2. The properties of the estimators are
derived and analyzed in Section 3. Some conclusions are placed in Section 4.

2 Model Specification and Estimation of Para-

meters

Consider the linear regression model

y = Xβ + ε (2.1)

where y is a (T × 1) vector of study variable, X is a (T × K) full column rank
matrix of T observations on each of the K explanatory variables, β is a (K × 1)
vector of regression parameters and ε is a (T × 1) vector of random disturbances
with E(ε) = 0 and V(ε) = σ2IT where σ2 is unknown.

The application of Gauss–Markov theory on (2.1) yields the ordinary least
squares estimator (OLSE) of β as

β̂ = S−1X ′y (2.2)

where S = X ′X. The OLSE is the best linear unbiased estimator of β with
covariance matrix

V(β̂) = σ2S−1 .

Further we assume that some prior information about the regression coeffi-
cients is available which is stochastic in nature and contains systematic bias. We
use the framework of linear stochastic restrictions to present the available prior
information and systematic bias as

r = Rβ + δ + φ (2.3)

where r is a (J × 1) vector and R is a (J ×K) matrix of known elements; δ is a
(J×1) vector that expresses the unknown systematic but nonstochastic bias in the
restrictions; and φ is a (J × 1) vector representing the stochastic nature of prior
information. We assume that E(φ) = 0 and V(φ) = σ2IJ . For R, we assume full
row rank (if J < K) or full column rank (if J ≥ K).
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Note that in many statistical applications, the assumption that the prior in-
formation is unbiased, i.e., E(r) = Rβ is violated. Under those cases, the set
up of (2.3) fits well. Also, the mixed regression estimator (Theil and Goldberger
(1961)) which is an unbiased estimator of β when δ = 0 becomes biased when
δ 6= 0. Wijekoon and Trenkler (1995) have used the framework of (2.3) in pre-test
estimation of parameters.

The criterion of mean dispersion error matrix (MDEM) comparison allows a
more general view on the properties of estimators in the linear regression model
when additional and possibly biased stochastic restrictions are available. A moti-
vation can be given as follows. Using a quadratic loss function

L(β̂, β, A) = (β̂ − β)′A(β̂ − β)

where A ≥ 0 is a symmetric and nonnegative definite matrix, the (quadratic) risk
function R(β̂, β, A) of an estimator β̂ of β is the expected loss as

R(β̂, β, A) = EL(β̂, β, A) = E(β̂ − β)′A(β̂ − β) .

A theorem by Theobald (1974) and Trenkler (1985) gives a necessary and suf-
ficient condition that if an estimator is superior over other estimators under the
criterion of MDE matrix (MDEM) (often called as MSE–I superiority), then the
same estimator remains uniformly superior over other estimators under the cri-
terion of risk function also for all nonnegative definite matrix A. The MDEM
superiority means that an estimator β̂2 of β is better than an estimator β̂1 of β
when

∆(β̂1, β̂2) = M(β̂1, β)−M(β̂2, β) ≥ 0 , (2.4)

i.e., ∆(β̂1, β̂2) is nonnegative definite where MDEM of β̂ is

M(β̂, β) = E(β̂ − β)(β̂ − β)′

= V(β̂) + Bias(β̂, β)Bias(β̂, β)′ ,

covariance matrix of β̂ is

V(β̂) = E[(β̂ − E(β̂))(β̂ − E(β̂))′] ,

and bias of β̂ is
Bias(β̂, β) = E(β̂)− β .

The techniques of MDEM comparisons have been studied and illustrated, e.g.
by Trenkler (1981), Teräsvirta (1982), Trenkler and Toutenburg (1990) and
Toutenburg and Trenkler (1990). An overview can be found in Rao, Toutenburg,
Shalabh and Heumann (2008). In order to incorporate the restrictions (2.3) in
the estimation of parameters, we minimize

(y −Xβ)′(y −Xβ) + w (r −Rβ)′(r −Rβ)
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with respect to β where w is the weight lying between 0 and 1 such that w 6= 0
(w = 0 would lead to OLSE). The resulting estimator of β is given by

β̂w = (S + wR′R)−1(X ′y + wR′r) = Z−1
w (X ′y + wR′r) (2.5)

where Zw = S + wR′R and β̂w is termed as weighted mixed regression estimator
(WMRE).

3 Properties and Efficiency of WMRE Over OLSE

Now we study the efficiency properties of weighted mixed regression estimator and
the dominance conditions for the MDEM superiority of WMRE over OLSE.

The bias of β̂w is

Bias(β̂w, β) = E(β̂w)− β

= wZ−1
w R′δ (3.1)

and MDEM of β̂w is

M(β̂w, β) = σ2Z−1
w (S + w2R′R)Z−1

w + w2Z−1
w R′δδ′RZ−1

w . (3.2)

The covariance matrix of β̂w is

V(β̂w) = σ2Z−1
w (S + w2R′R)Z−1

w . (3.3)

The difference in the covariance matrices of OLSE and WMRE is

D(β̂, β̂w) = V(β̂)− V(β̂w)

= σ2S−1 − σ2Z−1
w (S + w2R′R)Z−1

w

= σ2Z−1
w

[
ZwS−1Zw − S − w2R′R

]
Z−1

w

= w2σ2Z−1
w R′

[(
2

w
− 1

)
I + RS−1R′

]
RZ−1

w . (3.4)

The difference in (3.4) is positive definite when Zw is positive definite and

(
2

w
− 1

)
I + RS−1R′ > 0 , (3.5)

which is possible as long as w < 2.

Now there are two possible cases:
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1. When J < K, R has full row rank, therefore R′ has full column rank and it
follows that in this case we can only conclude that

D(β̂, β̂w) ≥ 0 .

2. When J ≥ K, R has full column rank and it is concluded that

D(β̂, β̂w) > 0 .

3.1 Case 1: When J < K

Now we study the necessary and sufficient condition for the MDEM superiority of
WMRE over OLSE in case when J < K. The next theorem presents a necessary
and sufficient condition for such superiority.

Theorem 1 The WMRE β̂w is MDEM superior to OLSE β̂ in case of J < K if
and only if

ρ(w) = σ−2δ′
[
(2w−1 − 1)I + Rs−1R′]−1

δ ≤ 1 . (3.6)

Thereby we assume a priori, that 0 < w ≤ 1.

See Toutenburg (1989) for the derivation of (3.6). Note that for w = 0, we get
the OLSE and condition (3.6) is trivial, since ρ(0) = 0. Now we show, that ρ(w)
is monotone in w.

Theorem 2 ρ(w) is monotonic increasing in w.

Proof:

∂ρ(w)

∂w
=

=
∂

∂w
σ−2δ′

[
(2w−1 − 1)I + RS−1R′]−1

δ

= σ−2δ′
{

∂

∂w

[
(2w−1 − 1)I + Rs−1R′]−1

}
δ

= −σ−2δ′
[
(2w−1 − 1)I + RS−1R′]−1

{
∂

∂w

[
(2w−1 − 1)I + Rs−1R′]

}

× [
(2w−1 − 1)I + RS−1R′]−1

δ

= 2w−2σ−2δ′
[
(2w−1 − 1)I + RS−1R′]−2

δ > 0 . (3.7)

This completes the proof.
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Now we derive the sufficient condition for the MDEM superiority of WMRE
over OLSE in case when J < K. To derive a sufficient dominance condition, we use
the following theorems, see e.g. Rao, Toutenburg, Shalabh and Heumann (2008,
Theorems A.39 and A.44):

1. If A is a (n × n) is a symmetric matrix and λ1 is its maximum eigenvalue
(the eigenvalues of a symmetric matrix are all real), then for the quadratic
form h′Ah,

sup
h

h′Ah

h′h
= λ1 .

2. If A > 0, then all the eigenvalues of A are positive.

Now, if µ1 ≥ . . . ≥ µJ > 0 are the real eigenvalues of positive definite matrix
RS−1R′, then the eigenvalues of the matrix

Q = (2w−1 − 1)I + RS−1R′ (3.8)

are also all positive as 0 < w ≤ 1.

Applying the spectral decomposition on RS−1R′ using Rao, Toutenburg, Sha-
labh and Heumann (2008, Theorem A.30), the matrix Q in (3.8) becomes

Q = (2w−1 − 1)I + P diag(µj) P ′

= (2w−1 − 1)PP ′ + P diag(µj) P ′

= P
[
diag(2w−1 − 1) + diag(µj)

]
P ′

= P diag(2w−1 − 1 + µj) P ′ (3.9)

where P is an orthogonal matrix.

So we obtain the condition (3.6) as

ρw = σ−2δ′Q−1δ

= σ−2δ′(P ′)−1 diag(2w−1 − 1 + µj)
−1(P ′)−1δ

= σ−2δ̃′ diag

(
1

2w−1 − 1 + µj

)
δ̃ ≤ 1 , (3.10)

where
δ̃ = P ′δ.

An equivalent transformation of (3.10) is

δ̃′diag( 1
2w−1−1+µj

)δ̃

δ̃′δ̃
≤ σ2 1

δ̃′δ̃
.
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Using
δ̃′δ̃ = δ′PP ′δ = δ′δ

and a result that the eigenvalues of a diagonal matrix are the diagonal elements
themselves, we can derive the following condition for the superiority of β̂w over β̂
with respect to w. The WMRE β̂w is MDEM superior to OLSE β̂ if

sup
δ̃

δ̃′diag( 1
2w−1−1+µj

)δ̃

δ̃′δ̃
≤ σ2 1

δ̃′δ̃

or if

sup
δ̃

δ̃′diag( 1
2w−1−1+µj

)δ̃

δ̃′δ̃
≤ σ2

δ′δ

or if
1

2w−1 − 1 + µJ

≤ σ2

δ′δ

with 2w−1 − 1 + µJ > 0 (0 < w ≤ 1) and µJ being the smallest eigenvalue of
RS−1R′.

This can further be transformed into

2

w
≥ σ−2 δ′δ + 1− µJ . (3.11)

Now we have two cases:

1. When σ−2δ′δ + 1− µJ ≤ 0, i.e.,

µJ ≥ σ−2δ′δ + 1 . (3.12)

Then we obtain that every w ∈ (0, 1] can be chosen to obtain the MDEM
superiority of β̂w over β̂.

2. When σ−2δ′δ + 1− µJ > 0, then (3.11) can be transformed into

w ≤ 2

σ−2δ′δ + 1− µJ

. (3.13)

We again have two subcases:

• When 2/(σ−2δ′δ + 1− µJ) ≥ 1, then

µJ ≥ σ−2δ′δ − 1 . (3.14)

Then we obtain that every w ∈ (0, 1] is selectable to obtain the MDEM
superiority of β̂w over β̂.
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• When 2/(σ−2δ′δ + 1− µJ) < 1, then

w ∈
(

0,
2

σ−2δ′δ + 1− µJ

]
(3.15)

can be selected to obtain the MDEM superiority of β̂w over β̂.

Now we can formulate the following theorem.

Theorem 3 A sufficient condition for the MDEM superiority of WMRE β̂w over
OLSE β̂ when J < K is given by the following choice of w:

w ∈ (0, 1] if σ−2δ′δ ≤ 1 + µJ

w ∈
(
0, 2

σ−2δ′δ+1−µJ

]
otherwise .

}
(3.16)

Now we look for the existence of weight w∗ which guarantees the MDEM
superiority of WMRE over OLSE in case of J < K. This is stated in the following
theorem.

Theorem 4

w∗ =
1

1 + σ−2δ′δ
(3.17)

always fulfills condition (3.6).

Proof: It suffices to show that w∗ fulfills the condition (3.16). In case σ−2δ′δ ≤
1 + µJ , then this is fulfilled because of 0 < w∗ < 1 and in the other case, we only
have to show that

w∗ =
1

1 + σ−2δ′δ
≤ 2

σ−2δ′δ + 1− µJ

.

This is also fulfilled because µJ > 0. Therefore, independent of J (J < K), there
exists a superiority guaranteed by w∗.
This completes the proof.

Next we obtain the distribution of estimated w∗ under the assumption of
normal distribution when J < K.

We assume that the error vectors ε and φ are independently and normally
distributed as follows.

ε ∼ N
(
0, σ2IT

)

and
φ ∼ N

(
0, σ2IJ

)
.
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In order to find the distribution of estimated w∗, we replace the unknown parame-
ters δ and σ2 in (3.17) by their unbiased estimators

δ̂ = r −Rβ̂

and

σ̂2 =
1

T −K
ε̂′ε̂ ,

respectively.

We note that for δ̂,

E(δ̂) = E(r −Rβ̂)

= δ (3.18)

and

V(δ̂) = V(r −Rβ̂)

= V(φ) + V(R(X ′X)−1X ′ε)

= σ2
[
IJ + RS−1R′] . (3.19)

So we obtain
δ̂ ∼ N

(
δ, σ2

[
IJ + RS−1R′])

and it follows that

σ−2(δ̂ − δ)′
[
IJ + RS−1R′]−1

(δ̂ − δ) ∼ χ2
J .

For the estimation of σ2, we use its unbiased estimator as σ̂2. We obtain under
the normal distribution assumption that

(T −K)σ̂2

σ2
∼ χ2

T−K .

Further we note that δ̂ and σ̂2 are also independent because δ̂ depends on β̂
and; β̂ and σ̂2 are independent.

Then

ŵ∗ =
1

1 +
bδ′bδ
bσ2

=
σ̂2

σ̂2 + δ̂′δ̂
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and it follows that

ŵ∗ ∼
σ2

T−K
Z

σ2

T−K
Z + Y ′Y

(3.20)

or

ŵ∗ ∼ σ2Z

σ2Z + (T −K)Y ′Y
(3.21)

where Z ∼ χ2
T−K and Y is distributed as δ̂ ∼ N (δ, σ2 [IJ + RS−1R′]) .

For a better representation of this distribution, we choose another illustration
for the quadratic form Y ′Y from Mathai and Provost (1992, p. 29, Representation
3.1a.1), with the special case A = I.

We use again the spectral decomposition for this as

σ2(IJ + RS−1R′) = Pdiag[σ2(1 + µj)]P
′ ,

where µj, (j = 1, . . . , J) are the eigenvalues of RS−1R.

Then we obtain

[
σ2

(
IJ + RS−1R′)]−1/2

= Pdiag

(
1

σ
√

1 + µj

)
P ′.

Further, let

b′ = P ′ [σ2
(
IJ + RS−1R′)]−1/2

δ

= P ′Pdiag

(
1

σ
√

1 + µj

)
P ′δ

= diag

(
1

σ
√

1 + µj

)
P ′δ

= diag

(
1

σ
√

1 + µj

)
δ̃

so that

b =

(
δ̃1

σ
√

1 + µ1

, . . . ,
δ̃J

σ
√

1 + µJ

)′

= (b1, . . . , bJ)′ .

with δ̃ = (δ̃1, . . . , δ̃J)′ = P ′δ.
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Then we obtain

Y ′Y =
J∑

j=1

σ2(1 + µj)(Uj + bj)
2

= σ2

J∑
j=1

(1 + µj)

(
Uj +

δ̃j

σ
√

1 + µj

)2

where
U = (U1, . . . , UJ)′,

and we have
E(U) = 0 and V(U) = IJ .

Because Y is assumed to be normally distributed, so Uj’s are also independent
and standard normally distributed random variables. Therefore Y ′Y is a linear
combination of independent non-central χ2–variables.

The distribution of ŵ∗ from (3.21) is then

ŵ∗ ∼ σ2χ2
T−K

σ2χ2
T−K + (T −K)σ2

∑J
j=1(1 + µj)χ2

1(b
2
j)

(3.22)

or

ŵ∗ ∼ χ2
T−K

χ2
T−K + (T −K)

∑J
j=1(1 + µj)χ2

1

(
δ̃2
j

σ2(1+µj)

)

where χ2
1(b

2
j) indicates the non-central χ2–distribution with non-centrality para-

meter

b2
j =

δ̃2
j

σ2(1 + µj)
, (j = 1, . . . , J).

So the distribution of (3.22) depends on T, K, J, σ2, δ and the eigenvalues
of RS−1R′.

3.2 Case 2: When J ≥ K

Now we discuss the superiority of WMRE and OLSE over each other when J ≥ K.

The necessary and sufficient condition for the MDEM superiority of β̂w over
β̂ in case when J ≥ K is mentioned in the next theorem.
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Theorem 5 The WMRE β̂w is MDEM superior over OLSE β̂ in case when J ≥ K
if and only if

ρw = Bias(β̂w)′D(β̂, β̂w)−1Bias(β̂w)

= w2δ′RZ−1
w

{
w2σ2Z−1

w R′
[(

2

w
− 1

)
I + RS−1R′

]
RZ−1

w

}−1

×Z−1
w R′δ

= σ−2δ′R
{(

2

w
− 1

)
R′R + R′RS−1R′R

}−1

R′δ

≤ 1 . (3.23)

Because R is assumed to have full column rank, so R′R is positive definite and
invertible. A transformation of (3.23) provides

ρw = wσ−2δ′R
[
(2− w) R′R + wR′RS−1R′R

]−1
R′δ

= wσ−2δ′R
[
2R′R− wR′R + wR′RS−1R′R

]−1
R′δ (3.24)

and we obtain that
ρw = 0 , if w = 0 .

Now we show the monotonicity of ρw with respect to w in case of J ≥ K. For
this, we differentiate ρw in (3.24) with respect to w and use again Rao, Toutenburg,
Shalabh and Heumann (2008, Theorems A.94 and A.96).

Let

Q∗ =

(
2

w
− 1

)
R′R + R′RS−1R′R (3.25)

and so
∂

∂w
Q∗ = − 2

w2
R′R .

Then we obtain for 0 < w ≤ 1:

∂ρw

∂w
=

∂

∂w
σ−2δ′RQ−1

∗ R′δ

= σ−2δ′R
{

∂

∂w
Q−1
∗

}
R′δ

= −σ−2δ′RQ−1
∗

{
∂

∂w
Q∗

}
Q−1
∗ R′δ

=
2

w2
σ−2δ′RQ−1

∗ R′RQ−1
∗ R′δ ≥ 0 . (3.26)

We note from (3.26) that ρw is monotonic increasing in w.
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Also ρw = 0 for w = 0. So there exists a w∗ which guarantees the MDEM
superiority of β̂w over β̂.

Now we derive the sufficient condition for the MDEM superiority of β̂w over
β̂ in case when J ≥ K.

As in the case of J < K, we tried to obtain a sufficient condition with the help
of eigenvalue system. For this case, now we use again the spectral decomposition
for positive semi-definite matrix RS−1R′. To accomplish this, first we use two times
the inversion formula for matrices from Rao, Toutenburg, Shalabh and Heumann
(2008, Theorem A.18 (iii)) on ρw.

Let

q =
2

w
− 1 (≥ 1)

and
SR = R′R .

Then we obtain:

ρw = σ−2δ′R
{
qSR + SRS−1SR

}−1
R′δ

= σ−2δ′R

{
1

q
S−1

R − 1

q
S−1

R SR

[
S + SR

1

q
S−1

R SR

]−1

×SR
1

q
S−1

R

}
R′δ

=
1

q
σ−2δ′RS−1

R R′δ − 1

q2
σ−2δ′R

[
S +

1

q
SR

]−1

R′δ

=
1

q
σ−2δ′R(R′R)−1R′δ

− 1

q2
σ−2δ′R

[
S−1 − S−1R′ (

qI + RS−1R′)−1
RS−1

]
R′δ.

(3.27)

Now we use the spectral decomposition of RS−1R′ = Pdiag(µj)P
′. Thereby

µ1 ≥ . . . ≥ µJ ≥ 0 are again the eigenvalues of RS−1R′. In contrast to the case
J < K, some eigenvalues are zero now, and so in particular, we can assume µJ = 0.
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With this, we obtain

ρw =
1

q
σ−2δ′R(R′R)−1R′δ

− 1

q2
σ−2δ′ Pdiag

(
µj −

µ2
j

q + µj

)
P ′δ

=
1

q
σ−2δ′R(R′R)−1R′δ

−σ−2δ′ Pdiag

(
µj

q(q + µj)

)
P ′δ. (3.28)

With
δ̃ = P ′δ and δ̃′δ̃ = δ′δ ,

we can derive the following condition. The WMRE β̂w is MDEM superior to the
OLSE β̂, if

ρw

δ′δ
=

1
q
δ′R(R′R)−1R′δ

δ′δ
−

δ′ Pdiag
(

µj

q(q+µj)

)
P ′δ

δ′δ
≤ σ2

δ′δ
or

ρw

δ′δ
=

1
q
δ′R(R′R)−1R′δ

δ′δ
−

δ̃′diag
(

µj

q(q+µj)

)
δ̃

δ̃′δ̃
≤ σ2

δ′δ
. (3.29)

Because the second term in (3.29) after the minus sign is positive, we con-
sider the worst case, viz., the first and second terms in (3.29) are maximum and
minimum, respectively.

The first term in (3.29) contains the idempotent matrix δ′R(R′R)−1R′δ, whose
eigenvalues are only zero and one (Rao, Toutenburg, Shalabh and Heumann (2008,
Theorem A.61 (i)).

The minimum eigenvalue of the diagonal matrix in the second term of (3.29)
is

µJ

q(q + µJ)
,

since ∂
∂x

x
(c2+cx)

> 0.

So a sufficient condition is

1

q
− µJ

q(q + µJ)
≤ σ2

δ′δ

or
1

2w−1 − 1 + µJ

≤ σ2

δ′δ
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is sufficient for ρw ≤ 1.

Because µJ = 0 surely, this condition simplifies more in contrast to the case
when J < K. So we obtain the following theorem.

Theorem 6 A sufficient condition for the MDEM superiority of β̂w against β̂ in
case when J ≥ K is

w ≤ min

{
1 ;

2

1 + σ−2δ′δ

}
. (3.30)

4 Conclusions

We have considered the method of weighted mixed regression estimation to incor-
porate the systematic bias and randomness in the prior information to estimate the
regression coefficients in a linear regression model. The weighted mixed regression
estimator is derived and its dominance over the ordinary least squares estimator is
studied under the criterion of mean dispersion error matrix. The choice of weight
is found with which the MDEM dominance of WMRE over OLSE is obtained.
We find that the MDEM dominance depends on the range of weight which itself
depends on the model settings. The distribution of the estimated weight is ob-
tained. The choice of weight which guarantees the MDEM dominance of WMRE
over OLSE is found as well as its distribution is derived which is a function of
central and noncentral χ2–variables.
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