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Abstract

The present article discusses the role of categorical variable in the problem

of multicollinearity in linear regression model. It exposes the diagnostic tool

condition number to linear regression models with categorical explanatory vari-

ables and analyzes how the dummy variables and choice of reference category

can affect the degree of multicollinearity. Such an effect is analyzed analytically

as well as numerically through simulation and real data application.
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1 Introduction

The problem of multicollinearity has remain the center of attraction in the litera-

ture of linear regression analysis for a long time, see Silvey (1969). It arises when

the explanatory variables in the linear regression model are correlated and thus one

or more columns of the design matrix form a ‘near’ linear combination with other

columns. The presence of multicollinearity in the data is a numerical issue as well
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as a statistical issue, see Silvey (1969), Belsley, Kuh and Welsch (2004) or Steward

(1987) for more details. It is a statistical issue because it inflates the variance of ordi-

nary least squares estimator and a numerical issue in the sense that the small errors

in input may cause large errors in the output. The problem of multicollinearity has

been attempted in the literature from different perspectives like as diagnostic tools,

removal tools, estimation and testing of hypothesis of parameters. Various diagnos-

tic tools like as condition number, singular value decomposition method, Belsleys

condition indices, variance decomposition method, variance inflation factors, Belsleys

perturbation analysis etc. have been suggested in the literature for the detection of

multicollinearity and identification of variables causing the linear relationships, see

Belsley (1991) and Rao, Toutenburg, Shalabh and Heumann (2008) for more details.

The complete bibliography on multicollinearity is out of the objectives of this paper.

The condition indices are popular diagnostic tools for multicollinearity to detect

the ‘near’ linear dependencies in data matrix. The condition indices are supplemented

by the variance decomposition method. This has an advantage that it can detect the

variables causing the ‘near’ linear dependency. On the other hand, the variance

decomposition method assumes that the disturbances in linear regression model are

homoscedastic.

The variance inflation factors are also used for diagnosing the multicollinearity,

see e.g. Fox (1992). These measures are based on the fact that a centered and scaled

design matrix is the correlation matrix of explanatory variables. The intercept term

is then excluded while using this diagnostic. The homoscedastic variance of the esti-

mate of jth regression coefficient is then a function of multiple correlation from the

regression of jth column on all other columns of design matrix. The term around the

multiple correlation is termed as variance inflation factor of the jth regression coef-

ficient. This diagnostic assumes homoscedastic errors and cannot find the variables

involved in the ‘near’ linear dependency.
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Use of categorical variable as explanatory variable is a popular strategy in regres-

sion analysis in many applications when the data is qualitative in nature. The tools of

regression analysis are applied by indicating the categories of qualitative categorical

variable through dummy variables. Use of dummy variables in regression analysis has

its own advantages but the outcome and interpretation may not be exactly same as

in the case of quantitative continuous explanatory variable. In particular, there are

several issues related to the diagnostic measures for multicollinearity which are still

unexplored or only partially explored in the literature when explanatory variables

are dummy variables. For example, what happens to the diagnostic measures for

multicollinearity when

• the explanatory variables are qualitative in nature and are represented by

dummy variables; and

• the observations in design matrix are centered around their mean.

The problem whether the observations should be centered around their mean

or not before applying the diagnostic tools for multicollinearity is an issue which is

still not completely resolved. The discussion about this issue may be reviewed in

Belsley (1984) which argues that the centering of observations around their mean

is of no use when dealing with multicollinearity. It eliminates the intercept term

from the linear regression model and therefore masks the role of intercept term on

multicollinearity which is caused by it as well as by other variables, see also Belsley

(1991). On the other hand, Marquardt (1980) states that the centering of observations

removes nonessential ill conditioning. If the uncentered data is ill conditioned, then

the small errors in inputs have large impact on the estimates of parameters. Belsley

(1984) demonstrates that perturbed inputs have the same influence on the estimates

obtained by using the centered and uncentered observations.

The issue of having an intercept term in linear regression model from the multi-
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collinearity point of view is also an unsettled issue in the literature. It is often argued

that the intercept term is of no use for the interpretation of regression results. But if

the linear regression model has dummy variables then the intercept term represents

the mean level of study variable at the reference or baseline categories of all categor-

ical variables, when all other variables are set to be zero. So it has an interpretable

feature as a baseline level of the study variable. When explanatory variables are

dummy variables, then the aspect of centering of observation is not meaningful be-

cause then the centered dummy variables as well as their regression coefficients loose

their interpretation.

In linear regression analysis, the dummy variables can also play an important

role as a possible source for multicollinearity. The choice of reference category for a

categorical variable may affect the degree of multicollinearity in the data.

Such issues have not yet been addressed in the literature to the best of our knowl-

edge. There is one conference paper about multicollinearity and categorical data, see

Hendrickx, Belzer, Grotenhuis and Lammers (2004). But this paper basically ap-

plies Belsleys perturbation analysis to a data set using a software that can deal with

categorial variables, which the original Belsleys approach cannot do. There is some

available literature about the variance inflation factors, see e.g. Steward (1987) for

a numerical approach to variance inflation factors and Fox (1992), who considers the

dummy variables in case of generalized variance inflation factors.

We have attempted in this direction and have tried to explore these issues. We

have considered the condition number and variance decomposition as diagnostic tools

for multicollinearity in this paper. We assume that some of the explanatory vari-

ables are categorical in nature and are represented by dummy variables. We have

analytically and numerically analyzed the role of dummy variables and the choice of

reference category in causing the multicollinearity. We find that the multicollinearity

with dummy variables may be reduced by choosing the correct reference category.
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The plan of the paper is as follows. In Section 2, we describe the model and diag-

nostics for multicollinearity. Several linear regression models with different combina-

tions of qualitative and quantitative variables are considered. The tools of regression

and multicollinearity analysis are exposed to these models. Their discussion and re-

sults are presented in Section 3. In the last Section 4, the effect of categorical variable

is explored in two real data set and its findings are reported. Some conclusions are

placed in Section 5.

2 The model and the diagnostics for multicollinear-

ity:

Consider the following linear regression model:

y = Xβ + ε (1)

where y is a (n×1) vector of study variable, (n×p) design matrix X is of full rank and

represents n observations on each of the (p−1) explanatory variables and an intercept

term with (n× 1) vector of elements unity, ε is a (n× 1) vector of disturbances which

is a random variables with zero mean and positive definite covariance matrix Σ, and

β is a (p× 1) vector of associated regression coefficients.

The ordinary least squares estimator of β from (1) is

b = (X ′X)−1X ′y. (2)

If we assume that the disturbances ε are homoscedastic, then the variance-covariance

matrix of b is

V ar(b) = σ2
ε(X

′X)−1, (3)

where Σ = σ2
εI.
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In the linear regression model (1), we assume that some of the explanatory vari-

ables are categorical variables. We use the set up of dummy variables to model the

categorial variables. A categorial variable with m categories is represented by (m−1)

dummy variables. The reference category or baseline category is denoted by r, which

the analysts may choose freely (r ε {1, . . . ,m}), see Rao et al. (2008). A dummy

variable Dk, k ε m\r, is defined as

Dk =

 1 if in category k

0 else.
(4)

Note that when dummy variables are used to represent the categorical explana-

tory variables, then an intercept term is needed in the model. Clearly the level of a

study variable y at the reference category is where all dummy variables are zero. So

the intercept term reflects this baseline level of y and is therefore necessary in the

regression model.

Now we assume that the problem of multicollinearity is present in data where

some of the explanatory variables are categorical in nature. We examine the role

of dummy variables under the aspect of multicollinearity. We measure the mul-

ticollinearity in the design matrix with condition number following Belsley et al.

(2004). A problem with the condition number is that it has its own scaling problems,

see Steward (1987). When the dimensions of the data are changed, then the condition

number is also changed. Belsley et al. (2004) recommends to scale each column of the

design matrix using the Euclidian norm of each column before computing the condi-

tion number. The methods of Belsley et al. (2004) are implemented in the statistical

software R using its package perturb. This package uses the root mean square of each

column for scaling as its standard procedure.

The condition number of a matrix X is defined as

κ(X) =

√
λmax

λmin

(5)
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where λj, (j = 1, 2, . . . , p) are the eigenvalues of X ′X. If we use the singular value

decompensation of X, then we can express the condition number in terms of singular

values (µ) as

κ(X) =
µmax

µmin

, (6)

where the singular values of X are the positive square root of eigenvalues of X ′X, see

Belsley et al. (2004) or Rao and Rao (1998) for further details on condition number,

eigenvalue system and singular value decompensation.

Belsley et al. (2004) derived the threshold values for κ(X) through simulation

studies. These values are 10 and 30 which indicates a medium and serious degrees

of multicollinearity, respectively. Based on κ(X), Belsley et al. (2004) considered

condition indices as

ηj =
µmax

µj

(j = 1, . . . , p).

These indices provide a more detailed insight into the multicollinearity issues of a

given matrix X. The number κ(X) indicates whether a matrix is ‘ill’ conditioned

or not. On the other hand, the numbers ηi provide information about the degree of

involved ‘near’ linear dependencies. If, for example, two ηi’s are greater then 30 then

this indicates that there are two ‘near’ linear dependencies which may cause prob-

lems. A regression coefficient variance decompensation technique can then identify

the involved variables in linear dependencies. By applying the singular value decom-

position, X = UDV ′ on the homoscedastic covariance matrix of (2), the variance of

ordinary least squares estimator in (3) can be rewritten as

V ar(b) = σ2V D−2V ′

where U and V are (n × p) and (p × p) orthogonal matrices, respectively and D is

(p × p) diagonal matrix with nonnegative diagonal elements µ1, . . . , µp. This relates
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the variance of jth regression coefficient with the singular values of X as

V ar(bj) = σ2

p∑
k=1

υ2
jk

µ2
k

. (7)

When a ‘near’ linear dependency is present then the corresponding value of µk is

very small, in comparison to other singular values. If a high proportion of the vari-

ance of two or more regression coefficients constitute the components of (7) aligned

with a small singular value, then the corresponding variables are considered to be

involved in causing the ‘near’ linear dependency. This is the idea behind the variance-

decompositions proportions. Each proportion πkj is the share of one component of (7)

related with one singular value µk relative to the total variance (7). If a proportion

is high, (say, > 0.5), then more than 50% of the variance of jth coefficient is related

to a small singular value µk. If another coefficient also has a high proportion related

with µk and the corresponding condition index µmax/µk is high, then a ‘near’ linear

dependency is diagnosed. Let

πkj =
φjk

φj

, (j, k = 1, . . . , p), (8)

φjk =
υ2

jk

µ2
k

, (9)

φj =

p∑
k=1

φjk. (10)

These proportions may then be summarized in a matrix Π with the condition indices

on the first column and remaining p columns for the proportions. A ‘near’ linear

dependency is present, when a condition index exceeds the threshold value. The

variables involved are identified by proportions greater then 0.5 in Π.
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3 Choice of reference category and multicollinear-

ity

It may be noticed that the choice of reference category affects the values of explanatory

variable. One of the objective of our study is to explore the influence of the choice

of reference category of a categorical variable on the degree of multicollinearity and

on the numerical stability of the estimates. We use the condition number of scaled

design matrix to diagnose the multicollinearity.

To motivate and understand the issue, we first consider a simple situation of

linear regression model

y = β0 + β1D + ε (11)

with an intercept term (β0), slope parameter (β1) and a dummy variable (D) repre-

senting a categorial variable with only two categories. Note that β1 is interpreted as

the difference in the expected values of y in different categories. Out of n number of

observations, we observe h times the value ‘1’ in the sample. We use the Euclidian

norm to scale the design matrix following Belsley et al. (2004). The resulting scaling

factors are (
√

n,
√

h). This provides a matrix where all the columns have same length.

The cross-product of the scaled matrix X ′
sXs is

X ′
sXs =

 1
√

f
√

f 1

 (12)

with f = h
n
6= 0 as the share of ‘ones’ in the sample. If f = 0, then we have a column

with all elements ‘zero’ in X and the scaled design matrix does not exist in this case.

Clearly a model with a ‘zero’ column does not makes any sense at all. If f is near

to 1, then there exists a close relationship between the intercept term and dummy

variable in the design matrix. The condition number, which is the ratio of square

root of the maximum and minimum eigenvalues of X ′
sXs, should also reflect the same
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fact. From the characteristic polynomial

(1− λ)2 − f, (13)

we obtain the eigenvalues of X ′
sXs as λ1,2 = 1±

√
f . The condition number is then

κ(Xs) =

√
λmax

λmin

=

√
1 +

√
f

1−
√

f
, (14)

which is a function of f . The graph of (14) is shown in figure 1. We observe from the

Figure 1: The condition number as a function of f

figure 1 that when f close to 0, then the condition number is close to 1 which indicates

that the data is nearly orthogonal. Following Belsley et al. (2004), the condition

number less then 10 indicates that there is no problem of multicollinearity at all.

When f = 0.96, then the condition number hits the bench mark ‘10’ and indicates

the presence of a medium degree of multicollinearity. As f increases towards 1, the

condition number tends towards infinity. Such an outcome is expected because then

the dummy variable column is ‘nearly’ linearly depending on the column of intercept

term in the design matrix.

From such illustration, we observe that the dummy variables can cause the mul-

ticollinearity problem. If only 4 percent of the observations are in the reference
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category, then we observe a medium degree of multicollinearity in this model. It

suggests further that the problem of multicollinearity can be avoided by choosing a

different reference category of dummy variable. In such a case when the reference

category is changed, then 96 percent of the observations lie in the reference category.

The condition number in this case is around 1.2 which indicates no multicollinearity.

It is also clear that by changing the reference category, the standard errors of the

corresponding regression coefficients are not changed. The homoscedastic variance

of the least squares estimate of regression coefficient (b1) of the model (1) under

consideration is

V ar(b1) =
nσ2

ε

(n− h)h
=

σ2
ε

nf(1− f)
(15)

which is symmetric due to the role of f .

However, the variance of the least squares estimate of intercept in (1) is affected.

It is

V ar(b0) =
σ2

ε

n− h
=

σ2
ε

n(1− f)
(16)

and is not symmetric like (15). If the share of ‘ones’ in the sample is large, then

(1− f) is small and the resulting variance in (16) is large. On the other hand, when

(1− f) is large, then the variance in (16) is small.

From such analysis in a simple case, we observe that the coding of dummy variable

and the choice of reference category affects the numerical stability of design matrix

as well as the variance of intercept term.

We also have obtained a closed form of the condition number in the presence

of dummy variables in (14) for diagnosing the multicollinearity. This is a function

of proportions of ‘ones’ and ‘zeros’. It increases as the degree of multicollinearity

increases due to the chosen reference category which affects the share of ‘ones’. Such

result is not reported in the literature on multicollinearity.
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3.1 Interaction of one categorial variable and intercept term

In the previous subsection, we tried to have some insight on the aspect that how the

choice of a reference category may affect the condition number of design matrix in a

simple case with one dummy variable and an intercept term. To get more insight on

this issue, we simulate some more models to see how the condition number behaves if

the number of ‘ones’ are more than the number of ‘zeros’ in the system. We consider

a model

y = β0 + β1X1 + β2D + ε (17)

with an intercept term (β0), slope parameters (β1, β2) which contains one dummy

variable (D) and a continuous quantitative explanatory variable (X1). The observa-

tions on the dummy variable (D) are drawn from a Binomial distribution B(1, p). If

a smaller value of p is chosen, then we expect less number of ‘ones’, and as p increases

the share of ‘ones’ increases. The continuous explanatory variable (X1) is drawn

from an exponential distribution exp(2.3). Then we compute the condition number

of the system for different values of p. We simulated 10 such designs and the mean

of conditional numbers is plotted against p in figure 2.

Figure 2: Conditional numbers vs. different values of p for the model y = β0 +β1X1 +

β2D + ε
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We see an exponential relationship between the condition number of design matrix

and value of p. The rate of increase of the condition number is moderate as long as

the expected share of ‘ones’ in the sample is less then 0.8. As soon as p becomes

larger than 0.8, we observe a higher rate of increment in the condition number with

respect to p. We observe a medium multicollinearity problem when the value of p is

around 0.95, which is quite similar to the results of the previous section.

Now we consider the simulation for the case of p = 0.95 in more detail. We draw

100 designs matrices for p = 0.95. We compute the condition number and present the

results on its descriptive statistics in table 1. We observe that the mean and median

Minimum 1st Median Mean 3rd Maximum Standard

Quartile Quartile deviation

9.048 9.738 10.15 10.22 10.69 11.69 0.643

Table 1: Descriptive statistics of condition numbers for y = β0 + β1X1 + β2D + ε

are close to 10. The deviation from the mean is relatively small. Next we present the

box-plot of the results of table 1 in figure 3. We observe that the condition numbers

Figure 3: Boxplot of 100 condition numbers for p = 0.95

are relatively symmetrically distributed.
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Now we explore the question that what happens if an additional category is

added in the model (17)? To understand this issue, we add another dummy variable,

representing the new category, in the model (17). So now we have a model

y = β0 + β1X1 + β2D1 + β3D2 + ε (18)

with an intercept term (β0), slope parameters (β1, β2, β3), one quantitative variable

(X1) and two dummy variables (D1, D2) representing the three categories denoted

by ‘0’, ‘1’, and ‘2’. The categorical variable is drawn from the Binomial distribution

B(2, p). The first dummy variable D1 takes the value ‘1’ if the categorical variable

is ‘1’ and the second dummy variable D2 is ‘1’ if the categorical variable is ‘2’. The

reference category is where the categorical variable is ‘0’. If we choose p similar to

earlier cases, then we observe no differences with the case in (18) when only one

dummy variable was considered in (17). The outcomes of the simulation are plotted

in figure 4 which are very similar to the outcomes as in figure 2. This clearly shows

that the nature of problem remains same even when the number of categories increase.

Figure 4: Conditional numbers vs. different values of p for the model y = β0 +β1X1 +

β2D1 + β3D2 + ε
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3.2 Interaction of more then one explanatory categorial vari-

ables and intercept Term

We now study a model with an intercept term and two explanatory categorical vari-

ables. The simulation model is equivalent to the model in section 3.1 but we add

a second categorical variable. Both categorical variables (or factors A and B) have

only two categories which are represented by two dummy variables DA and DB. More

precisely, the model is now

y = β0 + β1X1 + β2D
A + β3D

B + ε (19)

with DA ∼ B(1, p1), DB ∼ B(1, p2 = 0.5) and X1 ∼ exp(2.3). Then we compare

the case with only one dummy variable with this one to see the sensitivity of the

condition number to this addition of dummy variable in (17). We consider three

values of p1 = (0.7, 0.9, 0.95) based on the idea that p1 = 0.7 corresponds to ‘below

multicollinearity’ problem, p1 = 0.9 corresponds to a multicollinearity problem at

the border line and p1 = 0.95 is in the region of a medium multicollinearity problem

for the case with only one dummy. The results of condition numbers based on 1000

simulated design matrices for the three values of p1 are presented in figures 5 and 6

in three and one graphics, respectively.

We observe that the presence of second dummy variable increases the condition

number of design matrix. The explanation is as follows. The linear combination of the

two dummy variable is more similar to the intercept term than one dummy variable

alone. In case of p1 = 0.9, we expect a share of 90% ‘ones’, the second dummy variable

may then fill some of the gaps with additional ‘ones’. This leads to an increase in

the degree of multicollinearity between the dummy variables and intercept term. As

p1 increases, the rate of increase of condition number declines. This is because if

p1 is small, then the second dummy variable has a greater chance to fill the linear

combination with another ‘one’. As p1 increases, this chance become smaller because
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Figure 5: Results for the different values of p for y = β0 + β1X1 + β2D
A + β3D

B + ε

the first dummy variable contribute most of the ‘ones’ in linear combination.

We now add another categorical variable DC to the model (19) to support this

argument as

y = β0 + β1X1 + β2D
A + β3D

B + β4D
C + ε. (20)

The additional dummy variable (DC) is drawn from a Binomial distribution B(1, 0.35),

so we expect a smaller increase in the condition number since the third dummy vari-

able has less ‘ones’ than the second dummy variable. The results are presented in

figure 7. It compares the condition index of the cases with one, two and three dummy

variables. Having a third dummy variable in the model increases the condition num-

ber of the design matrix. As the third dummy variable has a lower probability of

success, so the increment in condition number is lower than the case of two dummy

variables.

3.3 Interaction of two dependent categorial variables

Now we simulate a model in which the two categorical variables are modeled as

dependent. An issue to be explored here is whether a dependent choice for the
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Figure 6: Results for the different values of p in one figure for y = β0 +β1X1 +β2D
A +

β3D
B + ε

reference category can affect the stability of the design matrix or not.

The simulation set up is as earlier, a model with an intercept term, a quanti-

tative continuous variable (X1) and categorical variables represented by two dummy

variables DA and DB as

y = β0 + β1X1 + β2D
A + β3D

B + ε. (21)

We observe dummy variable DA from a Binomial distribution B(1, 0.5). Another

dummy variable DB is dependent on DA and is modeled as follows. If a value of DA

is 1, then we draw the corresponding value of DB from B(1, p), else if a value of DA is

0 we use B(1, (1− p)). Hence if the value of p is close to 1, then we expect a positive

association between the two dummy variables. Such an example when p = 0.9 is as

follows:

DA\DB ‘0’ ‘1’

‘0’ 462 45

‘1’ 53 440

If DA has the value ‘1’ we expect DB to have the value ‘1’ as well.
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Figure 7: Results for 3 categorical variables for the model y = β0 + β1X1 + β2D
A +

β3D
B + β4D

C + ε

If we choose the reference category for DA different from DB, then we have a

negative association as follows:

DA\DB ‘0’ ‘1’

‘0’ 45 462

‘1’ 440 53

This is then simulated by using a small value of p and we choose p = 0.1. We simulate

100 experiments with p = 0.1 and p = 0.9, compute the condition numbers based on

the outcomes from 100 experiments and then compare them together. In figure 8, we

have described the results of the condition numbers for p = 0.9 and p = 0.1.

If we code the categorical variables such that they match in the ‘ones’, then we

obtain smaller condition numbers compared to the case when they are coded in the

other way. This means that a ‘near’ linear dependency with two dummy variables is

less harmful in terms of the condition number than a ‘near’ linear dependency with

two dummy variables and an intercept term.
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Figure 8: Dependent categorical variables under different types of coding the dummy

variables for the model y = β0 + β1X1 + β2D
A + β3D

B + β4D
C + ε

3.4 Influence of the choice of reference category on multi-

collinearity with two continuous variables

Next we consider a model where we have two continuous quantitative variables in-

volved in a ‘near’ linear dependency and one dummy variable which may have a weak

reference category. We term a category with low frequency as a weak reference cate-

gory. For example, if the number of ‘ones’ are 95% in a category and only 5% ‘zeros’

in other category, then the category with ‘0’ is called as a weak reference category.

The first continuous quantitative variable X1 is drawn from an exponential dis-

tribution exp(2.3). The second continuous quantitative variable X2 is a linear combi-

nation of X1 and of a normal random variable with mean zero and standard deviation

0.085sx1 where s2
x1 is the sample variance of observations on X1. The dummy variable
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Coefficient: Estimate Standard error Pr(> |t|)

Intercept 22.85 0.15 0

X1 1.31 0.92 0.16

X2 3.57 1.31 0.007

D 0.66 0.15 0

Table 2: Regression analysis output for y = 23 + 1.5X1 + 3X2 + 0.5D + ε

D takes two values ‘0’ and ‘1’. The study variable y is generated by

yi = 23 + 1.5X1i + 3X2i + 0.5Di + εi, (i = 1, . . . , n) (22)

where ε is a normally distributed random variable with zero mean and a standard

deviation of 1.5. The sample size is 1000.

We then compare the situation with a weak reference, modeled by using B(1, 0.9)

for D, with the recoded model which is obtained by changing the reference category

in (22).

The regression analysis output and Π matrix for the weak reference case are pre-

sented in tables 2 and 3, respectively. The deviations in the resulting estimates from

the known β are quite large. The parameter b1 is not significant at one percent level

of significance. The inflated variances of the regression estimates turn a known sig-

nificant parameter into an insignificant parameter. The related condition indices and

variance decomposition factors are stated in table 3. We observe from table 3 that one

condition index is just below the threshold for a medium degree of multicollinearity.

This is associated with the intercept term and dummy variable. Then we have a con-

dition index that is just above the threshold for a serious multicollinearity problem,

which is associated with the ‘near’ linear dependency of X1 and X2. Next we explore

what happens if we choose a different reference category. The results of regression

analysis obtained after reverting the reference category are presented in table 4. The
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Condition Variance Decomposition Proportions

number Intercept X1 X2 D

1 0.007 0.001 0.001 0.008

2.43 0.037 0.003 0.003 0.056

7.91 0.956 0 0 0.937

30.3 0 0.996 0.996 0

Table 3: Multicollinearity analysis output for y = 23 + 1.5X1 + 3X2 + 0.5D + ε

Coefficient: Estimate Standard error Pr(> |t|)

Intercept 23.01 0.07 0

X1 1.31 0.92 0.16

X2 3.57 1.31 0.007

D -0.66 0.15 0

Table 4: Regression analysis output for y = 23+1.5X1 +3X2 +0.5D+ε with changed

reference category
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Condition Variance Decomposition Proportions

number Intercept X1 X2 D

1 0.045 0.001 0.001 0.021

1.75 0 0 0 0.895

2.821 0.955 0.003 0.003 0.084

27.38 0 0.996 0.996 0.001

Table 5: Multicollinearity analysis output of y = 23 + 1.5X1 + 3X2 + 0.5D + ε with

changed reference category

estimates are more precise now (see table 4). The standard error of the intercept term

is lower and all other standard errors remain the same as in table 2. By changing

the reference category, we change the sign of the parameter estimate associated with

the dummy variable. In the earlier case, β3 is [E(y|D = 1) − E(y|D = 0)] and now

the reference category is the opposite of the earlier case. Therefore the sign must be

different. Note that β3 is still [E(y|D = 1)− E(y|D = 0)] but the interpretations of

‘0’ and ‘1’ are changed. The regression estimates associated with continuous quanti-

tative variables are still inflated. The condition indices and variance decomposition

proportions are presented in table 5. Now we have a condition index which is just

below 30. The absence of the ‘near’ linear dependency of the dummy variable and

intercept term therefore reduces the condition index. We have only problem now

between X1 and X2. The additional dependency between D and intercept term is

avoidable by the appropriate choice of the reference category.

4 Application to real data sets

Now we study the role of dummy variable and choice of reference category under

multicollinearity in real data sets. We consider two real data sets and do the similar
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analysis as in Section 3. The analysis and results are presented in the following

subsections.

4.1 Example 1: Infant-Mortality

We consider a data set from Leinhardt and Wassermann (1979) which was used in

Fox (1997) and is available in the R package ‘car’, R Development Core Team (2007).

It contain data on infant-mortality (y) per 1000 live births of 105 nations around

the world. The influence factors are whether the country is an oil exporting country

(factor A), the regions (Africa, America, Asia and Europe) (factor B) and the per-

capita income (in U.S. Dollars) X.

First we consider the model with 2 categorical variables as:

y = β0 + β1D
A + β2D

B
1 + β3D

B
2 + β4D

B
3 + β5X + ε (23)

Note that B has four categories and hence we need three dummy variables to

represent them as DB
1 , DB

2 and DB
3 . The bar plot of the two categorial variables

indicates whether there are weak categories or not. Weak categories are those classes

which have low frequencies. They may give rise to multicollinearity with the intercept

term if chosen as reference category. The regions seems to be well balanced and the

relative frequencies of all the categories are larger then 15%.

There are not much oil exporting countries in the sample as figure 10 shows. Only

8% of the countries in the sample are oil exporting countries. There is no association

between the region and an oil exporting country, only Europe has no oil exporting

country in the sample.

If we choose the countries with oil export as a reference category, then we expect

a ‘near’ dependency between the corresponding dummy variable and intercept term.

Assuming homoscedastic errors, we obtain the regression results for (23) in table 6.
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Figure 9: Barplot of the regions in infant-mortality data

The intercept term in this case is the mean mortality for a non oil exporting

country in Africa with income zero. It gives a reference for the interpretation of

dummy variables. From the output in table 6, we observe that exporting oil lowers

the infant mortality. An African state which does not export oil has a higher infant

mortality than a non-African state who does export oil, as the comparison of b1 and

intercept shows. It interprets that since an African state does not export oil, so they

have low income and less profit. In turn, they spend less on the welfare of the people

and hence they have higher infant mortality rate.

The variance decomposition proportions shows a medium degree of multicollinear-

ity between the dummy variable for oil and intercept term. Only the last row is printed

in table 7.

Now if we choose a different reference category for the oil exporting countries,

then we have no problem at all and the variance of intercept term is more precise.

Since the reference category for oil is different, so the interpretation of intercept term

estimate is also different, see table 8. Table 8 shows that not exporting oil increases
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Coefficients: Estimate Standard Error Pr(> |t|)

Intercept 215.2 29.7 0

oil-yes -78.3 28.9 0.01

region-America -83.7 21.8 0

region-Asia -45.9 20.1 0.02

region-Europe -101.5 30.7 0.001

income -0.005 0.007 0.48

Table 6: Regression analysis output of infant-mortality data

Condition- Variance Decomposition Proportions

number Intercept oil-yes region-America region-Asia region-Europe income

9.25 0.96 0.93 0.02 0.04 0 0.02

Table 7: Multicollinearity analysis output of infant-mortality data

Coefficients: Estimate Standard error Pr(> |t|)

Intercept 136.8 13.6 0

oil-no 78.3 28.9 0.01

region-America -83.7 21.8 0

region-Asia -45.9 20.1 0.02

region-Europe -101.5 30.7 0.001

income -0.005 0.007 0.48

Table 8: Regression analysis output of infant-mortality data with changed reference

category
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Figure 10: Barplot for the oil exporting countries in infant-mortality data

Condition Variance Decomposition Proportions

number Intercept oil-no region-America region-Asia region-Europe income

3.93 0.49 0.03 0.51 0.47 0.72 0.3

Table 9: Multicollinearity analysis output of infant-mortality data with changed ref-

erence category

the infant mortality relative to the baseline of oil exporting states, all other things

equal. Note that the standard error of intercept term is less then half than the

value of the standard error of intercept term in the model (11) with the different

choice of reference category for oil as in table 6. The condition indices and variance

decomposition proportions are stated in table 9. Only the last row is printed in table

9. We observe from table 9 that the choice of reference category lowers the condition

index. Now there is no multicollinearity at all.

26



4.2 Example 2: Prestige of occupations

The data set is taken from Duncan (1961). The data was also used by Fox (1997)

and is available in R. The data was collected in 1950. Here we study the relationship

between categorial and continuous variables which causes multicollinearity. It illus-

trates how the choice of a weak category as a reference may affect the multicollinearity

measures in this case.

The occupation prestige (y) was measured as the percent of raters in a NORC1

study which rated the prestige of occupations as excellent or good. A categorical

variable is used for the type of occupation with the values - professional and manage-

rial (prof), white-collar class (wc) and blue-collar class (bc). So we have 3 categories

which are represented by two dummy variables D1 and D2. The percentage of males

in a occupation earning US$ 3500 or more was used as a measure for income (X1)

and the share of males in a occupation with high-school diploma as a measure for

education (X2).

The model for the prestige of occupations is

y = β0 + β1D1 + β2D2 + β3X1 + β4X2 + ε. (24)

First we analyze the frequencies of the occupation type from figure 11. Most

people in the sample are in blue-collar class. Only 13.3% persons in the sample are

in the white-collar class. Our recommended choice for a reference category is the

blue-collar class which has a relative frequency of 46.7%.

Another problematic issue can be, that whether the occupation type is associated

with income or education. For example, the persons in professional and managerial

jobs earn a higher income than the persons in white-collar jobs. This is illustrated in

figure 12. The group effect seems to be stronger for education than for income.

1National Opinion Research Center
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Figure 11: Barplot of the occupational types

Again we choose the naive reference category and take white-collar as reference

category, because it has the lowest relative frequency from figure 11. The intercept

term then is the mean prestige of a white-collar worker given all quantitative vari-

ables are zero. The results are presented in table 10 and we observe that having a

professional or managerial job increases the prestige of the job more then having a

blue-collar job. When we compare the prestige of the professional and blue-collared

jobs, then the intercept term represents the mean prestige level for white-collar jobs

with income and education equal to zero. In this case, we have the lowest prestige in

the reference category (wc) followed by blue collared jobs and by professionals. This

can be considered as an intuitive guideline to choose the reference category in this

case. But as it turns out, this increases the degree of multicollinearity as well as the

variance of intercept term.

Now consider the multicollinearity diagnostic for this data which is presented

in table 11. We observe from table 11 that there is a multicollinearity between

the intercept term and dummy variable for blue-collar occupation and also with the

eduction. The intercept term together with the dummy variable and education form
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Coefficients: Estimate Standard Error Pr(> |t|))

Intercept -14.8 8.18 0.07

type-prof 31.3 5.07 0

type-bc 14.66 6.11 0.02

income 0.6 0.09 0

education 0.34 0.11 0.004

Table 10: Regression analysis output of ‘prestige of occupation’ data with wc as

reference category

Condition Variance Decomposition Proportions

number Intercept type-prof type-bc income education

1 0.002 0.010 0.002 0.008 0.003

1.8 0.002 0.039 0.073 0.001 0.001

4.9 0 0.73 0.082 0.251 0.008

7.6 0.053 0.209 0.078 0.724 0.276

13.8 0.942 0.012 0.765 0.016 0.712

Table 11: Multicollinearity analysis output of ‘prestige of occupation’ data with wc

as reference category
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Figure 12: Boxplot of the income and eduction for the occupational types

a weak ‘near’ linear dependency.

We can get the intercept term out of that dependency if we use the blue-collared

occupation as a reference category, since it has the highest frequency. The interpre-

tation of intercept term is the mean prestige level for blue-collar jobs with income

and education equal to zero. Here the baseline level of the prestige lies in the middle,

white-collar jobs have lower prestige and professional jobs have higher prestige, all

other things equal, see table 12. Again we get a more precise estimate for the inter-

cept term and the standard error of intercept term is less then half of the value as

from table 10. The results about the multicollinearity diagnostic for this case are pre-

sented in table 13. Now we observe from table 13 that the medium multicollinearity

problem is reduced on the basic association between occupation type and education.

The intercept term is now of no problem anymore. Thus, we expect the standard

errors of regression estimator of type-prof and education to be little inflated.
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Coefficients: Estimate Standard error Pr(> |t|)

Intercept -0.19 3.71 0.96

type-prof 16.66 6.99 0.02

type-wc -14.66 6.11 0.02

income 0.6 0.09 0.02

education 0.34 0.11 0.004

Table 12: Regression analysis output of ‘prestige of occupation’ data with bc as

reference category

Condition Variance Decomposition Proportions

number Intercept type-prof type-wc income education

1 0.01 0.006 0.006 0.008 0.003

1.9 0.001 0.022 0.335 0 0

3.6 0.31 0.125 0.178 0.001 0.002

6.5 0.209 0.093 0.075 0.977 0.032

10.828 0.471 0.754 0.406 0.014 0.963

Table 13: Multicollinearity analysis output of ‘prestige of occupation’ data with bc as

reference category
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The worst case of choice of reference category in this example is if we choose the

professional occupations as reference category. The dummy variable for white-collared

occupation and intercept term form a ‘near’ linear dependency with eduction. The

condition index in this case is 15.

5 Summary

We have considered an issue related to the problem of multicollinearity in the pres-

ence of categorical variable as explanatory variable in the context of linear regression

analysis. The role of dummy variables and the choice of reference category is analyzed

through different linear models to see their effect in the problem of multicollinearity.

In a simple case of one dummy variable, we have demonstrated that how the choice

of reference category affects the multicollinearity. A closed form of condition number

is also obtained in this case as a function of a collinearity increasing factor. It is

difficult to get such a closed form expression in the general case as there can be many

possible combinations of dummy and quantitative variables in linear regression mod-

els. So such an issue is explored more in detail by choosing various combinations of

dummy and quantitative variables. It is found that the presence of dummy variable

and the choice of reference category can be a cause of multicollinearity. Also, the

situation of multicollinearity can be averted by changing the reference category. We

have demonstrated this issue by simulation as well as through the application of two

real data sets.
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