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Abstract

In a multivariate mean-variance model, the class of linear score (LS)
estimators based on an unbiased linear estimating function is introduced.
A special member of this class is the (extended) quasi-score (QS) estimator.
It is “extended” in the sense that it comprises the parameters describing
the distribution of the regressor variables. It is shown that QS is (asymp-
totically) most efficient within the class of LS estimators. An application is
the multivariate measurement error model, where the parameters describ-
ing the regressor distribution are nuisance parameters. A special case is the
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1 Introduction

We consider a q-dimensional random vector y which is related to a p-dimensional

random vector x via a conditional vector valued mean function m(x, θ) := E (y|x).

The mean function depends on an unknown d-dimensional parameter vector θ to

be estimated with the help of an iid sample (xi, yi), i = 1, n. (All vectors are

taken to be column vectors). The mean function is supplemented by a matrix

valued conditional variance function v(x, θ) := V(y|x) depending on the same

parameter vector θ as the mean function. This parameter vector also determines

the distribution of the regressor variable x, which is supposed to be given by a

density function ρ(x, θ). Such a model may arise in the context of measurement

error models.

We can estimate θ by constructing a quasi-score function. However the usual

quasi-score function

∂m>(x, θ)

∂θ
v(x, θ)−1{y −m(x, θ)},

cf., e.g., Armstrong (1985), Carroll et al. (2006), Heyde (1997), Wedderburn

(1974), is not optimal and sometimes not even feasible. We extend the quasi-score

function by adding the term ∂logρ(x, θ)/∂θ. This extended quasi-score function

is again called the quasi-score (QS) function of the model.

We show that the QS estimator of θ based on this QS function is optimal

within the class of so-called linear score (LS) estimators, which are based on linear-

in-y unbiased estimating (or: score) functions. Optimality is defined in terms of

the asymptotic covariance matrices (ACMs) of the QS and LS estimators. We

also derive a formula for the rank of the difference of the two ACMs.

This paper is a generalization of some of the results of Kukush et al. (2006)

to the case of a multivariate response variable y, whereas in the previous paper

only the univariate case was considered. The proofs, however, carry over with
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only minor changes and will therefore be omitted.

An application of the multivariate model is the zero-inflated log-linear Poisson

measurement error model, which is characterized by the property that the distrib-

ution of a count variable y is given by a Poisson law for y > 0, while the value y = 0

occurs with a separate probability unrelated to the Poisson distribution, cf., e.g.,

Cameron and Trivedi (1998), Czado and Min (2006), Lambert(1992). Although

this model is univariate it can be studied under the guise of a two-dimensional

multivariate model, where the indicator variable for the event y = 0 serves as the

second variable.

In the following, we often suppress the arguments in the various functions.

E.g., we write m instead of m(x, θ). Derivatives with respect to θ (or other

variables) are denoted by a subscript, e.g., (logρ)θ := ∂logρ(x, θ)/∂θ, which is a

vector of the same dimension as θ. For a vector, like m, the derivative mθ is a

matrix (i.e., mθ := ∂m/∂θ>), and for a matrix, it is a tensor. E.g., if g is a (d× q)

matrix with elements gij, i = 1, d, j = 1, q, then gθ is a tensor with elements gj
ik :=

∂gij/∂θk, k = 1, d, such that gθy is a matrix with elements (gθy)ik =
∑d

j=1 gj
ikyj,

so that (gy)θ = gθy.

Section 2 introduces the LS and QS estimators in a general mean-variance

model and states the main results on the optimality of QS. Section 3 applies the

general theory to the zero-inflated Poison measurement error model. Section 4

has some simulation results, and Section 5 concludes.
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2 The general mean-variance model

2.1 LS and QS estimators of a mean-variance model

Let x and y be random vectors distributed in Rp and Rq, respectively. Conditional

mean and conditional variance of y given x are supposed to be known except for

an unknown parameter vector θ with dimension d:

m(x, θ) = E (y|x) ∈ Rq, v(x, θ) = V(y|x) ∈ Rq×q.

We assume that v(x, θ) is a positive definite matrix for all x and θ. Let x have

marginal density ρ(x, θ).

The class L of all unbiased linear-in-y scores consists of functions

SL(x, y; θ) = g(x, θ)y − h(x, θ), (1)

where g is a matrix of size d × q and h is a vector of dimension d. Unbiasedness

means that, for all θ, ESL(x, y; θ) = 0. Note that the expectation of a random

function of θ is always taken under the same value of θ as the θ in the argument

of the function.

Suppose an iid sample (xi, yi), i = 1, n, is given. The LS estimator θ̂L based

on SL is given by the solution to the equation

n∑
i=1

SL(xi, yi; θ̂L) = 0.

Under regularity conditions, as detailed for a similar model in Kukush and

Schneeweiss (2005), see also Schervish (1995), the solution θ̂L is, with probability

tending to 1, unique for sufficiently large n and θ̂L is consistent and asymptotically

normal with an ACM given by

ΣL = (ESLθ)
−1 E (SLS>L )(ESLθ)

−>.
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The most important regularity condition is the condition that ESLθ should be

nonsingular. We call this the identifiability condition.

Quasi Score is a particular element of the class L. It is given by the QS

function

SQ(x, y; θ) = m>
θ v−1(y −m) + (log ρ)θ. (2)

Under regularity conditions, see Kukush and Schneeweiss (2005), θ̂Q is consistent

and asymptotically normal with the ACM ΣQ = (ESQS>Q)−1. The identifiabil-

ity condition here boils down to the condition that ESQS>Q = Em>
θ v−1mθ +

E (log ρ)θ(log ρ)>θ should be positive definite. This is equivalent to the condition

that the system of (q + 1)-dimensional random vectors

{m1θk
,m2θk

, · · · ,mqθk
, (log ρ)θk

, k = 1, d} is linearly independent, (3)

where m = (m1,m2, · · · ,mq)
>.

2.2 Optimality of QS

The following identity is useful in proving the optimality of QS within the class

L:

ESLθ + ESLS>Q = 0. (4)

To prove (4), first note that

ESLS>Q = E g(y −m)(y −m)>v−1mθ + E (gm− h)(log ρ)>θ

= E gmθ + E (gm− h)(log ρ)>θ . (5)

In addition, by differentiating ESL = E (gm − h), which is identically equal to

zero, with respect to θ, we obtain the identity

E (gm− h)θ + E (gm− h)(log ρ)>θ = 0. (6)
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Now,

ESLθ = E (gθm− hθ),

where gθ is a tensor, see Section 1, and (4) holds as a consequence of (5) and (6).

In a similar way as in Kukush et al. (2006), we can prove the following

theorem by applying (4).

Theorem 2.1 In a mean-variance model,

ΣL ≥ ΣQ.

in the sense of the Löewner order.

More details are provided by the following theorem.

Theorem 2.2 In a mean-variance model,

rank (ΣL − ΣQ) = rank







(gv)i1

...

(gv)iq

(gm− h)i




,




(m1)θi

...

(mq)θi

(log ρ)θi




, i = 1, d



− d. (7)

Proof : Kukush et al. (2006), proof of Theorem 4.2, have shown that

rank (ΣL − ΣQ) = rank {(SL)i, (SQ)i, i = 1, d} − d. (8)

The rank on the r.h.s. of (8) can be expressed in terms of the constituents of SL

and SQ. For this purpose, we evaluate the defect of the system of random variables

{(SL)i, (SQ)i, i = 1, d}, which is the maximum number of linearly independent

constant vectors (c>1 , c>2 )> which satisfy the equation

c>1 SL + c>2 SQ = 0, a.s,
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or, equivalently,

c>1 (gy − h) + c>2 [m>
θ v−1(y −m) + (log ρ)θ] = 0, a.s.

By similar arguments as in Kukush et al. (2006), using the condition that v

is positive definite for all x, this equation can be rewritten as a system of two

equations, one concerning the terms pertaining to y, the other one concerning the

remaining terms:

c>1 gv + c>2 m>
θ = 0,

c>1 (gm− h) + c>2 (log ρ)θ = 0,

a.s. Thus

def{(SL)i, (SQ)i, i = 1, d} = def







(gv)i1

...

(gv)iq

(gm− h)i




,




(m1)θi

...

(mq)θi

(log ρ)θi




, i = 1, d




.

(9)

As both systems in (9) have the same number, 2d, of random elements (on the left-

hand side random variables, on the right-hand side random vectors), the equality

of defects implies the equality of ranks. The statement of the theorem now follows

from (8) and (9).

2.3 Marginal Quasi Score

Starting from a multivariate mean-variance model, we can always consider a sub-

vector of y and set up the corresponding marginal mean-variance model for this

subvector. In particular, the subvector may consist of a single component of y.

We can construct a marginal quasi-score function with this marginal model. As

long as the identifiability condition (3) for this marginal QS function is satisfied,

we can use it to estimate θ.
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We study the relation between the full and the marginal QS estimator of θ.

For simplicity, let q = 2. We consider the marginal QS estimator which uses only

y1 and is based on the marginal QS function

SQ∗ =
m1θ(y1 −m1)

v11

+ (log ρ)θ. (10)

This estimator is most efficient in the class of estimators based on a linear-in-y1

estimating function. Above we considered estimators linear in (y1, y2)
>, and it is

obvious from Theorem 2.1 that

ΣQ∗ ≥ ΣQ.

We can compute the rank of ΣQ∗ − ΣQ. Consider the functions

g∗ =

(
m1θ

v11

, 0

)
,

h∗ =
m1θ m1

v11

− (log ρ)θ.

Then SQ∗ = g∗y − h∗. Furthermore,

g∗v =

(
m1θ,

v12

v11

m1θ

)
,

g∗m− h∗ = (log ρ)θ.

By (7), rank (ΣQ∗ − ΣQ) + d =

rank




m>
1θ m>

1θ

m>
1θv12v

−1
11 m>

2θ

(log ρ)>θ (log ρ)>θ


 = rank




0 m>
1θ

m>
1θv12v

−1
11 −m>

2θ m>
2θ

0 (log ρ)>θ


 .

As by assumption v(x, θ) is positive definite for all x, therefore v11 is positive for

all x and hence

rank (ΣQ∗ − ΣQ) = rank




0 m>
1θ

m>
1θv12 −m>

2θv11 m>
2θv11

0 (log ρ)>θ


− d, (11)

where rank[·] is the column rank of the system of random variables [·].
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3 Zero-Inflated Poisson model

3.1 The model and its QS estimator

Consider a scalar response variable y1 and a scalar regressor variable ξ such that

the conditional distribution of y1 given ξ is a mixture of a Poisson distribution

Po(η) with parameter η and a one-point distribution δ0 at point zero with mixing

parameter α ∈ (0, 1):

y1|ξ ∼ αδ0 + (1− α)Po(η).

Let η = exp(β0 + β1ξ). In addition to y1, we introduce the indicator variable

y2 = I(y1 = 0),

so that y = (y1, y2)
> is a bivariate response variable. This zero-inflated log-linear

Poisson model is a special case of our general model with p = 1 and q = 2. The

distribution of y|ξ is given by

p(y|ξ) = (1− α)
e−ηηy1

y1!
(1 +

α

1− α
eη)y2 .

The variable ξ is not directly observable. Instead we observe

x = ξ + δ

with a measurement error δ ∼ N(0, σ2
δ ), σ2

δ > 0, which is independent of ξ

and y. The error variance σ2
δ is assumed to be known. In addition, we assume

ξ ∼ N(µ, σ2
ξ ), σ2

ξ > 0, so that

log ρ(x, θ) = −(x− µ)2

2σ2
− log σ + const, σ2 = σ2

ξ + σ2
δ .

The unknown parameter vector of this model is θ = (α, β0, β1, µ, σ)>, and thus

d = 5. To derive the mean-variance model for y|x, we need to compute µ1(x) :=

E (ξ|x) and τ 2 := V(ξ|x). We have

µ1(x) = Kx + (1−K)µ with K = K(σ) = 1− σ2
δσ

−2 and τ 2 = σ2
δK,
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where K is the reliability ratio, cf. Kukush et al. (2006), Section 6.2. The mean

function m(x, θ) = (m1(x, θ),m2(x, θ))> is given by

m1(x, θ) = (1− α) exp{β0 + µ1(x)β1 + β2
1τ

2/2}, (12)

m2(x, θ) = α + (1− α)E (f |x),

where f = f(t) = exp{−et} with t = β0 + β1µ1(x) + β1τγ and γ ∼ N(0, 1),

independent of x. The matrix v = v(x, θ) is expressed in terms of m1 and m2 as

follows:

v =


 m1(1−m1) + 1

1−α
eβ2

1τ2
m2

1 −m1m2

−m1m2 m2(1−m2)


 . (13)

With these mean and variance functions, we can set up the QS estimator as in

Section 2.1.

It can be proved that v(x, θ) is p.d. for all x and θ, a.s. Indeed, we have

v(x, θ) = E (V(y|ξ)|x) + V(E (y|ξ)|x) ≥ E (V(y|ξ)|x),

and it is enough to show, that V(y|ξ) is p.d. for all ξ and θ a.s. Let z be an

indicator variable independent of ξ, with P (z = 0) = α and P (z = 1) = 1 − α,

such that y1|(ξ, z = 1) ∼ Po(η) and y1|(ξ, z = 0) ∼ δ0. Then

V(y|ξ) ≥ EV(y|ξ, z) = (1−α)V(y|ξ, z = 1) = (1−α)


 η −ηe−η

−ηe−η e−η(1− e−η)


 ,

which is positive definite.

We can prove that the QS estimator of µ is just the empirical mean. Indeed,
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consider mθ:

m1θ =

(
− 1

1− α
, 1, µ1(x) + τ 2β1, (1−K)β1, β1(x− µ)

∂K

∂σ
+

1

2
β2

1

∂τ 2

∂σ

)>
m1,

m2α = 1− E (f |x),

m2β0 = (1− α)E (f ′|x),

m2β1 = (1− α)
(
µ1(x)E (f ′|x) + β1τ

2 E (f ′′|x)
)
, (14)

m2µ = (1− α)(1−K)β1 E (f ′|x),

m2σ = (1− α)β1

(
(x− µ)

∂K

∂σ
E (f ′|x) +

1

2
β1

∂τ 2

∂σ
E (f ′′|x)

)
.

Here, we used the identity

E [γf ′(a(x) + cγ)|x] = cE [f ′′(a(x) + cγ)|x]

with c = β1τ . We see that

(m1µ,m2µ) = (1−K)β1(m1β0 ,m2β0). (15)

This implies that from the second and fourth equations for θ̂Q, i.e., from

n∑
i=1

{m1β0(xi, θ),m2β0(xi, θ)}v−1{yi −m(xi, θ)} = 0,

n∑
i=1

{m1µ(xi, θ),m2µ(xi, θ)}v−1{yi −m(xi, θ)}+
n∑

i=1

{logρ(xi, θ)}µ = 0,

we obtain µ̂Q = x.

On the other hand, the QS estimator of σ2 is not the empirical variance of

xi, i = 1, n. We will give an indirect proof of this fact in the next section.

Note

It is interesting to note that a marginal QS method, which uses only the condi-

tional mean and variance of y1 does not work. Indeed, such a method would be
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based on the quasi score function

SQ∗ = m1θv
−1
11 (y1 −m1) + (log ρ)θ,

alone, see (10). But since the first two components of m1θ are linearly dependent,

see (14), the estimating equations based on SQ∗ are not sufficient to produce a

unique solution θ̂Q∗ . Looked at it from another angle, it is seen that the identifi-

ability condition (3) is violated.

3.2 Modified Corrected Score

In this section we construct a score function to estimate θ, which does not use

any information about the distribution of x.

Consider the ML score for (α, β) in the error-free model:

SML =
y1

η

(
0

ηβ

)
+

y2

α + (1− α)e−η

(
1

1−α

αηβ

)
−

(
1

1−α

ηβ

)
, ηβ = η


 1

ξ


 . (16)

It is not possible to construct the so-called corrected score function S
(α,β)
C as the

solution to the deconvolution problem

E (S
(α,β)
C (x, y; θ)|ξ, y) = SML(ξ, y; θ),

cf. Nakamura (1990), because there are complex zeros in the common denominator

of SML, cf. Stefanski (1989). Therefore we modify SML by multiplying the first

component of SML by (1− α)(α + (1− α)e−η) and the other two components by

α + (1− α)e−η. It should be noted that this modified SML is no more optimal in

the context of the error free model. Nevertheless, we use it to construct a modified

score S
(α,β)
C , which is the solution to the modified deconvolution problem

E (S
(α,β)
C (x, y; θ)|ξ, y) =

(
α + (1− α)e−η

)
diag{1− α, 1, 1}SML(ξ, y; θ).

12



The parameters µ and σ2 are estimated as empirical mean and variance, respec-

tively.

The modified corrected score SC is a linear unbiased score function, SC =

gy − h, where

E (g|ξ) =




0 1

α + (1− α)e−η αη

(α + (1− α)e−η)ξ αηξ

0 0

0 0




, E (h|ξ) =




α + (1− α)e−η

(α + (1− α)e−η)η

(α + (1− α)e−η)ηξ

ξ − µ

(ξ − µ)2 − σ2
ξ




.

(17)

The last two components of h are

h4 = x− µ,

h5 = (x− µ)2 − σ2.

The other components of h and the elements of g are given below, see Section 4.

The estimator based on this score function is the modified corrected score

(MCS) estimator.

The following theorem states the efficiency of the QS estimator vis-à-vis the

MCS estimator as measured by the difference of the ACMs.

Theorem 3.1 Under α ∈ (0, 1), β1 6= 0,

Σ
(α,β,σ)
Q < Σ

(α,β,σ)
C .

These matrices are the ACMs of the QS and MCS estimators of (α, β0, β1, σ)>,

respectively. Under β1 = 0 and α ∈ (0, 1) we have rank (Σ
(α,β,σ)
C − Σ

(α,β,σ)
Q ) = 1.

It follows that, under β1 6= 0, we have Σ
(σ)
Q < Σ

(σ)
C , therefore σ̂2

Q is not the

empirical variance.
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If α is known, then, under β1 6= 0, the QS estimator of (β0, β1, σ) is strictly

more efficient than the MCS estimator.

3.3 Proof of Theorem 3.1

To prove the statement of the Theorem we compute the rank of the system in (7).

First note that µ̂C = µ̂Q = x. Therefore from the inequality ΣC ≥ ΣQ we have

ΣC − ΣQ =


 Σ

(α,β,σ)
C − Σ

(α,β,σ)
Q 0

0 0


 .

The right-hand side of (7) can be written as the rank of the following system

of three-dimensional random vectors minus 5:



(gv)11 (gv)21 (gv)31 m1α m1β0 m1β1 m1σ 0 0

(gv)12 (gv)22 (gv)32 m2α m2β0 m2β1 m2σ 0 0

(gm− h)1 (gm− h)2 (gm− h)3 0 0 0 0 x− µ (x− µ)2 − σ2


 ,

(18)

where the column (m1µ, m2µ, 0)> was dropped because of (15).

We divide the proof into two parts. First we show that

{(gm− h)1, (gm− h)2, (gm− h)3, x− µ, (x− µ)2 − σ2} (19)

are linearly independent functions of x. Then we show that the functions of x

{m2α,m2β0 ,m2β1 ,m2σ} (20)

are linearly independent.

With these two sets of linearly independent functions we immediately obtain

that the column rank of the system in (18) is 9, therefore the rank of Σ
(α,β,σ)
C −

Σ
(α,β,σ)
Q is 4, and this matrix is positive definite.
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3.3.1 Part 1 of the proof

We want to show that the functions (19) are linearly independent under β1 6= 0.

We consider only the case β1 > 0. The case β1 < 0 can be treated similarly. We

divide the proof into three steps:

1. We prove that (gm−h)i → 0 as x → −∞, i = 1, 2, 3, while x and x2 converge

to infinity. This means that we can exclude (x− µ) and (x− µ)2 − σ2 and

consider only the linear independence of (gm− h)i.

2. We show that (gm− h)3 ∼ xeβ1Kx, while (gm− h)1,2 ∼ eβ1Kx as x → −∞.

This allows us to consider only (gm− h)1 and (gm− h)2.

3. We show that any linear combination of (gm − h)1 and (gm − h)2 can be

split into two parts with different order of convergence to zero. This will

yield linear independence of (gm− h)1 and (gm− h)2.

Taking all three arguments together, we obtain the linear independence of the

total system (19).

However, before we start with these steps, we need to introduce some prelim-

inary considerations. We define functions ui(x), i = 1, 4, which are the solutions

to the following deconvolution problems:

E (u1|ξ) = e−η, E (u2|ξ) = e−ηξ, E (u3|ξ) = e−ηη, E (u4|ξ) = e−ηηξ. (21)
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The explicit forms of uk(x) are:

u1(x) =
∞∑

k=0

(−1)k

k!
exp{kβ0 + kβ1x− k2β2

1σ
2
δ/2}, (22)

u2(x) =
∞∑

k=0

(−1)k

k!
(x− kβ1σ

2
δ ) exp{kβ0 + kβ1x− k2β2

1σ
2
δ/2}, (23)

u3(x) =
∞∑

k=0

(−1)k

k!
exp{(k + 1)β0 + (k + 1)β1x− (k + 1)2β2

1σ
2
δ/2}, (24)

u4(x) =
∞∑

k=0

(−1)k

k!
{x− (k + 1)β1σ

2
δ}

× exp{(k + 1)β0 + (k + 1)β1x− (k + 1)2β2
1σ

2
δ/2}. (25)

Due to Fubinis theorem, we can exchange the order of summation and of com-

puting E (uk|ξ) and can thus check that the functions uk(x) given in (22)–(25)

are indeed the solutions to (21). The series in (22)–(25) converge uniformly on

(−∞, x0) for arbitrary x0 ∈ R. This yields the following asymptotic expansions

for uk as x → −∞:

u1(x) = 1− exp{β0 + β1x− β2
1σ

2
δ/2}+

1

2
exp{2β0 + 2β1x− 2β2

1σ
2
δ}+ o(e2β1x),

u2(x) = x + o(x),

u3(x) = exp{β0 + β1x− β2
1σ

2
δ/2} − exp{2β0 + 2β1x− 2β2

1σ
2
δ}+ o(e2β1x),

u4(x) = x exp{β0 + β1x− β2
1σ

2
δ/2}+ o(xeβ1x).

With the help of the functions uk(x), k = 1, 4, we can write expressions for the

first three rows of the matrix g and the vector h:



g1

g2

g3


 =




0 1

α + (1− α)u1 α exp{β0 + β1x− β2
1σ

2
δ/2}

αx + (1− α)u2 α(x− β1σ
2
δ ) exp{β0 + β1x− β2

1σ
2
δ/2}


 ,(26)




h1

h2

h3


 =




α + (1− α)u1

α exp{β0 + β1x− β2
1σ

2
δ/2}+ (1− α)u3

α(x− β1σ
2
δ ) exp{β0 + β1x− β2

1σ
2
δ/2}+ (1− α)u4


 . (27)
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Therefore the first three components of the vector (gm− h) are:




m2 − α− (1− α)u1

α(m1 − (1−m2) exp{β0 + β1x− β2
1σ

2
δ/2}) + (1− α)(u1m1 − u3)

α(xm1 − (1−m2)(x− β1σ
2
δ ) exp{β0 + β1x− β2

1σ
2
δ/2}) + (1− α)(u2m1 − u4)


 .

Remember that m1 = const · eβ1Kx.

We establish the asymptotics of m2 as x → −∞. Denote f0 = E (f |x), where

f = f(t) = exp{−et}, t = β0 + β1µ1(x) + β1τγ, γ ∼ N(0, 1).

Then m2 = α + (1− α)f0. Obviously, t ∼ β1Kx and f(t) = 1− et + 1
2
e2t + o(e2t)

as x → −∞. By the dominated convergence theorem,

f0 = 1− exp{β0 +β1µ1(x)+β2
1τ

2/2}+
1

2
exp{2β0 +2β1µ1(x)+2β2

1τ
2}+o(e2β1Kx).

It is now easy to see that m2 → 1 as x → −∞.

1. Now we are ready for the first step. Consider a linear combination of the

functions (19), which is zero for all x:

c1(gm−h)1 + c2(gm−h)2 + c3(gm−h)3 + c4(x−µ)+ c5((x−µ)2−σ2) ≡ 0. (28)

From the asymptotic expressions for the functions m1, m2, u1, . . . , u4 it is easily

seen that the functions (gm − h)i vanish as x → −∞, i = 1, 3. Therefore the

coefficients c4 and c5 in (28) must be equal to zero.

2. Now we establish the asymptotic behavior of (gm−h)i. Consider (gm−h)1:

(gm− h)1 = (1− α)(f0 − 1) + (1− α)(1− u1).

As f0 − 1 ∼ const · eβ1Kx, 1− u1 ∼ const · eβ1x, and eβ1x = o(eβ1Kx) we have

(gm− h)1 ∼ const · eβ1Kx, x → −∞.
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Consider (gm − h)2. We have (1 − m2)e
β1x = o(eβ1Kx), u3 = o(eβ1Kx), and

u1m1 ∼ m1. Therefore

(gm− h)2 ∼ m1 ∼ const · eβ1Kx, x → −∞.

Consider (gm − h)3. We have (1 − m2)(x − β1σ
2
δ )e

β1x = o(xeβ1Kx), u4 =

o(xeβ1Kx), and u2m1 ∼ xm1. Therefore

(gm− h)3 ∼ xm1 ∼ const · xeβ1Kx, x → −∞.

We see that (gm − h)1 = o((gm − h)3), and (gm − h)2 = o((gm − h)3) as

x → −∞. Therefore the coefficient c3 in (28) must be equal to zero.

3. Now we can rewrite equation (28) in the equivalent form:

c1(1−α)(f0−u1)+c2α(m1−(1−α)(1−f0) exp{β0+β1x−β2
1σ

2
δ/2})+c2(1−α)(u1m1−u3) ≡ 0.

We rewrite it once again:

c1(1− α)(f0 − 1) + c2m1(α + (1− α)u1) ≡
c1(1− α)(u1 − 1) + c2α(1− α)(1− f0) exp{β0 + β1x− β2

1σ
2
δ/2}+ c2(1− α)u3.

(29)

The left-hand side of (29) is approximated by

a1(1− α)(c2 − c1)e
β1Kx + a2(1− α)c1e

2β1Kx − a3(1− α)2c2e
β1(K+1)x + o(e2β1Kx) =

a1(1− α)(c2 − c1)e
β1Kx + a2(1− α)c1e

2β1Kx + o(e2β1Kx), x → −∞,

where ai are positive constants. The right-hand side of (29) is approximated by

a4(1− α)(c2 − c1)e
β1x + α(1− α)c2a5e

β1(K+1)x + o(eβ1(K+1)x), x → −∞,

where ai are also positive constants. We see that (29) is possible only if c1 = c2 =

0.

We proved that all the coefficients in (28) are zero, therefore the functions

(19) are linearly independent.
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3.3.2 Part 2 of the proof

We want to prove that the functions (20) are linearly independent. Due to the

expressions for m2θ in Section 3.1, we have to prove the linear independence of

the functions

{
1− f0, f1, µ1(x)f1 + β1τ

2f2, β1(x− µ)
∂K

∂σ
f1 +

1

2
β2

1

∂τ 2

∂σ
f2

}
,

where we denoted fi := E (f (i)|x). This can be transformed into the equivalent

set {
1− f0, f1, Kxf1 + β1τ

2f2, β1
∂K

∂σ
xf1 +

1

2
β2

1

∂τ 2

∂σ
f2

}
.

The last two functions are a linear transformation of the functions xf1 and f2

with transformation matrix

T =


 K β1τ

2

β1
∂K
∂σ

1
2
β2

1
∂τ2

∂σ


 .

We have

det T = −β2
1K

σ4
δ

σ3
,

which is not zero under β1 6= 0. Therefore, to prove linear independence of

the functions (20), we have to prove linear independence of the functions {1 −
f0, f1, f2, xf1}.

Consider a linear combination of these functions, which is zero:

c0(1− f0) + c1f1 + c2f2 + c3xf1 ≡ 0. (30)

We establish the asymptotic behavior of the functions in (30) as x → −∞.

We use the dominated convergence theorem. We have 1 − f ∼ et, t → −∞, and

thus for γ ∼ N(0, 1):

1− f0 ∼ E (exp{β0 + β1µ1(x) + β1τγ}|x) = const · eβ1Kx, x → −∞.
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Consider f1. We have f ′ = − exp{−et}et and f ′ ∼ −et, t → −∞. Therefore

f1 ∼ const · eβ1Kx, x → −∞.

Consider f2. We have f ′′ = exp{−et}e2t − exp{−et}et and f ′′ ∼ −et, t → −∞.

Therefore

f2 ∼ const · eβ1Kx, x → −∞.

If we divide (30) by xf1 and take the limit as x → −∞, we see that c3 = 0.

Consider the asymptotics of the functions fi, i = 0, 1, 2, as x → +∞. We

have for arbitrary a ∈ R that

exp{−et}eat → 0, t →∞.

Therefore

f → 0, f ′ → 0, f ′′ → 0, t → +∞,

and by the dominated convergence theorem

fi → 0, i = 0, 1, 2, x → +∞.

Thus in equation (30) we have c0 = 0. Now (30) can be rewritten as

(c1 − c2)E (exp{−et}et|x) ≡ c2 E (exp{−et}e2t|x).

We see that the asymptotics of the left-hand side and the right-hand side are

different as x → −∞ because

exp{−et}e2t = o(exp{−et}et), t → −∞.

Therefore c1 = c2 = 0, and the functions in (30) are linearly independent.

¤
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4 Simulations

A simulation study with the zero-inflated Poisson model of Section 3 was con-

ducted with a threefold objective: first to show that the estimation methods QS

and MCS work, at least for large samples, second to corroborate the asymptotic

results of the preceding theory, and third to study the behavior of the methods

for small samples. A sample size of n = 100 was taken to be a small sample, while

n = 1000 stood for a large sample. The following parameter values were fixed:

µξ = 0.5, σ2
ξ = 0.1, σ2

δ = 0.1, α = 0.6, β0 = 0, β1 = 0.5. As a variant, σ2
δ = 0.05

was also tried. We simulated R = 1000 samples (xi, yi), i = 1, . . . , n, of size n

and computed the QS and MCS estimates for each sample. Bias and variance

were then estimated from the 1000 replications. In addition to QS and MCS, we

also computed a naive estimator (NA), which estimates the parameters by ML

without taking the measurement errors into account, and, as a benchmark, the

ML estimator from the error-free data (ξi, yi), i = 1, . . . , n, see (16).

For all estimation methods, µ is estimated by µ̂ = x̄. For MCS, σ2 is estimated

by s2
x, the empirical variance of the sample xi, i = 1, . . . , n, while for QS, σ2 has

to be estimated jointly with the other parameters.

For QS, the multivariate conditional mean–variance model given x is set up

with (12) as the bivariate mean function and (13) as the covariance matrix. The

parameter µ is replaced with its estimate x̄. Deviating from the definition in

Section 3, we here denote the main parameter vector (α, β0, β1)
> by θ, while σ is

treated separately.

The QS, estimators of θ and σ are found by applying the method of itera-

tively reweighted least squares: Let θk and σk be the estimated values of θ and σ

after the k-th iteration. For each sample point (xi, y1i), i = 1, . . . , n, the vectors

and matrices m(xi, θk, σk), v(xi, θk, σk), M(xi, θk, σk) := ∂
∂θ>m(xi, θk, σk) and the
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vector yi := (y1i, y2i) are computed. The bivariate linear regression

yi −m(xi, θk, σk) = M(xi, θk, σk)dk + ui , i = 1, . . . , n, (31)

with var(ui) = v(xi, θk, σk) is set up and is solved for dk by weighted least squares.

The value of θ in the next iteration is then given by θk+1 = θk + dk. The value of

σ in step k + 1 is found by solving the last equation of the of the system (2), i.e.,

n∑
i=1

{m1σ(xi),m2σ(xi)}v−1(xi){yi −m(xi)}+
n∑

i=1

{log ρ(xi)}σ = 0

and is given by

σ2
k+1 = s2

x +
1

n

n∑
i=1

w(xi, θk, σk)
>v−1(xi, θk, σk){yi −m(xi, θk, σk)},

where

w(x, θ, σ)> = 2σ2
δβ1

(
x− x̄ +

1

2
β1σ

2
δ , (α− 1)

{
(x− x̄)E[be−b|x] +

σ2
δ

2τ
E[be−bγ|x]

})
.

The elements of the matrix M are given in (14). For the sake of convenience, we

repeat the expressions for m2θ but in a somewhat different form. Let b = b(γ) =

exp(β0 + β1µ1(x) + β1τγ), then

m2α = 1− E[e−b|x]

m2β0 = (α− 1)E[be−b|x]

m2β1 = (α− 1){µ1(x)E[be−b|x] + τE[be−bγ|x].

In addition

m2σ = 2(α− 1)β1
σ2

δ

σ3

{
(x− x̄)E[be−b|x] +

σ2
δ

2τ
E[be−bγ|x]

}
.

The last two formulae differ from the corresponding formulae in (14) in that

the partial integration has not been carried out. Note that Kσ = 2σ2
δ/σ

3 and

τσ = Kσσ
2
δ/(2τ).
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For MCS, we have to compute the elements of the first three rows of g and h,

see (17). These are given by (26) and (27). The infinite series (22)–(25) needed

to compute (26) and (27) have been truncated at the order of k = 20. With g

and h so constructed, we can set up the MCS estimating equations:

∑
g(xi, θ)yi −

∑
h(xi, θ) = 0

and solve them for θ = (α, β0, β1)
>.

The results for σ2
δ = 0.1 are presented in Table 1. They show that the

asymptotic theory is fully corroborated in samples of size n = 1000. There is

only a negligible bias in the three parameter estimates, except, of course, for

the naive estimator. The variance of the QS estimates are all smaller than the

corresponding ones of the MCS estimates. The variance of the naive estimates

are still smaller and even smaller than those of ML, but then these estimates are

inconsistent anyway. As compared to the other two parameters of the model, α

is estimated very precisely by all estimation methods.

For small samples (n = 100), we have similar results, although they are not

so clear. Some of the estimates have a small, but noticeable, bias ( e.g., β̂0MCS),

and α̂MCS has a slightly smaller variance than α̂QS. The variances for n = 100

are a bit more than ten fold the variance for n = 1000. In 1% of the runs, the QS

estimate could not be computed because of the occurrence of a nearly singular

covariance matrix v.

When σ2
δ = 0.05, we have similar results both for n = 100 and n = 1000,

see Table 2. The variances are somewhat smaller than the corresponding ones for

σ2
δ = 0.01. For n = 1000, the difference in the variances of QS and MCS estimates

is very small.

As noted above, the variance of x is estimated differently depending on

whether QS or MCS is the estimation method. For QS, σ2
x is estimated along
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Table 1: The bias and variance of α, β0 and β1 when σ2
δ = 0.1

α β0 β1

Method Bias Var Bias Var Bias Var

n = 100

QS -0.0258649 0.0074825 -0.0924049 0.3186765 0.0077364 0.7629999

MCS -0.0247392 0.0071527 -0.1171952 0.3455757 0.0659780 0.9449513

NA -0.0129181 0.0063493 0.0799786 0.0953049 -0.2340004 0.1661142

ML -0.0168983 0.0065117 -0.0736062 0.1465186 0.0387977 0.3267195

n = 1000

QS -0.0015413 0.0005445 -0.0006907 0.0234746 -0.0136166 0.0575812

MCS -0.0016397 0.0005462 -0.0075067 0.0261445 -0.0003143 0.0665571

NA 0.0022237 0.0005151 0.1316479 0.0084422 -0.2441716 0.0136816

ML -0.0011093 0.0005352 -0.0116880 0.0132224 0.0124668 0.0286879

with α, β0, and β1, while for MCS, σ2
x is estimated by the empirical variance of

the sample values x1, . . . , xn. Both estimates, however, differ only by a negligible

amount.

5 Conclusion

We proved that in a multivariate mean-variance model, Quasi-Score (QS) is opti-

mal within the class of Linear Score (LS) estimators, in the sense that the ACM

of the QS estimator is smaller (in the Loewner order sense) than the ACM of any

LS estimator. The QS estimator that we considered is an extended QS estima-

tor, which comprises the estimation of the (nuisance) parameters describing the
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Table 2: The bias and variance of α, β0 and β1 when σ2
δ = 0.05

α β0 β1

Method Bias Var Bias Var Bias Var

n = 100

QS -0.0196895 0.0067698 -0.0803810 0.2183384 0.0142384 0.5357211

MCS -0.0273286 0.0069701 -0.1479973 0.2983405 0.1260944 0.7589774

NA -0.0108817 0.0065266 0.0551384 0.1174278 -0.1771726 0.2180307

ML -0.0133309 0.0067456 -0.0403318 0.1522869 -0.0083097 0.3301717

n = 1000

QS -0.0022525 0.0005487 -0.0075886 0.0169651 -0.0019069 0.0404219

MCS -0.0036343 0.0005601 -0.0106284 0.0192654 0.0072325 0.0444614

NA 0.0000362 0.0005220 0.0869474 0.0095582 -0.1688009 0.0186527

ML -0.0019372 0.0005317 -0.0035439 0.0124334 -0.0056925 0.0274534

25



distribution of the regressor variables.

An important model, where this result can be applied, is the measurement

error model given by a mean-variance model in the error-free variables supple-

mented by a measurement equation, which relates the latent regressor variables

to observable variables. In such a model, the parameters describing the distrib-

ution of the regressor variables can be considered to be nuisance parameters. In

this context, the Corrected Score (CS) estimator, which is a special LS estimator,

has been introduced as an alternative to QS. It is well-known that QS is (asymp-

totically) more efficient than CS, albeit under the assumption that the nuisance

parameters are known.

Recently this result has been generalized to the case of unknown nuisance

parameters by extending QS in the way indicated above. But this generalization

was restricted to a univariate mean-variance model. With the extension to a

multivariate model, we are able to analyze the zero-inflated log-linear Poisson

measurement error model with a normally distributed regressor variable. (Before

this extension, only the ordinary log-linear Poisson measurement error model was

amenable to an analysis). In this model, QS is strictly more efficient than CS if the

slope parameter is not zero. The mean of the regressor is estimated in the usual

way as the arithmetic mean of the observations, but the variance of the regressor

must be estimated in a more complicated way taking the complete model into

account.

A simulation study confirms these results.
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