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Discussion Paper 509

Abstract

The risk of the family of feasible generalized double k-class estimators

under LINEX loss function is derived in a linear regression model. The

disturbances are assumed to be non-spherical and their variance covariance

matrix is unknown.

1 Introduction

Specification of a suitable loss function is a matter crucial important in analyzing

the data and therefrom deducing inferences. Loss functions that are generally

employed in statistical practice are taken to be symmetric around zero such as

squared error and absolute error loss functions which assign equal weight to pos-

itive and negative estimation errors of the same magnitude. They are favoured
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because of their comprehensibility and capacity of mathematical manipulations,

and not because they are relevant all the time and reflect reality. They repre-

sent analyst’s convenience rather than practitioner’s preference. They may fail to

capture the salient features of loss structures that are actually faced in practice

where, for instance, a positive estimation error of a certain magnitude may have

for reaching consequences in comparison to the negative estimation error of the

same magnitude; see, e.g., Ashley (1990), Granger (1969), Granger and Newbold

(1986), McCloskey (1985), Stockman (1987), Varian (1975) and Zellner and Geisel

(1968) for some examples.

The requirement of asymmetry in the losses has led to the development of var-

ious asymmetric loss functions but majority of them are not analytically tractable

and closed-form expressions for the risk are difficult to obtain. Relatively free

from such limitations is the LINEX loss function, formulated by Varian (1975),

which incorporates the asymmetric nature of losses in a simple manner and retains

the property of analytical tractability at the same time besides having a close link

between the traditional squared error loss functions.

In the context of estimation problems in a linear regression model, the LINEX

loss function is utilized in a Bayesian framework by Bolfarine (1989), Varian (1975)

and Zellner (1986); see also Zellner (1992). Employing the classical (non-Bayesian)

framework, performance properties of some estimators under the LINEX loss func-

tion are studied by Giles and Giles (1993, 96), Ohtani (1995) and Srivastava and

Rao (1992).

It is well known that the non-linear and biased estimators of regression coeffi-

cients in a linear regression model can have smaller risk than linear and unbiased

estimators under mild constraints, see Judge and Bock (1978, 1983), Judge et al.

(1985) and Saleh (2006). One such family is described by the double k-class esti-

mators proposed by Ullah and Ullah (1978, 1981). The family of double k-class

estimators is characterized by two characterizing scalars and encompasses many
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estimators as its particular cases, including the Stein rule family of estimators

proposed by James and Stein (1961). In the context of linear regression mod-

els, the family of double k-class estimators was proposed under the assumption

of spherical or homoskedastic disturbances. Later, Wan and Chaturvedi (2001)

extended it to the case when disturbances are non-spherical or hetroskedastic and

their variance covariance matrix is also unknown. They proposed the family of

feasible generalized double k-class estimators and analyzed the quadratic risk per-

formance of several estimators arising from it as a particular cases under the large

sample asymptotic approximation theory. The performance of the feasible gener-

alized double k-class estimators under balanced loss function and general Pitman

closeness criterion was studied by Chaturvedi and Shalabh (2004). What is the

performance of the feasible generalized double k-class estimators to estimate the

regression coefficients in a linear model under LINEX loss function under non-

spherical disturbances with unknown variance covariance matrix constitutes the

subject matter of this paper.

The plan of the paper is as follows. The model and the estimators are described

in Section 2. The properties of the feasible generalized double k-class estimators

for the coefficients in a linear regression model with non-spherical disturbances

are derived and analyze under the LINEX loss function in Section 3.

2 Model Specification And The Estimators

Consider the following linear regression model with nonspherical disturbances:

y = Xβ + ε (2.1)

where y is a T×1 vector of T observations on the study variable, X is a T×p matrix

of T observations on p-explanatory variables, β is a p × 1 vector of coefficients

associated with them and ε is a T × 1 vector of disturbances.
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It is assumed that ε has a multivariate normal distribution with mean vector

0 and variance covariance matrix σ2Ω−1 where σ2 is an unknown scalar. Further,

the elements of Ω are functions of an unknown parameter θ belonging to an open

subset of the q-dimensional Euclidian space. It is also assumed that a consistent

estimator θ̂ of θ is available which permits to obtain a consistent estimator Ω̂ of

Ω.

The family of double k-class estimators propesd by Ullah and Ullah (1978) is

β̃kk =

[
1− k1

(y −Xβ̃)′(y −Xβ̃)

y′y − k2(y −Xβ̃)′(y −Xβ̃)

]
β̃ (2.2)

where β̃ = (X ′X)−1X ′y is the ordinary least squares estimator of β, k1 and k2 are

the non-stochastic characterizing scalers.

If we apply the method of generalized least squares for the estimation of β in

(2.1) and replace Ω by Ω̂, a feasible generalized least squares (FGLS) estimator

of β is given by

β̂ = (X ′Ω̂X)−1X ′Ω̂y. (2.3)

Similarly, the feasible generalized double k-class (FGKK) estimators presented by

Wan and Chaturvedi (2001) are specified by

β̂kk =

[
1−

(
k∗1

T − p + 2

)
(y −Xβ̂)′Ω̂(y −Xβ̂)

y′Ω̂y − k2(y −Xβ̂)′Ω̂(y −Xβ̂)

]
β̂ (2.4)

where k∗1 (> 0) and k2 are the scalars characterizing the estimator.

It may be observed that the scalar k1 in (2.2) and k∗1 in (2.4) are related

by k1 = k∗1/(T − p + 2) which is due to Vinod and Srivastava (1995) who have

established that the estimators arising from the family of double k-class estimators

are equivalent if

k1 = k∗1T
−(j+ 1

2
)

where j is any positive number and k∗1 is a fixed scalar independent of T .
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The family (2.4) is quite flexible an encompasses several interesting estimations

as special cases. For example, if we set k∗1 = 0, we get the FGLS estimator.

Similarly, if we put k2 = 1, we obtain the feasible generalized Stein-rule (FGSR)

estimator of Chaturvedi and Shukla (1990). If we take k∗1 = [1 + 2(T − p)−1]

and k2 = [1− (T − p)−1], we get the feasible generalized minimum mean squared

error (FGMMS) estimator in the spirit if Farebrother (1975) while if we take

k∗1 = [1 + 2(T − p)−1] and k2 = [1 − p(T − p)−1], we find the adjusted feasible

generalized minimum mean squared error (AFGMMSE) estimator in the light

of Ohtani (1996). Stemming from the work reported in Carter, Srivastava and

Chaturvedi (1993), another interesting estimator is specified by k∗1 = (p− 2) and

k2 = [1− (p−2)(T −p+2)−1] which can be abbreviated as FGKKCSC estimator;

see Wan and Chaturvedi (2001, Sec. 4) for some other choices of k∗1 and k2.

3 Properties of Estimators

Assuming that the explanatory variables are asymptotically cooperative in the

sense that the matrix T−1X ′ΩX tends to a finite nonsingular matrix as T tends

to infinity, it is found that the limiting distributions of the FGLS and FGKK

estimators are identical, and thus the superiority of any estimators over the other

cannot be examined on the basis of limiting distribution. On the other hand, if we

consider their exact distributions, it can be well appreciated that they are difficult

to derive. Even if we succeed in the derivation of exact distributions, they will be

sufficiently complex and will not permit us to draw any clear inference.

The large sample properties of the FGKK estimators have been extensively

studied by Wan and Chaturvedi (2001). In particular, they have derived the

asymptotic distribution of the estimators under fairly general conditions. Also

presented are the expressions for bias vector to order O(T−1) and mean squared

error matrix to order O(T−2). Further, taking the performance criterion as risk
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under a symmetric general quadratic loss function to order O(T−2), they have

compared various estimators and have found the conditions for the superiority

of one estimator over the other. Various choices of characterizing scalars are also

discussed. Finally, assuming the disturbances to follow a first order autoregressive

scheme, the results of Monte Carlo experiment are reported.

Let us now analyze the performance of FGKK estimators with respect to the

criterion of risk under LINEX has function which is asymmetric. For this purpose,

let us consider the estimation of a linear parametric function g′β where g is any

arbitrary column vector with known and nonstochastic elements. If we take all the

elements of g as unity, g′β is equal to the sum of regression coefficients. Similarly,

if we assume all the elements of g to be zero except the ith element as unity, g′β

reduces to the regression coefficient associated with the ith explanatory variable

in the model.

The LINEX loss function, introduced by Varian (1975), for the estimator of

any scalar parameter δ by an estimator δ̂ is defined as

L(δ̂; δ) = c
[
exp

{
α(δ̂ − δ)

}
− α(δ̂ − δ)− 1

]
(3.1)

where α and c are the characterizing scalars with non-zero α and positive c.

The values of c specifies the factor of proportionality while the value of α

determines the relative losses associated with the positive and negative values of

the estimation error (δ̂−δ). The LINEX loss function attains its minimum value as

zero when (δ̂− δ) = 0. Further, it rises approximately linearly on one side of zero

and exponentially on the other side of zero. Zellner (1986) has prepared graphs

of the LINEX loss function for some selected values of α and has observed that

over-estimation of a certain magnitude leads to larger loss in comparison to the

under-estimation of the same magnitude for positive values of α while the reverse is

true for negative values of α, i.e., over-estimation leads to comparatively smaller

loss than under-estimation. Thus possibly unequal weight to under-estimation

and over estimation can be assigned through an appropriate sign for the scalar α.
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Regrading the magnitude of α, the LINEX loss function is fairly symmetric like

the squared error loss function for small values of α. If the value of α is taken away

from zero, asymmetry of loss function increases. In this manner, the behavior of

loss function can be suitably tailored depending upon the requirements of problem

in hand.

For analyzing the performance properties of FGKK estimators, let us specify

the LINEX loss function as follows

L(β̃; β) =

[
exp

{
α
√

T

σ
g′(β̃ − β)

}
− α

√
T

σ
g′(β̃ − β)− 1

]
(3.2)

where β̃ denotes an estimator of β and the scaling factor c in the LINEX loss

function (3.1) is taken as unity without any loss of generality.

Following Wan and Chaturvedi (1998), let us make the following assumptions.

For all j, k = 1, 2, . . . , q, let us define

Ωj = ∂Ω
∂θj

, Ωjk = ∂2Ω
∂θj∂θk

,

A = X′ΩX
T

, Aj = X′ΩjX

T
, Ajk =

X′ΩjkX

T
,

α = X′Ωε√
T

, αj = X′Ωjε√
T

, and αjk =
X′Ωjkε√

T
,

Furthermore, the set of matrices (or vectors) having the same number of indices

is denoted by boldface letters subscripted in brackets by that number. For in-

stance, A(3) denotes the set of matrices {Ajkl : j, k, l = 1, 2, . . . , q}. The following

regularity conditions are required to have a valid Edgeworth expansion of the

distribution:

(i) Each matrix in the sets A(1), A(2), . . . , A(5) and covariance matrix of each

vector in α(1), α(2), . . . , α(5) converges to a finite matrix as T →∞;

(ii) X ′C2X/T is bounded and tends to infinity for all C in Ω(6);

(iii) The estimator θ̂ has an expansion of the form
√

T (θ̂ − θ) = e + Op(T
−1)

such that the asymptotic distribution of e is multivariate normal with mean

vector of order O(T−1) and variance covariance matrix as of Λ + O(T−1).
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(iv) The third and highes order cumulants of T− 1
2 X ′

(
∂2Ω
∂θ2

j

)
ε are of order O(T−1).

Under the above assumptions, Wan and Chaturvedi (2001) have demonstrated

that the asymptotic distribution of the vector Z =
√

T
σ

(β̂kk − β) is multivariate

normal. Further, if we write

φ =
1

Tσ2
β′X ′ΩXβ, (3.3)

we have the following results from Wan Chaturvedi (2001):

µ =

√
T

σ
E(β̂kk − β) (3.4)

= − k∗1√
Tσ(φ + 1− k2)

β + O(T−1)

Σ =
T

σ2
E(β̂kk − β)(β̂kk − β)′ (3.5)

= A−1 + O(T−1).

By virtue of asymptotic normality of
√

T
σ

(β̂kk − β), we observe that

E

[
exp

{
α
√

T

σ
g′(β̂kk − β)

}]
(3.6)

=
∫ ∞

−∞
exp(αg′Z)

exp{− (g′Z−g′µ)2

(2g′Σg)
}

(2πg′Σg)
1
2

dg′Z

= exp

(
αg′µ +

α2

2
g′Σg

) ∫ ∞

−∞

exp{− (g′Z−g′µ−αg′Σg)2

2g′Σg
}

(2πg′Σg)
1
2

dg′Z

= exp

(
αg′µ +

α2

2
g′Σg

)

= exp

{
− αk∗1g

′β√
Tσ(φ + 1− k2)

+ O(T−1)

}
exp

(
α2

2
g′A−1g

)

=

[
1− αk∗1g

′β√
Tσ(φ + 1− k2)

+ O(T−1)

]
exp

(
α2

2
g′A−1g

)
.

Also,

α
√

T

σ
E[g′(β̂kk − β)] = − αk∗1g

′β√
Tσ(φ + 1− k2)

+ O(T−1). (3.7)

8



Using these results, the risk associated with FGKK estimator under the LINEX

loss function (3.2) to order O(T− 1
2 ) is given by

R(FGKK) = E

[
exp

{
α′
√

T

σ
g′(β̂kk − β)

}
− α′

√
T

σ
g′(β̂kk − β)− 1

]
(3.8)

=

[
1− αk∗1g

′β√
Tσ(φ + 1− k2)

] [
exp

{
α2

2
g′A−1g

}
− 1

]
.

Setting k∗1 = 0, we find the risk associated with the FGLS estimator to order

O(T− 1
2 ) as follows

R(FGLS) =

[
exp

{
α2

2
g′A−1g

}
− 1

]
(3.9)

Comparing (3.8) and (3.9), we find that the FGKK estimator dominate the

FGLS estimator when

(
αg′β

φ + 1− k2

)
> 0 (3.10)

which holds true, for instance, as long as α and g′β have same signs and k2 does

not exceed 1. An interesting implication this finding is that all FGSR, FGMMSE,

AFGMMSE and FGKKCSC estimators will be better than FGLS estimator pro-

vided α and g′β have same sign.

The opposite is true, i.e., the FGLS estimator dominates the FGKK estimator

when the inequality (3.10) holds with a reversed sign. In particular, the FGLS es-

timator remains unbeaten by the FGSR, FGMMSE, AFGMMSE and FGKKCSC

estimators.

Next, let us compare the FGSR estimator characterized by the scalars k∗1 and

the FGKK estimator characterized by the scalars k∗1 and k2. It can be easily seen

from (3.6) that FGKK estimator dominates the FGSR estimator when

αg′β(1− k2)

φ + 1− k2

< 0. (3.11)

When the quantity on the left hand side of inequality (3.11) is positive, the

FGKK estimator fails to dominate the FGSR estimator.
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If thus follows from (3.10) and (3.11) that the FGKK estimator has better

performance than both the FGLS and FGSR estimators when k2 lies between 1

and (1 + φ) provided that α and g′β both are either negative or positive. When

α and g′β have opposite signs, there does not exist a value of k2, given k∗1, such

that FGKK estimator dominates FGLS and FGSR estimators simultaneously.

Now a question arises whether given a FGSR estimator with characterizing

scalar as k∗1 = k1, can we find a FGKK estimator having superior performance

than the given FGSR estimator? The answer is affirmative, and the condition

turns out to be as follows:

(
αg′β

φ + 1− k2

) [
k∗1 −

(
1 +

1− k2

φ

)
k1

]
> 0. (3.12)

Thus, if the inequality (3.10) holds true, we may choose the characterizing

scalar k∗1 in FGKK such that

k∗1 >

(
1 +

1− k2

φ

)
k1 (3.13)

and then the FGKK estimator dominates not only the FGSR estimator but FGLS

estimator too.

Not so interesting is the case when the condition (3.10) does not hold good so

that both FGSR and FGKK are no better than the FGLS estimator. However,

in this case, the FGKK succeeds in dominating the FGSR estimator when k∗1 is

chosen to satisfy the condition (3.13) with a reversed inequality sign.

Next, let us restrict our attention to all those members of the feasible gener-

alized double k-class such that they are specified by k2 < 1 and they have better

performance than FGLS estimator meaning thereby that the condition (3.10) is

satisfied. Now consider two such FGKK estimators. One is FGKK(k∗1, k2) speci-

fied by k∗1 and k2 while the other is FGKK(k∗1 + f1, k2) characterized by (k∗1 + f1)

and k2. From (3.8), it is interesting to see that all the FGKK(k∗1 + f1, k2) estima-

tors with f1 > 0 are more efficient than the FGKK(k∗1, k2) estimator. Similarly,
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the FGKK(k∗1, k2) estimator is dominated by all the FGKK(k∗1, k2 +f2) estimators

with 0 < f2 < (φ + 1− k2).

Looking at the expression (3.8), we observe that a substantial reduction in the

risk under the LINEX loss function to the order of our approximation may be

achieved when α and g′β have same signs but large in magnitude, k∗1 is large, σ

is small and k2 is such that (φ + 1− k2) is positive and small.

Comparing the risks of FGMMSE with FGKK, we find that FGKK is better

than FGMMSE when

αg′β

[
k∗1{φ(T − p) + 1}

(T − p + 2)(φ + 1− k2)
− 1

]
> 0. (3.14)

So when α and g′β have same signs, the condition (3.14) holds true for all choices

of k∗1 and k2 such that

k∗1
φ + 1− k2

>
T − p + 2

φ(T − p) + 1
. (3.15)

In case, α and g′β have opposite signs then FGKK is still better than FGMMSE

as long as (3.15) is satisfied with a reverse inequality sign.

Similarly, FGKK has smaller risk than AFGMMSE when

k∗1
φ + 1− k2

>
(T − p + 2)p

φ(T − p)− p
(3.16)

provided α and g′β have same signs. The reverse holds true if (3.16) holds true

with a reverse inequality sign.

Lastly, we compare the risks of FGKK and FGKKCSC. The FGKK estima-

tors have smaller risk than FGKKCSC when α and g′β have same signs and the

characterizing scalars k∗1 and k2 are chosen to satisfy

φ + 1− k2

k∗1
>

(
φ

T − p + 2
− 1

T − p + 2

)
. (3.17)

The reverse holds true if (3.17) holds true with a reverse inequality sign.

In a similar manner, we can compare the FGKK estimator with other specific

members arising from the family of the double k-class estimators and conditions

for the superiority of one estimator over the other can be deduced.
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