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Abstract

Multi-state models provide a unified framework for the description of the evolu-

tion of discrete phenomena in continuous time. One particular example are Markov

processes which can be characterised by a set of time-constant transition intensities

between the states. In this paper, we will extend such parametric approaches to

semiparametric models with flexible transition intensities based on Bayesian versions

of penalised splines. The transition intensities will be modelled as smooth functions

of time and can further be related to parametric as well as nonparametric covariate

effects. Covariates with time-varying effects and frailty terms can be included in ad-

dition. Inference will be conducted either fully Bayesian using Markov chain Monte

Carlo simulation techniques or empirically Bayesian based on a mixed model repre-

sentation. A counting process representation of semiparametric multi-state models

provides the likelihood formula and also forms the basis for model validation via

martingale residual processes. As an application, we will consider human sleep data

with a discrete set of sleep states such as REM and Non-REM phases. In this

case, simple parametric approaches are inappropriate since the dynamics underly-

ing human sleep are strongly varying throughout the night and individual-specific

variation has to be accounted for using covariate information and frailty terms.

Key words: frailties; martingale residuals; multi-state models; penalised splines; time-

varying effects; transition intensities.
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1 Introduction

Multi-state models are a flexible tool for the analysis of time-continuous phenomena that

can be described by a discrete set of states. Such data structures naturally arise when

observing a discrete response variable for several individuals or objects over time. Some

common examples are depicted in Figure 1 in terms of their reachability graph for illus-

tration. For recurrent events (Figure 1 (a)), the observations evolve through time moving

repeatedly between a fixed set of states. Our application on sleep research will be of this

type, where the states are given by the sleep states awake, REM and Non-REM, com-

pare also Figure 2 which shows two exemplary realisations of such sleep processes. Other

model classes involve absorbing states, for example disease progression models (Figure 1

(b)), that are used to describe the chronological development of a certain disease. If the

severity of this disease can be grouped into q − 1 ordered stages of increasing severity, a

reasonable model might look like this: Starting from disease state ’j’, an individual can

only move to contiguous states, i.e. either the disease gets worse and the individual moves

to state ’j + 1’, or the disease attenuates and the individual moves to state ’j− 1’. In ad-

dition, death is included as a further, absorbing state ’q’, which can be reached from any

of the disease states. A model with several absorbing states is the competing risks model

(Figure 1 (c)) where, for example, different causes of death are analysed simultaneously.

[Figure 1 about here.]

[Figure 2 about here.]

As Figure 1 suggests, multi-state models can be described in terms of transitions between

the states. The most simple model of this type are discrete Markov processes, where each

of the transitions is associated with one time-constant transition intensity λh > 0 with

h indexing the set of possible transitions. Of course, such a purely parametric model is

only appropriate if the dynamics underlying the transitions do not change over time. This

assumption, however, does not apply to numerous real data applications. For example, in

our application we will analyse human sleep data and it is well known that the dynamics of

human sleep are strongly changing throughout the night with e.g. an increased propensity

to switch to the REM state at the end of the night.
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More flexible multi-state models have been introduced within two different frameworks:

Aalen et al. (2004) considered dynamic versions of multi-state models based on Aalen‘s

additive risk model. Such models rely heavily on the embracing framework of counting

processes, compare Andersen, Borgan, Gill, & Keiding (1993), and estimation is based

on martingale theory. Fahrmeir & Klinger (1998) and Yassouridis et al. (1999) modelled

the transition intensities in a Cox-type manner with smoothing splines for time-varying

effects. In their approach, estimation is based on a backfitting scheme with internal

smoothing parameter selection by AIC optimisation.

In this article, we extend the ideas by Fahrmeir & Klinger (1998) and propose a general

semiparametric class of multi-state models that comprises the following features:

• Flexible modelling of baseline transition intensities in terms of penalised splines,

• Inclusion of parametric, time-varying, and nonparametric covariate effects,

• Inclusion of frailty terms (i.e. subject-specific random effects) to account for unob-

served heterogeneity.

Estimation is based on a unified Bayesian formulation that incorporates penalised splines

and random effects into one general framework. Inference can be conducted either fully

Bayesian based on Markov chain Monte Carlo (MCMC) simulation techniques or empiri-

cally Bayesian based on a mixed model representation. Both inferential procedures bor-

row from the time-continuous duration time models presented in Hennerfeind, Brezger &

Fahrmeir (2006) and Kneib & Fahrmeir (2006) and allow for the simultaneous determina-

tion of all effects and smoothing parameters. Implementations will be available in release

1.5 of the software package BayesX, see http://www.stat.uni-muenchen.de/~bayesx.

As an illustration of our approach, we will analyse data on human sleep collected at

the Max-Planck-Institute for Psychiatry in Munich as a part of a larger study on sleep-

withdrawal. Our major concern is to obtain a valid description of the sleeping process

of healthy participants of the study while accounting for possible covariate effects (e.g.

nocturnal hormonal secretion) and patient-specific individual sleeping habits. The per-

formance of the developed models is assessed using martingale residuals and compared to

parametric Markov process models.

The structure of the paper is as follows: Section 2 describes the specification of haz-

ard rates for the transitions and the corresponding prior assumptions. In Section 3 we
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introduce a counting process representation of the model that provides us with the like-

lihood formula for multi-state models and forms the basis for model validation based on

martingale residuals. Section 4 presents details on the inferential schemes and Section 5

contains results of our application. The concluding Section 6 comments on directions of

future research.

2 Specification of multi-state models in terms of haz-

ard rates

A multi-state model is fully described by a set of (possibly individual-specific) hazard

rates λhi(t) where h, h = 1, . . . , k, indexes the type of the transition and i, i = 1, . . . , n,

indexes the observations. Since the hazard rates describe durations between transitions,

we specify them in analogy to hazard rate models for continuous time survival analysis.

To be more specific, λhi(t) is modelled in a multiplicative Cox-type way as

λhi(t) = exp(ηhi(t)),

where

ηhi(t) = gh0(t) +
L∑

l=1

ghl(t)uil(t) +
J∑

j=1

fhj(xij(t)) + vi(t)
′γh + bhi (1)

is an additive predictor consisting of the following components:

• A time-varying, nonparametric baseline effect gh0(t) common for all observations.

• Covariates uil(t) with time-varying effects ghl(t). In our application uil(t) will rep-

resent the current level of a certain hormone, hence uil(t) by itself is time-varying

but its effect is also varying throughout the night.

• Nonparametric effects fhj(xij(t)) of continuous covariates xij(t). For example, we

might also include the hormonal level in a nonparametric way.

• Parametric effects γh of covariates vi(t).

• Frailty terms bhi to account for unobserved heterogeneity.

After reindexing and suppressing the time-dependency of some of the quantities involved,

we can represent the predictor vectors ηh = (ηh1, . . . , ηhn) in generic notation as

η = V1ξ1 + . . . + Vmξm + V γ, (2)
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where V corresponds to the usual design matrix of fixed effects. The construction of the

design matrices V1, . . . , Vm for time-varying, nonparametric and random effects will be

described in the following discussion of prior assumptions

To model time-varying and nonparametric effects, we employ penalised splines, a parsi-

monious yet flexible approach to represent smooth functions. For the sake of simplicity

we will drop the transition and the covariate index in the following discussion. The basic

idea of penalised splines (Eilers & Marx 1996) is to represent a function f(x) (or g(t)) of

a smooth covariate x (or of time t) as a linear combination of a large number of B-spline

basis functions, i.e.

f(x) =
d∑

j=1

ξjBj(x).

Instead of estimating the resulting regression coefficients ξ = (ξ1, . . . , ξd)
′ unrestricted, an

additional penalty term is added to enforce smoothness of the estimated function. From a

Bayesian perspective, this corresponds to a smoothness prior for ξ (Brezger & Lang 2006).

Since the derivatives of B-splines are determined by the magnitude of the differences in

adjacent parameter values, a sensible prior distribution can be obtained by assuming a

Gaussian distribution with appropriate variance for these differences. This corresponds

to a random walk prior for the sequence of regression coefficients, i.e.

ξj = ξj−1 + εj, j = 2, . . . , d,

for a first order random walk or

ξj = 2ξj−1 − ξj−2 + εj, j = 3, . . . , d,

for a second order random walk and Gaussian error terms εj ∼ N(0, τ 2). In addition,

noninformative, flat priors are assigned to the initial values. The variance parameter of

the error term can now be interpreted analogously to a smoothing parameter. For large

variances, the random walk prior allows for ample deviations in the differences of adjacent

parameters while a small variance enforces smaller differences and, as a consequence,

smoother function estimates.

In vector-matrix notation, penalised splines lead to the following representation for

the function evaluations defining predictor (1): The baseline hazard rate can be ex-

pressed as gh0(t) = v′h0ξh0 where vh0 = (Bh01(t), . . . , Bh0d(t))
′ and ξh0 = (ξh01, . . . , ξh0d)

′.

Similarly, we obtain ghl(t)ul(t) = v′hlξhl for the time-varying effects with vhl =
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(ul(t)Bhl1(t), . . . , ul(t)Bhld(t))
′ and fhj(xij(t)) = v′hjξhj for nonparametric effects with

vhj = (Bhj1(xij), . . . , Bhjd(xij))
′. The design matrices in (2) are then obtained by stacking

the design vectors. In all cases, the vectors of regression coefficients follow a multivari-

ate Gaussian prior derived from the random walk assumptions. The density of these

distributions can be expressed as

p(ξ|τ 2) ∝ exp

(
− 1

2τ 2
ξ′Kξ

)
(3)

where the precision matrix K = D′D is defined by the crossproduct of appropriate dif-

ference matrices D. Note, that in general distribution (3) is improper since K does not

have full rank due to the improper distributions of the initial values in the random walk

definition.

To complete the Bayesian model formulation, we assign noninformative, flat priors to the

fixed effects, i.e. p(γh) ∝ const, and i.i.d. Gaussian priors bhi ∼ N(0, τ 2
h) with transition

specific variances to the frailty terms. Note that these random effects distributions can

also be cast into the multivariate form (3) by simply collecting all the random effects for

one transition in the vector ξ = (bh1, . . . , bhn)′ and defining K = In. The design matrix for

random effects is given by a 0/1-incidence matrix which ties together a specific individual

and its random effect. Note that the possibility to cast both random effects and penalised

splines into one general framework considerably facilitates implementation of inferential

procedures since the same algorithms can be used for both penalised splines and random

effects.

Finally, for the variance parameters τ 2 determining the variability of either nonparametric

function estimates or random effects, we will consider two situations: In the first case,

the variances are treated as fixed unknown constants, that are to be estimated from their

marginal posterior. This corresponds to empirical Bayes estimation and will be further

discussed in Section 4.1. In the second case, additional inverse gamma-type hyperpriors

are assigned to the variances. This corresponds to a fully Bayesian approach and will be

described in Section 4.2.
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3 Counting process representation and likelihood

contributions

For each individual i, i = 1, . . . , n, the likelihood contribution in a multi-state model can

be derived from a counting process representation of the multi-state model. Let Nhi(t),

h = 1, . . . , k be a set of counting processes counting transitions of type h for individual

i. Consequently, h = 1, . . . , k indexes the observable transitions in the model under

consideration and the jumps of the counting processes Nhi(t) are defined by the transition

times of the corresponding multi-state process for individual i.

From classical counting process theory (see e.g. Andersen et al. (1993), Ch. VII.2), the

intensity processes αhi(t) of the counting processes Nhi(t) are defined as the product of

the hazard rate for type h transitions λhi(t) and a predictable at-risk indicator process

Yhi(t), i.e.

αhi(t) = Yhi(t)λhi(t),

where the hazard rates are constructed in terms of covariates as described in Section 2.

The at-risk indicator Yhi(t) takes the value one if individual i is at risk for a type h tran-

sition at time t and zero otherwise. For example, in the multi-state model of Figure 1a),

an individual in state 2 is at risk for both transitions to state 1 and state 3. Hence, the

at-risk indicators for both the transitions ’2 to 1’ and ’2 to 3’ will be equal to one as long

as the individual remains in state 2.

Under mild regularity conditions, the individual log-likelihood contributions can now be

obtained from counting process theory as

li =
k∑

h=1

[∫ Ti

0

log(λhi(t))dNhi(t)−
∫ Ti

0

λhi(t)Yhi(t)dt

]
, (4)

where Ti denotes the time until which individual i has been observed. The likelihood con-

tributions can be interpreted similarly as with hazard rate models for survival times (and

in fact coincide with these in the case of a multi-state process with only one transition to

an absorbing state). The first term corresponds to contributions at the transition times

since the integral with respect to the counting process in fact equals a simple sum over

the transition times. Each of the summands is then given by the log-intensity for the

observed transition evaluated at this particular time point. In survival models this term

simply equals the log-hazard evaluated at the survival time for uncensored observations.
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The second term reflects cumulative intensities integrated over accordant waiting periods

between two successive transitions. The integral is evaluated for all transitions the corre-

sponding person is at risk at during the current period. In survival models there is only

one such transition (the transition from ’alive’ to ’dead’) and the integral is evaluated

from the time of entrance to the study to the survival or censoring time.

These considerations yield an alternative representation of the likelihood, where each

of the individual contributions is expressed in terms of transition indicators δhi(t) and

observed transition times tij, j = 0, . . . , ni, where ti0 = 0 and ti,ni
= Ti. The indicators

δhi(t) take the value one if a transition of type h is observed at time t for individual i

and zero otherwise, while the tij are defined by the times at which the corresponding

individual experiences a transition. This leads to the alternative log-likelihood formula

li =

ni∑
j=1

k∑

h=1

[
δhi(tij) log(λhi(tij))− Yhi(tij)

∫ tij

ti,j−1

λhi(t)dt

]
, (5)

which reveals more clearly the connection to the commonly known likelihood of hazard

rate models in case of continuous survival times.

Under the usual assumption of conditional independence the complete log-likelihood is

given by the sum of the individual contributions. Note that the first integral in (4) reduces

to a sum as shown in Equation (5) while the second integral has to be evaluated. When

using splines of degree zero or one, explicit formulae for the integral can be derived.

In general, however, some numerical integration technique has to be applied. In our

implementation we utilised the trapezoidal rule due to its simplicity but of course more

sophisticated methods could also be used if required.

The counting process formulation of multi-state models also provides a possibility for

model checking based on martingale residuals (compare Aalen et al. (2004) for a similar

approach in the additive risk model). Since every counting process is a submartingale by

construction, we can apply the Doob-Meyer Decomposition Theorem to Nhi(t) and obtain

Nhi(t) = Ahi(t) + Mhi(t)

=

∫ t

0

αhi(u)du + Mhi(t),

where Mhi(t) is a martingale and Ahi(t) is a predictable process called the compensator of

Nhi(t). The compensator can be represented as the integral over the intensity process and

is therefore also called the cumulative intensity process. The Doob-Meyer Decomposition
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can be interpreted analogously to the decomposition of a times series into a trend (the

compensator) and an error component (the martingale). Hence, replacing the compen-

sator process with an estimate Âhi(t) obtained from the model under consideration yields

estimated residual processes Nhi(t) − Âhi(t). If the model is valid, the estimated resid-

uals should (approximately) have martingale properties. For example, their expectation

should be zero and increments in non-overlapping intervals should be uncorrelated (Hall

& Heyde (1980), Sec. 1.6). Compare Section 5, where we will make use of martingale

residuals in the context of our application.

4 Bayesian Inference

Based on the quantities considered in the last section we are now prepared to discuss

Bayesian inference in multi-state models. In the following, we will differentiate between

two perspectives on the estimation problem. In an empirical Bayes approach the variance

parameters of the smoothness priors (3) will be treated as unknown constants which are

to be estimated from their marginal likelihood. This will be facilitated by a mixed model

representation of the predictor defining the transition hazards, see Section 4.1. In a fully

Bayesian treatment of multi-state models, all parameters including the variances will be

treated as random and estimated simultaneously using MCMC simulation techniques, see

Section 4.2. Both inferential procedures borrow from approaches which have been recently

developed for continuous-time survival models (compare Kneib & Fahrmeir (2006) for the

empirical Bayes version and Hennerfeind et al. (2006) for the fully Bayesian approach)

and extend them to the more general setup of multi-state models.

4.1 Empirical Bayes inference

In an empirical Bayes approach, we differentiate between parameters of primary interest

(the regression coefficients in our model) and hyperparameters (the variance parameters).

While prior distributions are assigned to the former, the latter are treated as unknown

constants which are to be estimated by maximising their marginal posterior. Plugging

these estimates into the posterior and maximising the resulting expression with respect

to the regression coefficients then yields posterior mode estimates (as compared to the

empirical mean estimates obtained from MCMC simulation averages).
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Empirical Bayes estimation in semiparametric regression models has been considerably

facilitated by the insight that regression models with smoothness priors of the form (3)

can be represented as mixed models with i.i.d. random effects (compare e.g. Fahrmeir,

Kneib & Lang (2004) or Ruppert, Wand & Carroll (2003)). This representation has the

advantage that partially improper priors can be split into an improper and a proper part

therefore enabling the application of mixed model methodology for the estimation of the

variance parameters.

To be more specific, let ξj be the vector of regression coefficients describing a model term

with kj = rank(Kj) ≤ dim(ξj) = dj. Our aim is to express ξj in terms of a kj-dimensional

vector of random effects bj and a (dj−kj)-dimensional vector of fixed effects βj. This can

be achieved by applying the decomposition

ξj = X̃jβj + Z̃jbj (6)

with suitably chosen design matrices X̃j and Z̃j of dimensions (dj×dj−kj) and (dj×kj),

respectively. The following conditions are assumed for the transformation in (6):

(i.) The compound matrix (X̃j Z̃j) has full rank to make (6) a one-to-one transforma-

tion.

(ii.) X̃ ′
jKj = 0 yielding a flat prior for βj, i.e. βj can be interpreted as a vector of fixed

effects.

(iii.) Z̃ ′
jKjZ̃j = Ikj

yielding an i.i.d. Gaussian prior for bj, i.e. bj ∼ N(0, τ 2Ikj
) can be

interpreted as a vector of i.i.d. random effects with variance τ 2.

Correspondingly the vector of function evaluations transforms to

Vjξj = Vj(X̃jβj + Z̃jbj) = Xjβj + Zjbj

with Xj = VjX̃j and Zj = VjZ̃j. Applying this decomposition to all nonparametric effects

in the model leads to a variance components mixed model representation for each of the

transition intensities. Note that additional identifiability restrictions have to be imposed

on the reparametrisation to obtain a valid model formulation, compare the discussion in

Kneib & Fahrmeir (2006). Each of the nonparametric effects in a transition intensity

yields a column of ones in the design matrix Xj which models the overall effects of the

corresponding function. To obtain a valid model specification, we include an intercept in
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each of the transition intensities and delete the superfluous columns from the reparame-

terisation. This has a similar effect as imposing centering restrictions on nonparametric

functions which is a common strategy to obtain identifiable additive models. Note that

we do not have to impose centering restrictions on time-varying effects ug(t).

We will now briefly outline mixed model based estimation of multi-state models. Since

each of the transition intensities can in fact be considered a hazard rate in a time-

continuous duration time model, we will not discuss every step in full detail but instead

refer to the complete description in Kneib & Fahrmeir (2006).

In mixed model formulation, the log-posterior for all parameters is given by

lp(β, b, τ 2) =
n∑

i=1

li +
∑

j

1

2τ 2
j

b′jbj, (7)

where β, b and τ 2 are vectors collecting all fixed effects, random effects and variances,

respectively. The first term in (7) corresponds to the likelihood (4) while the second

term corresponds to a sum over all prior distributions in the model. Since (7) has the

form of a penalised likelihood, the regression coefficients can be obtained as penalised

maximum likelihood estimates. This corresponds to the determination of posterior mode

estimates for given variance parameters. Actual maximisation can be achieved by a

Newton-Raphson-type algorithm.

The variances themselves are to be obtained from the marginal posterior, i.e. by max-

imising (7) after integrating out all regression coefficients:

lmarg(τ
2) =

∫
lp(β, b, τ 2)dβdb.

Of course this integral can hardly be solved analytically or numerically in practice since β

and b will be high-dimensional. Therefore we apply a Laplace approximation to lmarg(τ
2)

similar as in Breslow & Clayton (1993) yielding an approximate solution to the integral

depending on current estimates β̂ and b̂. Computing the score function and expected

Fisher information of the approximate marginal likelihood allows to device a Fisher-

scoring scheme for the estimation of τ 2. Since now the estimation scheme of the regression

coefficients depends on the variances and vice versa, we update both quantities in turn

until convergence is reached.
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4.2 Fully Bayesian inference

In contrast to the empirical Bayes approach, a fully Bayesian approach is based upon the

assumption that both the parameters of primary interest and the hyperparameters (the

variance parameters) are random. Prior distributions are not only assigned to the former

but, in a further stage of the hierarchy, also to the latter. Hence, hyperparameters are an

integral part of the model and will be estimated jointly with all other parameters using

MCMC techniques. We routinely assign inverse Gamma priors IG(aj; bj)

p(τ 2
j ) ∝ 1

(τ 2
j )aj+1

exp

(
− bj

τ 2
j

)
(8)

to all variances. They are proper for aj > 0, bj > 0, and we use aj = bj = 0.001 as a

standard choice for a weakly informative prior. Note that uniform priors are a special

(improper) case of the prior (8) with aj = −0.5, bj = 0, still leading to proper posteriors

under regularity assumptions. The Bayesian model specification is completed by assuming

that all priors for parameters are (conditionally) independent.

Again, since each of the transition intensities can be considered a hazard rate in a time-

continuous duration time model, we will only briefly comment on fully Bayesian inference

for multi-state models and refer to Hennerfeind et al. (2006) for more details. Let ξ denote

the vector of all regression coefficients and τ 2 the vector of all variance parameters. Full

Bayesian inference is based on the entire posterior distribution

p(ξ, τ 2 | data) ∝ L(ξ, τ 2) p(ξ, τ 2),

where L denotes the likelihood (given by the product of the individual likelihood contribu-

tions) and p(ξ, τ 2) denotes the joint prior, which may be factorized due to the (conditional)

independence assumption. Since the full posterior distribution is numerically intractable,

we employ an MCMC simulation method that is based on updating full conditionals of sin-

gle parameters or blocks of parameters (each with parameters corresponding to the same

transition rate λhi), given the rest of the data. Convergence of the Markov chains to their

stationary distributions is assessed by inspecting the sampling paths and autocorrelation

functions of the sampled parameters, which are used to estimate characteristics of the

posterior distribution like means and standard deviations via their empirical analogues.

For updating the parameter vectors corresponding to time-independent functions fj, as

well as fixed effects γ and frailty terms b, we use a slightly modified version of the
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Metropolis-Hastings-algorithm based on iteratively weighted least squares (IWLS) pro-

posals, developed for fixed and random effects in generalised linear mixed models by

Gamerman (1997) and adapted to generalised additive mixed models in Brezger & Lang

(2006). Suppose we want to update a certain parameter vector ξj, with current value ξc
j

of the chain. Then a new value ξp
j is proposed by drawing a random vector from a (high-

dimensional) multivariate Gaussian proposal distribution q(ξc
j , ξ

p
j ), which is obtained from

a quadratic approximation of the log-likelihood by a second order Taylor expansion with

respect to ξc
j , in analogy to IWLS iterations in generalized linear models. More precisely,

the goal is to approximate the posterior by a Gaussian distribution, obtained by accom-

plishing one IWLS step in every iteration of the sampler. Then, random samples have

to be drawn from a high dimensional multivariate Gaussian distribution with precision

matrix and mean

Pj = V ′
j W (ξc

j)Vj +
1

τ 2
j

Kj, mj = P−1
j V ′

j W (ξc
j)(ỹ − η−j).

Here, η−j = η − Vjξj is the part of the linear predictor associated with all remaining

effects in the model and W (ξc
j) = diag(w11, . . . , w1n1 , . . . , wnnn) is the weight matrix for

IWLS with weights calculated from the current state ξc
j as wik =

∫ tik
ti,k−1

Yi(u)λi(u)du for

i = 1, . . . , n, k = 1, . . . , ni. The vector of working observations ỹ is given by

ỹ = W−1(ξc
j)∆− 1l + η

with ∆ = (δ1(t11), . . . , δn(tnnn))′. The proposed vector ξp
j is accepted as the new state of

the chain with probability

α(ξc
j , ξ

p
j ) = min

(
1,

p(ξp
j | ·)q(ξp

j , ξ
c
j)

p(ξc
j | ·)q(ξc

j , ξ
p
j )

)

where p(ξj | ·) is the full conditional for ξj (i.e. the conditional distribution of ξj given all

other parameters and the data).

For the parameters corresponding to the functions g0(t), . . . , gL(t) depending on time t,

we adopt the computationally faster MH-algorithm based on conditional prior proposals.

Unlike the algorithm based on IWLS proposals this algorithm only requires evaluation of

the log-likelihood, not of derivatives (see Fahrmeir & Lang (2001) for details). Note that

the evaluation of derivatives would be particulary time-consuming for these parameters

since further integrals are involved that are not to be solved by explicit formulae.

As the full conditionals of the variance parameters are (proper) inverse Gamma distribu-

tions, updating of hyperparameters can be done by simple Gibbs steps.
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5 Application: Human sleep data

In this application, we analyse data on human sleep collected at the Max-Planck Institute

for Psychiatry in Munich as a part of a larger study on sleep withdrawal. The part of

the data we will consider, is utilised to obtain a reference standard of the participants’

sleeping behaviour at the beginning of the study. Therefore, the major goal is to obtain

a valid description of the dynamics underlying the sleep process of the 70 participants.

Originally, the sleep process is recorded by electroencephalographic (EEG) measurements

which are afterwards classified into the three states awake, Non-REM and REM. The Non-

REM state could be further differentiated but since our data set is comparably small, we

will restrict ourselves to a three-state model. In addition to EEG measures taken every 30

seconds throughout the night, blood samples are taken from the patients approximately

every 10 minutes, providing measurements on the nocturnal secretion of certain hormones,

e.g. cortisol. Including this covariate information in multi-state models allows to validate

assumptions about the relationship between the hormonal secretion level and changes in

the transition intensities. For example, we will investigate, whether an increased level

of cortisol effects the transition intensities between Non-REM and REM-sleep phases, a

relationship that has been found in exploratory correlation and variance analyses.

[Figure 3 about here.]

The general model structure we will consider is schematically represented in Figure 3. To

obtain a somewhat simplified transition space, we aggregated the transitions from awake

to Non-REM and to REM as well as the reverse transition into the single transitions

awake to sleep and sleep to awake, respectively. Based on the previous considerations, we

chose the following specification for the four remaining transition hazards:

λAS,i(t) = exp
[
g

(AS)
0 (t) + b

(AS)
i

]
,

λSA,i(t) = exp
[
g

(SA)
0 (t) + b

(SA)
i

]
,

λNR,i(t) = exp
[
g

(NR)
0 (t) + ci(t)g

(NR)
1 (t) + b

(NR)
i

]

λRN,i(t) = exp
[
g

(RN)
0 (t) + ci(t)g

(RN)
1 (t) + b

(RN)
i

]

Each of the transitions is described in terms of a baseline effect g
(h)
0 (t) and a transition

specific frailty term b
(h)
i . In addition, we included time-varying effects g

(h)
1 (t) of high
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cortisol secretion for the transition rates between Non-REM and REM, where ci(t) is a

dichotomized binary indicator for a high level of cortisol, i.e. ci(t) takes the value one

if the cortisol level exceeds 60 n mol/l at time t and zero otherwise. Therefore, each

transition model consists of two different intensity functions for a low level of cortisol

(g0(t)) and a high level of cortisol (g0(t) + g1(t)) respectively.

All time-varying effects g
(h)
j , j = 0, 1 are modelled as cubic P-splines with second order

difference penalty and 40 inner knots. We chose a relatively large number of knots to en-

sure enough flexibility of the time-varying functions. The transition- and patient-specific

random effects b
(h)
i are assumed to be i.i.d. Gaussian with b

(h)
i ∼ N(0, τ 2

hb).

As a reference point we considered a purely parametric Markov model, where each of the

transitions is assigned a time-constant rate not depending on any covariates. In this case,

the maximum likelihood estimates of the transition intensities have a closed form and can

be computed as the inverse of the average waiting time for a specific transition.

Estimated results for the time-varying baseline effects g
(h)
0 together with (logarithmic)

time-constant rates estimated from the parametric Markov model are displayed in Fig-

ure 4. Empirical Bayes inference and fully Bayesian inference lead to highly comparable

results – with the transition from awake to sleep as a sole exception, where empirical

Bayes inference yields a lower effect. Altogether we conclude that the transition rates are

clearly varying over night with cyclic patterns for the transitions between awake and sleep

and the transition from Non-REM to REM. As was to be expected, the tendency to fall

asleep again is particularly low for patients who awake at the end of the night, i.e. after

more than 7 hours after sleep onset. By contrast, the tendency to wake up is roughly

u-shaped and rather high in the beginning and especially high at the end of the night.

Concerning the transitions between Non-REM and REM sleep, the log-baseline effects

g
(h)
0 , h = NR, RN mark the effects for a low level of cortisol, while g

(h)
1 (compare Figure

5) describe deviations from these effects if the level of cortisol is high, i.e. exceeds 60 n

mol/l. In case of a low cortisol level, the intensity for a transition from Non-REM to REM

is initially very low, but steeply increasing within the first hour after sleep onset followed

by some ups and downs. In contrast, the intensity for the reverse transition from REM

to Non-REM is highest immediately after sleep onset and afterwards decreases almost

linearly. Figure 5 exhibits some additional time-variation for the transition rate from

Non-REM to REM in case the level of cortisol is high. The additional effect of the reverse
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transition is less pronounced. Finally, frailty terms are identified for all transitions when

applying fully Bayesian inference, while frailty terms are only identified for the transition

from REM to Non-REM when applying empirical Bayes inference (results not shown).

[Figure 4 about here.]

[Figure 5 about here.]

The performance of the developed models is assessed using martingale residuals and com-

pared to the parametric Markov process model. Figure 6 exemplarily displays martingale

residuals for the transition from Non-REM to REM. Although the presentation as a time

series plot is not very elucidating due to the accumulation of 70 individual processes, it

allows to identify extreme outliers and to draw some general conclusions: The Markov

model tends to overestimate the number of transitions (especially for the first hour after

sleep onset), while the flexible, semiparametric models yield residuals with a relatively

symmetric distribution about zero. In addition, the overall magnitude of the martingale

residual processes is considerably smaller when inference is conducted fully Bayesian. This

is due to the fact that the fully Bayesian frailty term estimates account for subject-specific

differences which are ignored by the empirical Bayes estimates.

To gain additional insight into the distribution of the martingale residuals, Figure 7 dis-

plays kernel density estimates of the martingale residuals at selected time points. This

illustration further supports the conclusion that semiparametric modelling of the tran-

sition intensities improves upon a purely parametric model. Overall, the fully Bayesian

approach seems to perform best, with residual distributions which are mostly symmetric

about zero. In contrast, the residual distributions for the parametric model are consider-

ably shifted to either a positive or negative value, indicating under- and overestimation

of the expected number of transitions, respectively. Results obtained with the empirical

Bayes approach are somewhere in between fully Bayesian and parametric estimates. An

exception is the transition from REM to Non-REM, where frailty terms are identified via

both, fully Bayesian and empirical Bayes inference, and hence both flexible models per-

form equally good. Hence, Figure 7 gives a further hint that individual-specific variation

should be accounted for when modelling the transition intensities.

[Figure 6 about here.]
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[Figure 7 about here.]

Finally, Figure 8 shows empirical autocorrelation functions for 30 second increments of the

residual processes. According to martingale theory, these increments should be (approx-

imately) uncorrelated. Of course, it would be too strict to expect exactly uncorrelated

residual processes but autocorrelations should die out quickly for a well-chosen model.

Unfortunately, none of the models considered fully fulfills this requirement. In particu-

lar, the transitions from awake to sleep and from REM to Non-REM exhibit long-time

autocorrelation and show only small differences between the three inferential procedures.

In contrast, there is a clear improvement with the flexible model for the two remaining

transitions. For the transition from Non-REM to REM autocorrelations die out relatively

quickly, especially for fully Bayesian estimates.

[Figure 8 about here.]

In summary, flexible models seem to improve upon the simple Markov model but are still

not able to capture all of the essential features influencing the sleep process. However,

since our data set only contains very little information about the participants of the sleep

study, it probably is not very realistic to expect the model to fully explain the underlying

dynamics. At least parts of the individual-specific variation is captured by the frailty

effects which also proved to be important in the analysis of residual processes.

6 Discussion

We have presented a computationally feasible semiparametric approach to the analysis of

multi-state duration data motivated by an application to human sleep. Transition inten-

sities were specified in a multiplicative manner in analogy to the Cox model allowing for

the inclusion of flexible nonparametric and time-varying effects. All parameters including

smoothing parameters were estimated jointly using either an empirical Bayes or a fully

Bayesian approach therefore circumventing the need for subjective judgements. Some

helpful tools for model validation and comparison have been considered on the basis of

martingale residual processes.

The presented multi-state framework is easily extendable to different situations requiring

more complicated modelling of covariate effects such as spatial effects or interactions

17



between covariates. In the future, application to such more complicated data structures

will be of particular interest to investigate the capabilities of Bayesian multi-state models.

Of course, such extensions will require a larger data base than in our application to make

the effects well-identified.

A methodological extension will be the consideration of coarsened observations in analogy

to interval censored survival data. This phenomenon is frequently observed in practice, in

particular in medical applications where patients can be examined only at a prespecified

fixed set of time-points. In this case the likelihood will in general not be available in ana-

lytic form, leading to additional numerical difficulties. In a fully Bayesian approach, the

augmentation of true transition times in a data imputation step seems to be a promising

alternative that avoids the computation of the exact likelihood.
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Figure 1: Reachability graphs of some common multi-state models.
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Figure 2: Realisations of two individual sleep processes and corresponding nocturnal
cortisol secretion.
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Figure 4: Estimated time-varying log-baseline transitions (together with 80% and 95%
pointwise credible intervals) resulting from empirical Bayes (left panel) and fully Bayesian
(right panel) inference. Horizontal grey lines mark time-constant estimates resulting from
the Markov model.
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pointwise credible intervals) resulting from empirical Bayes (left panel) and fully Bayesian
(right panel) inference.
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Figure 7: Kernel density estimates of martingale residuals at selected points of time for the
Markov model (solid lines), empirical Bayes inference (dashed lines) and fully Bayesian
inference (dotted lines).
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