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1 Introduction

Performance of any estimation procedure for the parameters in a model is

generally evaluated by either the goodness of fitted model or the concen-

tration of the estimates around the true parameter values. In practice, it

may often be desirable to employ both the criteria simultaneously; see, for

instance, Toutenburg and Shalabh (1996), Shalabh (1995, 2000) and Zell-

ner (1994) for some illustrative examples. Accordingly, Zellner (1994) has

introduced the balanced loss function. As the goodness of fitted model can

be interpreted as the goodness of the predictions for the actual values of the

study variable within the sample while the concentration of estimates may be

measured by the goodness of predictions for the average values of the study

variable within the sample, Shalabh (1995) has presented the predictive loss

function.

In this paper, we present a general loss function of which the loss functions

considered by Shalabh (1995) and Zellner (1994) are particular cases, and

expose the unbiased least squares and biased Stein-rule estimators of the

regression coefficients. In Section 2 we describe the linear regression model

and present a general loss function under quadratic loss structure. Section

3 gives a comparison of the risk functions associated with the least squares

and Stein-rule estimators, and a condition on the characterizing scalar for

the superiority of the Stein-rule estimators over the least squares estimator

is obtained. Several particular cases are also considered. Some concluding

remarks are then placed in Section 4. Lastly, the Appendix gives the proof

of Theorem.

2



2 Linear Regression Model And The Loss Func-

tion

Let us consider the following linear model:

y = Xβ + σε (2.1)

where y is a n×1 vector of n observations on the study variable, X is a n×p

full column rank matrix of n observations on p explanatory variables, σ is an

unknown positive scalar and ε is a n× 1 vector of disturbances.

It is assumed that the elements of ε are independently and identically dis-

tributed following a distribution with mean 0, variance 1 and third moment

γ1 measuring skewness.

If β̃ denotes any estimator of β, the goodness of the fitted model is reflected

in the residual vector (Xβ̃ − y). Similarly, the pivotal quantity for measur-

ing the concentration of estimates around the true parameter values is the

estimation error (β̃ − β). Accordingly, the quadratic loss function for the

goodness of fit of the model is

(Xβ̃ − y)′(Xβ̃ − y) (2.2)

while the commonly employed loss function for the precision of estimation

are

(β̃ − β)′(β̃ − β) (2.3)

or

(β̃ − β)′X ′X(β̃ − β) (2.4)

Taking both the criteria of the goodness of fit and precision of estimation

together, Zellner (1994) has proposed the following balanced loss function:

BL(β̃) = ω(Xβ̃ − y)′(Xβ̃ − y) + (1− ω)(β̃ − β)′X ′X(β̃ − β) (2.5)
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where ω is a scalar lying between 0 and 1.

From the viewpoint of the prediction of the values of the study variable within

the sample, the loss functions (2.2) and (2.4) can be regarded as arising from

the prediction of actual values y by Xβ̃ and the prediction of the average

values E(y) = Xβ by Xβ̃ respectively. Accordingly, Shalabh (1995) has

defined a target function

T = ωy + (1− ω)E(y) (2.6)

and has presented the following predictive loss function

PL(β̃) = (Xβ̃ − T )′(Xβ̃ − T )

= ω2(Xβ̃ − y)′(Xβ̃ − y)

+(1− ω)2(β̃ − β)′X ′X(β̃ − β)

+2ω(1− ω)(Xβ̃ − T )′X(Xβ̃ − T ) (2.7)

where ω is a scalar between 0 and 1. Note that ω = 0 and ω = 1 in (2.6)

provides predictions for average and actual values of y. Any other value

0 < ω < 1 provides the weight assigned to the actual value prediction and

provides simultaneous prediction of actual and average values of y.

Looking at the functional forms of the balanced loss function and the pre-

dictive loss function, we propose the following weighted loss function:

WL(β̃) = λ1(Xβ̃ − y)′(Xβ̃ − y)

+λ2(β̃ − β)′X ′X(β̃ − β)

+(1− λ1 − λ2)(Xβ̃ − y)′X(β̃ − β) (2.8)

where λ1 and λ2 are scalars characterizing the loss functions.

Clearly, the function (2.8) encompasses the loss functions (2.2), (2.4), (2.5)

and (2.7) as particular cases. Thus it is fairly general and sufficiently flexible.
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3 Comparisons Of Least Squares And Stein-

Rule Estimators

The least squares estimator of β is given by

b = (X ′X)−1X ′y (3.1)

which is well known for its optimality in the class of linear and unbiased

estimators.

If we drop the linearity and unbiasedness, there exist estimators with better

performance than the least squares estimator under the risk criterion. One

such interesting family of nonlinear and biased estimators of β, popularly

known as Stein-rule estimators is defined by

β̂ =

[
1−

(
k

n− p + 2

)
y′ (I −H) y

y′Hy

]
b (3.2)

where

H = X(X ′X)−1X ′ (3.3)

and k is a positive nonstochastic scalar; see, e.g. Judge and Bock (1978) and

Saleh (2006).

For comparing the estimators, let us take the criterion as risk, i.e., the ex-

pected value of the weighted loss function (2.8).

The exact expressions for the risk functions can be derived bur their nature

would be sufficiently intricate. We therefore consider their large sample as-

ymptotic approximations. For this purpose, we assume that the explanatory

variables are asymptotically cooperative, i.e., the limiting form of the matrix

n−1X ′X is finite and nonsingular, as n tends to infinity.

The large sample asymptotic expressions for the risk functions are derived in
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the Appendix and are presented below.

Theorem 1 :

The risk function of b and β̂ to order O(n−1) are given by

R(b) = E [WL(b)]

= σ2λ1n− σ2p(λ1 − λ2) (3.4)

R(β̂) = E
[
WL(β̂)

]

= σ2λ1n− σ2p(λ1 − λ2)

− σ4k

nβ′Sβ

[
(1− λ1 + λ2)

(γ1

σ
X̄ ′β + p− 2

)
− k

]
(3.5)

where S = 1
n
X ′X and X̄ is a p × 1 vector of the means of the observations

on the p explanatory variables.

Comparing (3.4) and (3.5), it is observed that the Stein-rule estimator has

smaller risk to the order of our approximations, in comparison to the least

squares estimator when

k < (1− λ1 + λ2)
(γ1

σ
X̄ ′β + p− 2

)
(3.6)

provided that

(λ1 − λ2) < 1 and
(γ1

σ
X̄ ′β + p− 2

)
> 0 (3.7)

or

(λ1 − λ2) > 1 and
(γ1

σ
X̄ ′β + p− 2

)
< 0. (3.8)

When the distribution of disturbances is symmetric and/or X̄ is a null vec-

tor, i.e., the observations on the explanatory variables are taken as deviations

from their corresponding means, then the condition (3.6) becomes free from

unknown parameters β and is satisfied when either of the following two con-
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ditions holds true:

k < (1− λ1 + λ2)(p− 2) and (λ1 − λ2) < 1 if p > 2 (3.9)

k < (λ1 − λ2 − 1)(2− p) and (λ1 − λ2) > 1 if p = 1, 2. (3.10)

Now let us examine the performance of estimators under some interesting

loss functions.

3.1 Loss Function: (Xβ̃ − y)′(Xβ̃ − y)

This loss function is a particular case of (2.8) with λ1 = 1 and λ2 = 0. It is

indeed the residual sum of squares and is the sum of squares of prediction

errors when the aim is to predict the actual values of the study of the study

variable within the sample.

In this case, it is interesting to observe from (3.4) and (3.5) that the least

squares estimator remains unbeaten by all the Stein-rule estimators irrespec-

tive of the nature of the observations on the explanatory variables and the

distribution of disturbances. This matches with the result obtained by Sri-

vastava and Shalabh (1996, p.143) on the basis of exact risk expressions.

3.2 Loss Function: (β̃ − β)′X ′X(β̃ − β)

If we set λ1 = 0 and λ2 = 1 in (2.8), we get this loss function. It is essen-

tially the weighted sum of squares of the estimation errors and is the sum of

squares of the prediction errors when the aim is to predict the average values

of the study variable within the sample.

In this case, the Stein-rule estimators are better than the least squares esti-
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mator when

k < 2
(γ1

σ
X̄ ′β + p− 2

)
(3.11)

with the rider that the quantity on the right hand side is positive; see also

Vinod and Srivastatave (1995).

This condition reduces to

k < 2(p− 2); p > 2 (3.12)

when the distribution of disturbances is symmetric irrespective of the nature

of data on the explanatory variables or X̄ is a null vector whether the distri-

butions of disturbances is symmetric or asymmetric.

Similarly, the condition (3.11) is satisfied as long as (3.12) holds true pro-

vided that γ1 and X̄ ′β have the same sign, i.e., X̄ ′β is positive for positively

skewed distributions of disturbances and is negative for negatively skewed

distributions of disturbances. In fact, it is possible to find Stein-rule estima-

tors with better performance than the least squares estimator even for p = 1

and p = 2 when

γ1X̄
′β > 2σ. (3.13)

It may be noticed (3.12) is a well-known condition for the superiority of Stein-

rule estimators on the basis of exact risk under the normality of disturbances;

see, e.g., Judge and Bock (1978) and Saleh (2006).

3.3 Loss Function: (Xβ̃)
′
X(β̃ − β)

This loss function is obtained from (2.8) by putting λ1 = λ2 = 0 and can

be regarded as measuring the covariability between the residuals and the
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estimation errors. From the viewpoint of prediction within the sample, it

is the sum of cross products of errors arising from the prediction of the

actual and average values of the study variable by Xβ̃. This loss function

is, however, not interesting because the exact risk (3.4) of the least squares

estimator turns out to be zero which is the risk of Stein-rule estimators to

order O(n−1) which may be negative.

3.4 Loss Function: ω(Xβ̃ − y)′(Xβ̃ − y) + (1 − ω)(β̃ −
β)′X ′X(β̃ − β)

If we put λ1 = ω and λ2 = (1−ω) in (2.8), we get the balanced loss function

proposed by Zellner (1994). This is indeed a convex combination of the sum

of squares of the residuals and the weighted sum of squares of the estimation

errors. It can also be interpreted as a convex combination of the two sums

of squares of the prediction errors arising from the prediction of the actual

and average values of the study variable within the sample.

For 0 ≤ ω < 1, the Stein-rule estimators perform better than the least

squares estimator when

k < 2(1− ω)
(γ1

σ
X̄ ′β + p− 2

)
. (3.14)

When γ1 is zero and/or X̄ is a null vector, the condition (3.14) assumes a

simple form:

k < 2(1− ω)(p− 2); p > 2. (3.15)

This serves as a sufficient condition for the superiority of the Stein-rule es-

timators over the least squares estimator in case of the asymmetric distrib-

utions of the disturbances provided that the skewness coefficient γ1 has the
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same sign as X̄ ′β. Further, if (3.14) holds true, one can find Stein-rule es-

timators better than the least squares estimator even when there is simply

one or two explanatory variables in the model.

It may be observed that the condition (3.14) has been derived by Giles,

Giles and Ohtani (1996) by considering the exact risk under the normality

of disturbances; see also Ohtani (1998).

3.5 Loss Function: ω2(Xβ̃ − y)′(Xβ̃ − y) + (1 − ω)2(β̃ −
β)′X ′X(β̃ − β) + 2ω(1− ω)(Xβ̃ − y)′X(β̃ − β)

This loss function is a particular case of (2.8) with λ1 = ω2 and λ2 = (1−ω)2.

It is a combination of the sum of squares of the residuals, the weighted sum

of squares of the estimation errors and the weighted sum of cross products

of the residuals and the estimation errors. This is also equal to the sum

of squares of prediction errors when Xβ̃ is employed for the prediction of a

convex combination of the actual and average values of the study variable;

see Shalabh (1995).

From (3.4) and (3.5), it is seen that the Stein-rule estimators have smaller

risk in comparison to the least squares estimator when

k < 2(1− ω)
(γ1

σ
X̄ ′β + p− 2

)
(3.16)

which is precisely the same as (3.14) obtained from risk comparison under

the balanced loss function. The condition of (3.16) with γ1 = 0 matches with

the condition of Shalabh (1995) on the basis of exact risk; see also Shalabh

(1999).
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4 Some Remarks

Appreciating the simultaneous use of the two performance criteria, viz, the

goodness of fitted model and the concentration of estimates around the true

parameter values, for judging the efficiency of any estimation procedure for

the coefficients in a linear regression model, we have presented a general loss

function using the quadratic loss structure. Several popular loss functions

are found to be the particular cases of it, and thus the properties of loss

function is fairly general and sufficiently flexible.

For the regression coefficient vector, we have considered the unbiased least

squares and biased Stein-rule estimators. We have compared their perfor-

mance according to the risk criterion under the proposed loss function and

have obtained a condition on the characterizing scalar for the superiority of

the Stein-rule estimates over the least squares estimator.

We have not assumed any functional form for the distribution of the distur-

bances; we have simply supposed the finiteness of the first three moments.

Accordingly, the large sample approximations for risk functions are used for

the purpose of comparison. An interesting observation emerging from our

investigations is that the condition on the characterizing scalar for the supe-

riority of the Stein-rule estimators over the least squares estimator deduced

from the exact risks under the normality of disturbances remains valid for a

variety of symmetric and asymmetric distributions. Further, the Stein-rule

estimators are found to be quite robust with respect to the choice of loss

functions.
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A Appendix

From (2.1) and (2.8), we observe that

WL(β̃) = σ2λ1ε
′ε− σ(1 + λ1 − λ2)ε

′X(β̃ − β) + (β̃ − β)′X ′X(β̃ − β).(A.1)

Setting β̃ = b, it is easy to see that

R(b) = E[WL(b)] = σ2λ1n− σ2p(λ1 − λ2) (A.2)

which is the result (3.4) of the Theorem.

Now, if we write

u = n
1
2 X ′ε

and

v = n
1
2

(
ε′ε
n
− 1

)
,

we have

b− β =
σ

n
1
2

S−1u. (A.3)

Next, consider the quantity

y′(I −H)y

(n− p + 2)y′Hy
=

σ2(n + n
1
2 v − u′S−1u)

(n− p + 2)(nβ′Sβ + 2n
1
2 σβ′u + σ2u′S−1u)

=
σ2

nβ′Sβ

(
1 +

v

n
1
2

− 1

n
u′S−1u

)(
1− p− 2

n

)−1

·
(

1 +
2σβ′u

γ
1
2 β′Sβ

+
σ2u′S−1u

nβ′Sβ

)−1

.

Expanding and retaining terms to order O(n−
3
2 ), we find

y′(I −H)y

(n− p + 2)y′Hy
=

σ2

nβ′Sβ
+

σ2

n
3
2 β′Sβ

(
v − 2σβ′u

β′Sβ

)
+ Op(n−2). (A.4)
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Substituting (A.3) and (A.4) in (3.2), we find

(β̂ − β) =
σ

n
1
2

S−1u− σ2k

nβ′Sβ
β

− σ2k

n
3
2 β′Sβ

[
vβ + σ

(
S−1 − 2

β′Sβ
ββ′

)
u

]
+ Op(n−2).(A.5)

Using the distributional properties of ε, it is easy to verify that

E(ε′Aε) = tr(A)

E(ε′Aε · ε) = γ1(I ∗ A)e

where A is any n × n symmetric matrix with nonstochastic elements, e is a

n × 1 vector with all elements unity and * denotes the Hadamard product

operator of matrices.

Making use of these results and neglecting terms of higher order of smallness

than O(n−1), we see from (A.5) that

E[ε′X(β̂ − β)] = σp− σ2k

nβ′Sβ

[γ1

n
e′Xβ + σ(p− 2)

]
(A.6)

E[(β̂ − β)′X ′X(β̂ − β)] = σ2p− σ3k

nβ′Sβ

[
2γ1

n
e′Xβ + 2σ(p− 2)− σk

]
.

(A.7)

Setting β̃ = β̂ in (A.1), utilizing the above results and retaining terms to

order O(n−1), we find

R(β̂) = E[WL(β̂)]

= σ2λ1n− σ2p(λ1 − λ2)− σ4k

nβ′Sβ

[
(1− λ1 + λ2)

( γ1

nσ
e′Xβ + p− 2− k

)]

which is the result (3.5) of the Theorem.
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