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Abstract

We present Bayesian updating of an imprecise probability measure,
represented by a class of precise multidimensional probability measures.
Choice and analysis of our class are motivated by expert interviews that
we conducted with modelers in the context of climatic change. From
the interviews we deduce that generically, experts hold a much more in-
formed opinion on the marginals of uncertain parameters rather than on
their correlations. Accordingly, we specify the class by prescribing precise
measures for the marginals while letting the correlation structure subject
to complete ignorance. For sake of transparency, our discussion focuses
on the tutorial example of a linear two-dimensional Gaussian model. We
operationalize Bayesian learning for that class by various updating rules,
starting with (a modified version of) the generalized Bayes’ rule and the
maximum likelihood update rule (after Gilboa and Schmeidler). Over a
large range of potential observations, the generalized Bayes’ rule would
provide non-informative results. We restrict this counter-intuitive and
unnecessary growth of uncertainty by two means, the discussion of which
refers to any kind of imprecise model, not only to our class. First, we
find our class of priors too inclusive and, hence, require certain additional
properties of prior measures in terms of smoothness of probability density
functions. Second, we argue that both updating rules are dissatisfying,
the generalized Bayes’ rule being too conservative, i.e., too inclusive, the
maximum likelihood rule being too exclusive. Instead, we introduce two
new ways of Bayesian updating of imprecise probabilities: a “weighted
maximum likelihood method” and a “semi-classical method.” The for-
mer bases Bayesian updating on the whole set of priors, however, with
weighted influence of its members. By referring to the whole set, the
weighted maximum likelihood method allows for more robust inferences
than the standard maximum likelihood method and, hence, is better to
justify than the latter. Furthermore, the semi-classical method is more
objective than the weighted maximum likelihood method as it does not
require the subjective definition of a weighting function. Both new meth-
ods reveal much more informative results than the generalized Bayes’ rule,
what we demonstrate for the example of a stylized insurance model.

∗Potsdam Institute for Climate Impact Research, PO Box 60 12 03, D-14412 Potsdam,
Germany, held@pik-potsdam.de

†Potsdam Institute for Climate Impact Research, PO Box 60 12 03, D-14412 Potsdam,
Germany, and Carnegie Mellon University, Pittsburgh, USA, elmar@cmu.edu

‡Department of Statistics, University of Munich, Ludwigstr 33, D-80539 Munich, Germany,
thomas@stat.uni-muenchen.de

1



Keywords Generalized Bayes rule, imprecise probabilities, known marginals,
maximum likelihood update, modeling expert opinions, robust Bayesians, un-
known correlation structure, updating under complex uncertainty.

1 Introduction

Since the work of Walley [21], it is increasingly recognized that, most often,
subjective knowledge is better characterized by imprecise rather than precise
(i.e., standard) probability measures, whereby it could be shown (see [21], The-
orem 3.3.3) that any imprecise model can be interpreted as a class of precise,
traditional probability measures.

Here we investigate a particular imprecise model – including its Bayesian
updating – that shall represent epistemic uncertainty on a multi-dimensional
parameter space for which an expert is able to specify any of the marginals in
terms of probability measures, however, refuses to deliver any further informa-
tion, in particular not on the correlation structure among the parameters. A
couple of authors have investigated properties of such classes [3, 6, 10]. Some
of the properties of those classes are also resembled by the multivariate possi-
bility measure [7] introduced in [13]. For that possibility measure, instead of
an explicit correlation structure, [13] prescribe spherical symmetry in a rather
heuristic manner.

However we are not aware of any systematic investigation of Bayesian updat-
ing of such an imprecise model. For that reason we discuss four different types
of Bayesian updating of our imprecise model: two extreme versions already to
be found in the literature (a slightly modified version of Walley’s Generalized
Bayes’ rule [21] that we denote by GBR in the following, and Gilboa’s and
Schmeidler’s maximum likelihood update rule [12]) as well as to new hybrides
that we introduce in this article and that we regard as more convincing in certain
respects.

We started our investigations as we frequently observed statements by cli-
mate model developers or users that claim a lot of knowledge on individual
model parameters related to specific physical processes, however, feel much less
able to give any prior knowledge on the way the parameters must interact in
order to obtain a reasonable model climate state. The situation is similar to
constructors and users for other models used in the climatic change assessment.
We put our impression on more objective grounds by setting up a questionnaire
accordingly, answered by half a dozen model users (Section below). Here we
would like to push the discussion “knowledge on marginals” versus “knowledge
on correlations” to the extremes in order to sharpen the discussion and choose
a precise probability measure for the marginals.

To our impression, such type of investigation is desperately needed as in the
climate modeling community – as well as in many other research communities
– the issue of prior knowledge on parameter correlations is the most neglected
issue, always being represented by uncorrelated measures. On the level of in-
dividual parameters, quite the contrary, there are suggestions that come close
to something like robust Bayesian analysis in a rudimentary manner (in [9] two
sorts of priors are investigated) or even explicit treatments in terms of imprecise
models [15].

However, the silent assumption that an expert uninformed about correla-
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tions is best represented by uncorrelated parameters, seems to mimic – to our
taste – the “objective Bayesians’ ” assumption that the situation of complete
ignorance on a single parameter is best represented by a non-informative prior.
Quite the contrary, we follow Walley that there is no such thing like “objective
Bayesianism” and that situations of ignorance must be captured by imprecise
models. Recently, the approach of Walley and others was supported by [14] who
derived the neural basis of decision-making when probabilities are uncertain be-
cause of missing information (ambiguity). Therefore we proceed in setting up
an imprecise model for correlations.

It is apparent that the prior correlation structure will have a strong influence
on the result of Bayesian updating, in particular in high dimensions. E.g., for a
non-informative likelihood and identical Gaussian marginals, the standard devi-
ation of the posterior will scale with ∼ √

n for the uncorrelated case, while with
∼ n for the perfectly correlated case (n denoting the number of parameters).
Some first heuristic attempts to reflect such effects are made in [19] utilizing a
“correlated” and an “uncorrelated” prior, however, no systematic theory of how
to set up an adequate imprecise model including Bayesian learning has been
developed up to now. The present article aims at closing that gap.

The article is organized as follows: in the upcoming Section, we display the
outcome of our expert elicitation. In the following Section, we motivate a par-
ticular transfer function for our tutorial example that relates model parameters
and a potential observation, i.e., data input. Furthermore, we select the sim-
plest possible likelihood function then used to study Bayesian updating. An
overview on the updating methods used throughout the article will be given.
In Section 5, we sketch a stylized insurance situation as a potential application
of the imprecise probabilities to be derived afterwards. The insurance example
ought to reveal a decision problem that allows to illustrate as well as sharpen
the interpretation of the various updating rules discussed below. In Section 6 we
apply any of the concepts introduced before. Two new updating rules appear as
much more convincing than the scheme that traditionally represents the other
end (as against GBR) of the spectrum of updating methods: the maximum like-
lihood update method. Finally, in Section 7 we summarize the previous results
and discuss their consequences for the future uncertainty analysis of climate
models.

2 A questionnaire on the structure of prior
knowledge

Above we claimed that modelers in the context of climatic change typically
know more on individual parameters than on their correlations. In order to
underpin that impression we developed a questionnaire on the structure of prior
knowledge on model parameters. We considered users of the following models:

• The climate model of intermediate complexity CLIMBER-2 (correspond-
ing to a system of more than 1000 ordinary differential equations) [17],
[11],

• the complex ocean model MOM-3 [16],

• the dynamic vegetation model LPJ [5],
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• the model of endogenous economic growth, MIND [8].

We asked them – among other items – whether for a given uncertain model
parameter b, the expert would be willing to give probabilistic information in
terms of a density function. Any of them would do so. Then we checked for
the betting behavior on quantiles of b. We found certain discrepancies with the
density function specified before that may suggest to utilize imprecise measures
on b. However, these aspects are not central importance here and will be pub-
lished elsewhere, together with the questionnaire. Here we would like to focus
on the central question:

How do you judge the quality of your subjective knowledge on b compared to the
quality of your knowledge on correlations of b with other unknown parameters?

Most importantly in the context of this article, we obtained the following
answers:

• “For some of the parameters, I know about the sign of correlations, how-
ever my knowledge is less precise than that on individual parameters.”

• “Knowledge on b is higher than knowledge on correlations with other pa-
rameters (on some specific parameters, it might be different).”

• “The parameter knowledge is relative good but the knowledge on correla-
tion with other parameters in some cases is only an idea.”

• “I have not considered the possibility of correlations.”

• “Never thought about that point.”

• “It would be impossible to specify anything on correlations.”

• “Absolutely no comment on correlations.”

We would like to stress again that any of those statements were made by an
expert that at the same time was willing to specify prior knowledge in proba-
bilistic terms on individual parameters!

Therefore we find it worthwhile to consider the somewhat extreme case of
imprecise prior knowledge with prescribed marginals (i.e. knowledge on individ-
ual parameters) and fully unconstrained correlation structure.

3 Specification of the updating problem

First of all we would like to introduce the notation for traditional Bayesian
learning (updating) from data y, given a single prior probability measure P :

Papost(x) =
P (x) L(x)∫

dx′ P (x′) L(x′)
, (1)

L(x) ≡ P (y|x) denoting the likelihood function for the uncertain (multivari-
ate) parameter x. (Here we use “P” synonymously for the probability measure
as well as for the accompanying density when applied to elements of the Rn.)
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3.1 Specification of a transfer function

For our purpose, the simplest non-trivial transfer functions that relates a multi-
variate model parameter to model output, to be compared to a real-world entity,
is given by

F : R2 → R, (x1, x2) → κx1 + x2, κ ∈ R. (2)

In terms of a climate model, we may identify x1 with a key uncertain model
parameter such as climate sensitivity in reduced-form climate models and κ x1

with a model output of interest, such as global mean temperature in the year
2100. Furthermore, the model constructor as well as the modeling community
know that the model structure is not perfect and that there may be a systematic
deviation x2 of model output and observational data y. Hence, F , rather than
κ x1 ought to be compared to an observation y.

In order to keep the discussion as transparent as possible, we will focus
on a single quantity of interest the posterior probability of which shall be de-
rived in the following. As such a quantity, we choose the probability of ruin
P ∗apost =

∫∞
x∗1

dx1

∫∞
−∞ dx2 Papost(x1, x2), i.e., the probability that x1 (e.g.

climate sensitivity) is larger than a certain threshold value x∗1. In case a prior
opinion P , κ and L were specified and y were observed, above formulas would
uniquely reveal the aposteriori distribution, and thereby the desired P ∗apost.

However, within an imprecise setting, we do not deal with a single prior P ,
but with a whole class P of priors. We define our class of priors with prescribed
marginals as

P :=
{

P | ∀x1

∫
dx2 P (x1, x2) = P1(x1), ∀x2

∫
dx1 P (x1, x2) = P2(x2)

}
,

(3)
P1, P2 specified by the expert. Note that any element P of that class is – by

construction – normalized to 1. We could focus on specific choices for P1, P2, L
already here. However, some major innovative aspects of this article refer to
Bayesian updating of imprecise priors. The following subsections structures
various cross-relations within Bayesian updating that are independent of the
choice of P1, P2, L and should be given in general terms in advance. We will
demonstrate any of the upcoming ideas for a specific example in Section 6.

3.2 Generalizations of Bayes’ formula

We now specify which types of generalizations of Bayes’ formula we will employ
furtheron when we need to update of P rather than a single P . Any sort of
generalization, newly introduced in this article, will observe the following steps:

1. Select a subset P ′ ⊂ P according to a preselection rule, yet to be specified.

2. Apply Bayes’ formula to any of the members of P ′, thereby assembling a
class of aposteriori distributions.

3. Extract the probability of interest (e.g., of crossing a certain threshold,
the probability of ruin) for any of the posteriors.
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4. Condense the so derived sets into final quantity of interest. Frequently
used are the “inf” or the “sup” - operation, representing the optimist’s or
the pessimist’s view on, e.g., the probability of ruin.

The updating rules discussed below will differ with respect to the first and
the last step.

1. “Modified generalized Bayes rule (GBR)”: No preselection is applied, i.e.,
P ′ := P. On the class of the posteriors, the inf- and the sup-operation are
applied.

2. The maximum likelihood update rule (after [12]) preselects those priors
that optimize the prior probability (density) for the measurement y, i.e.
priors that have the maximum likelihood, given y. The method completely
disregards expert opinions that have not foreseen the measurement y with
maximum probability. In the end, the inf- and the sup-operation are
applied. The maximum likelihood update method somewhat resembles
Dempster’s method. Although it is not unrealistic to discount expert
opinions that are at odds with observations, we find it unconvincing to
completely dismiss opinions just because they have not foreseen the mea-
surement with maximum probability. In particular, our discomfort aims
at the exclusion of those opinions that have missed the maximum by just
an infinitesimal amount.

3. For that reason, we introduce a derivative of the maximum likelihood
update method, the weighted maximum likelihood update method. We
require that any of the prior opinions get a chance, i.e., P ′ := P. However,
then we classify the members of P ′ in terms of prior probability of y and
“linearly weight in influence of the according level sets” which shall be
specified precisely below (see Eqs. 5 to 7).

Let for the moment P be of finite power I, i.e., P = {P1, ..., PI} (the
infinite case follows directly from that). Let W : P → R+

0 denote the
probability of y for any prior P , i.e., for given y,

∀P∈P W (P ) :=
∫

dx P (x) L(x) =
∫

dx P (x) P (y|x). (4)

Let {w1, ..., wJ} := W (P) the set of weights generated from P and P ∗apost(P )
the posterior probability of the quantity of interest, given the prior P .

Pj := {P ∈ P|W (P ) = wj}, j = 1, ..., J, (5)

P ∗apost.wm :=

J∑
j=1

wj · inf
P∈Pj

(P ∗apost(P ))

∑J
j=1 wj

, (6)

P
∗
apost.wm :=

J∑
j=1

wj · sup
P∈Pj

(P ∗apost(P ))

∑J
j=1 wj

. (7)
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This new method would reveal results identical to those obtained from the
standard maximum likelihood update if w1 6= 0, w2, ..., wJ = 0.

4. The semi-classical method presupposes that the decision-maker is willing
to pool her or his risk with equivalent imaginated potential future decision
situations. Then as a preselection, we consider a certain classical volume
of confidence – to be further discussed in Section 4 – within P, depending
on the measurement y. In contrast to the maximum likelihood rule, this
preselection rule decides for any element of P solely on the basis of the
element’s relation to the measurement y – there is no comparative element
involved (in terms of a weighting function). The remaining three learning
steps (according to the list above) are then as for GBR or the maximum
likelihood update method. In preparation of the upcoming paragraph, we
note the following: this semi-classical rule does not imply the use of a
comparative element, neither in the first, nor in the last learning step.

In order to guarantee a coherent interpretation of this mixed classical-
Bayesian procedure, that may turn out to be controversial, we will embed
the method into the decision problem by a nesting-formula (see Section 4).

We will refer to these four generalizations of Bayes’ formula as “learning
rules” in the following.

3.3 Interpretation of overly inclusive prior classes

Finally we would like to note a further conceptual difficulty that needs to be
addressed when dealing with classes of priors: our (stylized) class may be too
large for a particular application, i.e. it may contain priors that correspond
to incompetent expert opinions. These opinions may drastically distort the
inferred upper (lower) probabilities. There are two ways how to deal with such
a “contaminated class”:

1. If the main sources of contamination are known, one simply would add
a filter to the preselection step that eliminates unrealistic priors. In the
following Subsection we will suggest a catalogue of such additional filters
that should be observed in standard applications. E.g., we will argue that
only those priors should be considered further that come with a density
whose gradient does not transgress a certain norm.

2. For those updating rules that preselect element-by-element, individually-
based out of P, hence do not involve a comparative step (as maximum
likelihood update does) and that involve a “sup” (“inf”) - operation in
the condensation step, the following obvious theorem holds:

The upper (lower) probability derived from the overly inclusive class of
priors serves as an upper (lower) boundary of the upper (lower) probability
derived from the correct class.

We note that GBR and the semi-classical rule are of that type. For both
rules, the theorem conveniently implies that we are always on the safe
side (i.e. we do not add spurious information) when we include also those
priors we are not sure about yet.
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Quite the contrary, for the (weighted) maximum likelihood update method,
the probability interval derived from an overly inclusive class must not be
interpreted as outer boundary of the correct probability interval. There-
fore the (weighted) maximum likelihood update method can be used only
after we have finally decided for any prior whether it should enter the
class or not.

To stress this point, quite important for practical applications, inference from
an overly inclusive class by the (weighted) maximum likelihood update rule is
useless: the (weighted) maximum likelihood update rule tries to weigh expert
opinions with respect to the prior probability with which they had anticipated
the observation. If one, e.g., defined a set of priors P1, ..., PM by “experts”,
who for any i ∈ {1, ...,M}, assign 100% chance to lottery result yi and zero
to any yj with j 6= i, then accidentally opinion Pi would be highlighted if yi

was measured. So a lot of trust would be given to opinion Pi although it was
just chosen for trivial reasons and not because it was characterized by higher
apriori competence. This situation somewhat resembles statements notoriously
outlined in popular media saying that a particular astrologist was right as he
or she had correctly predicted event yi. All the other astrologists having had
predicted yj , j 6= i, are not mentioned.

If we instead filter out false priors that would have two effects: GBR would
become more informative and we were allowed to use the (weighted) maximum
likelihood update method.

3.4 Further constraints on the class of priors

We now ask what an expert generically would be able to hold an informed
opinion on, in order to narrow down the class of priors:

1. The priors should be uni-modal.

2. We assume that the typical 1D (i.e., marginal) resolution over which an
expert can have an informed opinion about, reads dx1 (here “1” for “1D”)
if the typical dimension of the problem is ∆x (in our previous examples,
∆x ≈ 1). This implies that an expert can distinguish N1 ≈ ∆x/dx1 items.
Our requirement is equivalent to Walley’s “bounded derivative model” [23]
and shall be called gradient filter in the following.

3. This prescription needs to be generalized to a n-dimensional parameter
space.

(a) A possible generalization that would lead to a particularly large prior
class is obtained by allowing for a resolution in terms of cubes of
length dx1, i.e., Nn ≈ Nn

1 .

(b) The other extreme may require that Nn ≈ N1.

We can connect both extreme cases by Nn := N
βn+(1−β)
1 , hence we con-

struct the linear hull of the exponents of both cases, β ∈ [0, 1]. Such
connection may turn out necessary as both extreme cases display dissat-
isfying features:
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(a) Let β = 0 ⇒ Nn = N1. As Nn = ∆xn/dxn
n (with dxn denot-

ing the length of the edge of the n-dimensional cube), we observe:
limn→∞ dxn = limn→∞∆x/N

1/n
n = ∆x. This demonstrates that

the expert may not have much knowledge left on the nD parameter
space, measured in terms of 1D information dxn.

(b) On the other hand, β = 1 ⇒ Nn = Nn
1 would require a prior com-

petence of the expert, exponentially growing with dimension, that
seems unrealistic as well.

(Both phenomena root in the “curse of dimension.”) Hence, there is urgent
need for an expert elicitation, designed to obtain a meaningful intermedi-
ate value for β. For the time being we derive the consequences of various
values for β.

Once β has been decided on, the current (third) prescription on prior
distributions requires that the modulus of the distribution’s gradient was
smaller than 1/dxn+1

n = ∆x−(n+1) ·Nβn+1+(1−β)/n
1 .

3.5 Strategy for the implementation of various learning
rules in combination with filtering options

In this article we consider the simplest non-trivial choice of the class of priors:
we require that any prior should be a bivariate Gaussian with the marginals
P1 ≡ P2 ≡ N(µ, σ2). Hereby N(µ, σ2)(.) denotes a Gaussian of mean µ and
standard deviation σ, i.e. variance1 σ2.

We sacrifice generality for an analytically elegant and transparent imple-
mentation of the otherwise intricate and potentially only numerically accessible
unimodality filter. While we can rest on some tradition of focussing on pa-
rameterized classes of priors in the literature that deals with robust Bayesian
analyses and imprecise models [2, 18, 22], we would like to point out that our
choice is for purely pragmatic reasons and therefore does not attempt to be
the most adequate model for the experts’ knowledge. We expect that future
sophisticated expert elicitations will find certain parameter-free models most
adequate.

On that class, four learning rules on are at disposal. Any of these learning
rules could be combined with choices of additional preselection filters (outlined
in the preceding Subsection). This opens a diversity of combinations that we
could investigate in this article.

The case appears even richer once we have noted that the semi-classical
method does not only serve as an independent learning rule, but could also
be interpreted as additional preselection rule for the other three learning rules.
When we had previously listed the semi-classical method as a forth learning
rule, it effectively served as preselection filter for the GBR.

Hence, when investigating potential classes in upcoming Sections, we could
tackle any tensor element of the 3-rank “case-tensor,” characterized by the in-
dices

1. “gradient filter” on or off,
1For a multivariate application, the first entry would represent a vector of means, the

second the symmetric covariance matrix.
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2. “semi-classical filter” on or off,

3. Bayesian learning according to GBR, standard maximum likelihood up-
date, or weighted maximum likelihood update.

In order to keep the problem practical, we focus on some key combinations,
according to the following strategy:

• We investigate the most inclusive class first, i.e., both of the two filters are
switched off. This appears as attractive as no additional information for
the setting of the filters (such as the value for β) needs to be assumed, and
from the above Theorem we know that for GBR, no spurious information
is added in case our class is overly inclusive.

• The following steps are driven by the findings outlined in the following
Sections. In order to give an overview on the strategy, we highlight some
aspects already here: among other things, we will find that GBR with all
filters switched off, does not reveal very informative results.

• In addition, we test two versions of the gradient filter, revealing three cases
in total (when also considering the “switched-off case”).

• For any of these three cases, we vary the learning rule (GBR vs. (weighted)
maximum likelihood update) and the semi-classical filter. As both the
maximum likelihood update rule and the semi-classical filter are intri-
cate in terms of interpretation, we omit combining the two in this ar-
ticle (we omit the two combinations (“standard maximum likelihood up-
date” and “semi-classical filter”), (“weighted maximum likelihood update”
and “semi-classical filter”), although these would be technically possible.
Hence, we stick to the original list of four learning rules in which the
semi-classical filter is combined with GBR only.

4 The semi-classical method

In Subsection 3.4 we have discussed how to further constrain the class of priors in
such a way that it is more adapted to what an expert can actually know apriori.
Here we want to introduce an additional filter, based on unorthodoxly combining
classical ideas on defining intervals of confidence and Bayesian learning. Our
attempt to do so is motivated by the desire to find a learning rule that on the
one hand is somewhat more “objective” than the weighted maximum likelihood
update rule and that on the other hand is more informative than unfiltered
GBR.

4.1 A volume of confidence in the set of priors

For this, we make the following strong assumption that may be controversial
(noting that readers who cannot follow such an approach may skip the remainder
of this Section and simply digest those results derived without utilizing the semi-
classical filter):

Any prior specified by an expert can be interpreted as representing a stochas-
tic process that describes the way in which the expert deviates from reality in the
course of her or his life.
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Figure 1: Scheme for the construction of a volume of confidence V in the class of
priors. Any expert shall be characterized by one prior that induces a probability
measure of the potential measurement y′ (bottom). Once the measurement has
been realized, i.e. y′ := y, one can disregard priors that display y outside of a
quantile, characterized by a pre-set probability Q.

We would like to elaborate on this assumption. It sees an expert as someone
who performs many, N , assessments during her or his life, each assessment
specified by one prior distribution. Our assumption implies that the expert’s
priors Pn, n ∈ {1, ..., N} are consistent with her or his actual knowledge on
the parameters αn assessed. More formally: for any probability P ′, for any
sequence of assessments Pn and of parameter subsets An with ∀n Pn(An) = P ′,
∀ε>0 limN→∞ P (|k/N − P ′| < ε) = 1 if k denotes the number of “hits” in her
or his life (as a “hit” we denote an assessment n for which αn ∈ An; hence we
request the law of large numbers to hold for the expert’s assessments). In a
sense one may define an expert that way – as a person whose prior measures
are sampled by the true parameter values assessed over her or his life.

That way, we choose an interpretation of subjective probability that allows us
to treat it not only as epistemic uncertainty, but also as aleatoric uncertainty,
i.e., as a stochastic process that governs the relation of the expert to reality
during her or his life. Those users that could accept such an interpretation of
experts’ knowledge have the chance to interpret the combination of “choose the
parameter” and “predict, given that parameter, the measurement y” as a joint
stochastic process. If the former is described by P (x) and the latter by P (y|x),
then, given the expert’s P : P (y) =

∫
dx P (x) P (y|x).

As in our interpretation, for any prior, P (y) is generated by a stochastic
process, it must be possible to evaluate the elements within the set of priors on
the basis of the measurement utilizing classical statistics. In particular we are
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interested in defining a classical volume of confidence within the set of priors as
a filter, conditioned on y.

A classical interval of confidence (or, in our case, volume of confidence V)
represents a mapping from observation y onto the set of subsets of (hypotheses)
P, according to

V : R→ 2P , ∀P ′∈P ∀y′∈R P (P ′ ∈ V(y′)) = Q. (8)

Here, we distinguish y′ from y in order to indicate that the formula refers
to potential measurements for a given expert opinion P ′. The probability P
in the formula refers to all potential parameter values x and measurements y′,
weighted according one fixed prior P ′. The value of Q needs to be chosen before
y is known, in an informative manner – as it is standard in classical statistics.
In this article, we do not invest much in optimizing either Q or V(.) as we just
would like to demonstrate the principle. We will show below that even with
rather ad hoc settings for both we can construct a powerful semi-classical filter.

Now the volume will be constructed by the following idea: above requirement
is equivalent to a prior P ′-wise prescription that decides for each prior P ′ ∈ P
which y is “compatible” with our joint stochastic process (see also Figure 1):

Y : P → 2R with ∀y∈R ∀P ′∈P P (y ∈ Y(P ′)) = Q. (9)

Obviously, the two prescriptions are equivalent:

∀y∈R ∀P ′∈P {P ′ ∈ V(y) ⇔ y ∈ Y(P ′)} . (10)

In practice, one will attempt to construct Y in such a way that one excludes
values of y which strongly correlate with extreme values of x1, i.e., those y, for
which the probability of ruin is highest. That way, a powerful classical statistic
is constructed that excludes those priors which result in non-informatively high
values for P

∗
(an analogous argument holds for the lower limit).

Once such Y is constructed, it implies the mapping V which can be used
as a filter: for any of the Bayesian updating rules, P may then be replaced by
V(y) ⊂ P for further investigations.

4.2 Proposing a nesting formula

One may now ask how a decision-maker may deal with the fact that the volume
of confidence does not hold with certainty but only with probability Q. If
Q ≈ 1, in many applications of classical tests, this aspect is simply ignored and
the volume of confidence is dealt with as if it were certain.

However, here we would like to suggest an exact approach that explicitly
takes care of those cases for which the volume of confidence fails, appearing
with probability (1 − Q). We “nest” the classical uncertainty (1 − Q) into the
Bayesian scheme by a probability-tree argument (see Figure 2).

Let P ∗+ and P ∗− the upper and lower probabilities of ruin derived, after the
semi-classical filter has been applied to GBR. In case 1, the classical volume
was correct, and P

∗
apost = P ∗+, being true with probability Q. In case 2, the

classical volume was wrong, and we set P
∗
apost = 1 as a conservative estimate of

that quantity, with probability (1−Q). (Analogously we can proceed with the
lower probability of ruin.)
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Figure 2: Nesting the classical volume of confidence V in a decision situation.
In our frequentist’s interpretation we can explicitly take care of the possibility
that V may not contain the correct prior. For that we utilize a probability tree,
resulting in Eqs. 11 and 12.
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According to the thereby induced tree diagram,

P ∗apost.nested = Q · P ∗− + (1−Q) · 0, (11)

P
∗
apost.nested = Q · P ∗+ + (1−Q) · 1. (12)

In the following, we will call the upper and lower probabilities of ruin
“nested”; those based on GBR with semi-classical filter, however without nest-
ing correction (Eqs. 11 and 12) “unnested.”

4.3 Treatment of an empty V(y)

How to proceed if y is such an “outlier” that V(y) = ∅? One could proceed in
saying that no expert were available, hence there were no information on P ∗apost.
However, that lack of posterior information is counter-intuitive. If the semi-
classical filter is used together with GBR, we know that adding a prior to the
class does not result in spurious information. Hence if V(y) = ∅ we could add
a prior Pa from the original class that is most informative, e.g. the maximum
likelihood prior. In the worst case, the “true” prior equals Pa and the nesting
formula is too conservative. In any case, no spurious information is added by
re-introducing Pa.

We would like to illustrate what updating of an imprecise prior may mean
in a decisions situation. Hence, before presenting the implementation of above
combinations of learning rules and filters, we now introduce a stylized potential
user of our ideas.

5 A tutorial example for an insurance problem

Let us imagine an insurance company that has the choice between clients, each
of which comes along with an upper and a lower probability of ruin as well as
the value of a property to be insured.

To keep things simple, we assume that there is a standard loss of unit one
for any of the clients. Furthermore, we assume that the insurance company
as well as any of their potential clients j are pessimists, i.e., for any client
j, both the company and the client focus on the upper end of the posterior
probability of ruin P

∗
j which shall be known to both parties. For a potential

client, that determines her or his willingness to pay for an insurance premium.
The company, in turn, will decide on that basis whether – and if so – for what
premium it would insure the client. If the premium that the company regards as
necessary, exceeds the willingness to pay, no contract will be made. Otherwise
the company – whom we assume to exactly know the customers’ willingness
to pay in advance – will set the insurance premium I(P

∗
j ) equal to the client’s

willingness to pay. Furthermore, we assume that any of the clients share the
same willingness to pay, therefore the function I(.) is independent of j.

If the company attempts a positive expected gain, there must exist values
for P

∗
j with

I(P
∗
j ) > P

∗
j , (13)
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otherwise no insurance contracts will be made. Let J be the number of suc-
cessful contracts. Then the company faces a sure inflow of

∑J
j=1 I(P

∗
j ). The

outflow is given by the cases of ruin that appear at the moment of contract as
variables prone to epistemic uncertainty. If we assume that the clients’ cases
are mechanistically independent and that the company has the choice to set
∀j P

∗
j =: p in order to keep their analysis simple, the upper posterior prob-

ability of ruin, i.e., for negative gain G reads (in the Gaussian approximation
that reveals the exact result in the limit J →∞)

P ruin.insurance =

0∫

−∞
dG N

(
J · I(p)− J · p,

√
J p (1− p)

)
(G), (14)

N(µ, σ)(.) denoting a Gaussian with mean µ and standard deviation σ for
the remainder of this article. (Note that the company deciding on P ruin.insurance

rather than, e.g. P ruin.insurance, is consistent with focussing for any client j on
∀j P

∗
j .)

For illustrative purposes we now specify the willingness to pay according to

I(p) :=
{

2−1+1/α p1/α for p ≤ 1/2
1− 2−1+1/α (1− p)1/α for p > 1/2

}
with α := 3, (15)

ensuring inequality 13 for ∀j P
∗
j ≡ p < 0.5 (see also Figure 3, upper left

graph).
Figures 3 and 4 display the maximum p that is compatible with the require-

ment that for the company, the probability of ruin, i.e., P (G < 0) = 1/1000.
The so derived limits will be used in later graphs of Section 6 when once again
addressing the hereby formulated stylized decision problem:

“Clients with which characterizing measurement “y” can we – as an insur-
ance company – sign on contract if our own probability of ruin shall be below
0.1%?”

In the following, we attempt to answer that question for three major prior
“correlation classes” with prescribed marginal distributions: (1) uniform margi-
nals, (2) Gaussian marginals, (3) Gaussian marginals and the class of joint
distributions being restricted to Gaussians as well.

The “uniform case” is motivated by a specific expert interview on the param-
eters of our in-house climate model. The expert preferred – for each parameter
– an almost uniform marginal that would continuously drop to zero at the very
ends of the interval. As most climate models respond in a quasi-linear manner
to changes in model parameters, we regard it as a conservative approximation to
choose a uniform prior over the full interval instead. That way, the extremes are
pronounced. Below we will demonstrate that additional, gradient-based filters
(or anything equivalent) will be necessary in order to obtain informative as well
as adequate results. If we require that these rules are to be implemented in a
numerically not too sophisticated a manner, then a conveniently parameterized
prior class like (3) seems the class of choice. We then furthermore investigate
class (2) as an intermediate step between (1) and (3).
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Figure 3: A stylized decision situation for an insurance company for J = 30
identical clients and a probability of ruin, i.e., P (G < 0) = 1/1000. The graphs
denote the following: upper left: I(p) (with p ≡ PDesaster), lower left: the lower
expected gain per client, upper right: P (G < 0)(p), lower right: the same, yet
as semilog plot. The allowable values for p, given P (G < 0) = 1/1000, are
indicated by a dashed-dotted line. The case is quite robust against changes in
P (G < 0) ≡ Pruin.insurance. The upper limit of 12.9% for p ≡ PDesaster that we
read from the graph will be used in the upcoming tabulars as well as Figure 15.
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Figure 4: The same as Figure 3, yet for J = 100 clients, allowing for a larger
upper limit of 27.0% in p ≡ PDesaster due to risk pooling.
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Figure 5: Three extreme representatives of the class of Gaussian priors with
prescribed marginals. From left to right: maximally anticorrelated case (f =
−1), uncorrelated case (f = 0), and maximally correlated case (f = 1) – for
a definition of the parameter f see Eq. 17). The maximally (anti)correlated
cases are degenerate in the sense that the supports of the distributions are one-
dimensional. This will lead to paradoxical inferences during Bayesian updating.

6 Gaussian priors

We now turn to the most operational Section of this article, as we construct a
class of priors which represents unimodality, and for which most of the updating
methods are informative. Due to its analytical tractability we can also make
transparent any of the conceptual ideas outlined before. This central Section is
organized as follows: first we introduce a convenient parameterization for the
class of priors. Second, we define a semi-classical filter and apply any of the four
learning rules to the class of priors not yet constrained by gradient information.
Third, we repeat the four learning rules for the gradient filter being switched on
in two versions. Finally, we apply the nesting correction for the semi-classical
method in the latter case.

6.1 Specifying the marginals and the likelihood function

We specify P1 ∼ N(µ, σ), µ = 1/2, σ = 1/4, P2 ≡ P1, hence we select marginals
that contain ± 2 standard deviations in [0,1].

If we consider a class of Gaussian joint distributions, any prior is unimodal.
Later on we also will require bounds on the gradients, thereby avoiding degener-
ate, essentially lower-than-2 dimensional Gaussians (see Figure 5, left and right
graphs). Before that, however, we would like to study Bayesian updating on the
unrestricted class of that Gaussians.
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For simplicity we assume further that the transfer function F (x1, x2) =
κx1 +x2 relates to the observation y through some additional Gaussian process

L(x1, x2) ≡ P (y|x1, x2) := N(κx1 + x2, σ
2
η)(y). (16)

If |κ| ¿ 1 or if |κ| À 1 the transfer function were essentially one dimensional,
while the non-trivial case would be obtained for |κ| ≈ 1. Some quick checks
reveal that |κ| = 1 reveals a degenerate exception for which reason we avoid
such choice. Whenever we do not display results for κ but have to take a
decision (e.g. for numerical results) we choose κ := 1.05.

ση represents another degree of freedom. As this article deals with the
representation of imprecise prior knowledge and its updating and not so much
with the objective uncertainty contained in the likelihood, we choose ση ¿ σ,
in particular, ση = σ/10 when we have to specify it.

Now we derive in Appendix A.1 that a 2-dimensional Gaussian prior P fulfils
the constraints set by the marginals ∼ N(µ, σ2), iff there exists f ∈ [−1, 1] with

Σ = σ2

(
1 f
f 1

)
, (17)

and P ∼ N((µ, µ)t,Σ), whereby Σ denotes the covariance matrix of P .
Hence, we conveniently parameterize the class of Gaussian priors by one

single parameter f , and as function of f ∈ [−, 1, 1]. f = 0 represents the
uncorrelated (standard), f = ±1 the maximally (anti)correlated case (see again
Figure 5). Hence, we have parameterized P by f .

6.2 Posterior properties

To obtain P1.apost, we integrate over x2, revealing (see Appendix A.2)

P1.apost ∼ N(µ′, σ′2) with

µ′ =
µ(1− (1− f)(κ− 1) σ2/σ2

η) + (f + κ) y σ2/σ2
η

1 + (1 + 2fκ + κ2) σ2/σ2
η

,

σ′ = σ

√
1 + (1− f2) σ2/σ2

η

1 + (1 + 2fκ + κ2) σ2/σ2
η

. (18)

We utilize this expression to calculate the posterior probability of ruin

P ∗apost(f) =

∞∫

x∗1

N
(
µ′(f), (σ′(f))2

)
(x1) dx1. (19)

The case of dominating likelihood uncertainty – not to be considered further
– is obtained by ση →∞:

lim
ση→∞

µ′ = µ,

lim
ση→∞

σ′ = σ, (20)

i.e. if the measurement y becomes non-informative on κx1 + x2, then the
marginal prior and posterior on x1 are identical.
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Figure 6: Probability of ruin for the correlation class parameterized by the cor-
relation coefficient f after Eq. 17 for κ = 1.05, x∗1 = 0.95, ση = σ/10. Top: hor-
izontal dotted line: apriori value, curved dotted: (standard) uncorrelated case,
dashed-dotted: GBR, solid: the semi-classical method (combined with GBR),
the lower curves of both coalescing. GBR displays a quasi step-function-like
behavior. Furthermore, the semi- classical method reveals a lot of information
beyond GBR. Center: solid line: maximum likelihood estimate, dashed lines:
weighted maximum likelihood estimate. In this rather restricted class, maxi-
mum likelihood estimate lead to rather low probabilities of ruin. The fact that
the solid curve show a non-monotonic relation between measurement and vastly
deviates from its weighted counterparts (dashed) undermines trust in that up-
dating method. Bottom: Correlation parameter f obtained from maximum
likelihood update method, given y. For large y, the maximum likelihood update
method prefers f = 1. Then Bayesian learning implies the intersection of two
lines: the support of the likelihood, and the curve x1 = x2 (fully correlated),
hence, the posterior concentrates all weight on one single point. Therefore, the
probability of ruin must show a sharp transition (center graph, solid line) when
that single point crosses x∗1 as a function of y.
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Figure 7: Discussing Bayesian learning for the double degenerate case ση → 0,
f → −1 (fully anticorrelated prior). Bayesian learning simply reduces to looking
up the intersection of the lines “1 = x1 + x2” and “y = κx1 + x2”. Note that
although the aposteriori uncertainty on x1 is zero (“a well-defined intersection
of lines”), the aposteriori value for x1 strongly varies with mild variations in y.
For f = +1, quite the contrary is the case. Hence, in many parameter settings,
these two extreme cases tend to span a large interval for the probability of ruin
for GBR, leading to non-informative results.

6.3 Application of generalized Bayes’ rule (GBR)

In order to derive the upper and lower probability of ruin according to GBR,
we simply have to ask for the supremum and the infimum of this P ∗apost(f) over
[−1, 1]. We display the result as function of y in Figure 6, upper graph, dashed-
dotted lines (note that the curve for the lower probability of ruin coalesces with
the lower solid line (to be introduced later on), hence, is masked by it). Both
curves derived from GBR display quasi step-function type behavior.

For comparison we also display the standard case of Bayesian updating of
simply using the uncorrelated prior P (x1, x2) = P1(x1)·P2(x2) instead of a class
of priors (Figure 6, upper graph, curved dotted line, derived by letting f = 0 in
Eqs. 18.

Apparently, GBR reveals much less informative results than the standard
method would proclaim. In particular for y ∈ [1.3, 1.8] GBR does reveal no
information at all on the posterior probability of ruin, i.e. we only know P ∗apost ∈
[0, 1]. Hence, in the GBR paradigm, utilizing the more realistic class of priors
instead of the uncorrelated prior only, reveals drastically different results. The
question is: how would the results change when less conservative (than GBR)
methods of updating are being used? Before we discuss them we would like to
highlight the underlying reason for the non-informative features of GBR.

6.4 The illustrative limit ση → 0

In Figure 6 we display the case ση = σ/10, hence the uncertainty in P (y|x1, x2)
is much smaller than the prior uncertainty. For that reason we can expect to
find the analytically transparent case ση → 0 illuminating. If ση → 0, then
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the support of L(x1, x2) = P (y|x1, x2) collapses to the one-dimensional linear
manifold that solves the equation y = κx1 + x2. Furthermore

lim
ση→0

µ′ =
µ(1− f)(1− κ) + y(f + κ)

1 + 2fκ + κ2
,

lim
ση→0

σ′ = σ

√
1− f2

1 + 2fκ + κ2
. (21)

Now consider the degenerate priors for f = ±1:
Eqs. 21 imply lim|f |→1 σ′ = 0: in that limit, the prior P and L represent two

1D lines in the 2D space spanned by x1, x2, intersecting only at one point, leaving
no space for aposteriori uncertainty in x1. Hence, the support of P1.apost(x1)
collapses to µ′. Therefore it is worthwhile to explicitly note µ′ for these two
extreme cases:

µ′(f = −1) =
y − 2µ

κ− 1
, (22)

µ′(f = +1) =
y

κ + 1
, (23)

which can also be interpreted as the intersection of the lines y = κx1 + x2

either with 1 = x1 + x2 (see Figure 7, for f = −1), or with x1 = x2 (for
f = 1), i.e., as the intersection of δ-type likelihood and (anti)correlated prior,
respectively. From Eqs. 22 and 23 we conclude further (compare also Figure 8)

P ∗apost(f = −1) =
{

0 for y < (κ− 1) x∗1 + 2µ
1 for y ≥ (κ− 1) x∗1 + 2µ

}
, (24)

P ∗apost(f = +1) =
{

0 for y < (κ + 1) x∗1
1 for y ≥ (κ + 1) x∗1

}
. (25)

These two Equations suggest the structural changes in P apost.GBR (at y ≈
1) and P apost.GBR (at y ≈ 2), depicted as dashed-dotted lines in Figure 6,
upper graph (the positions of the discontinuities can easily understood by noting
κ, x∗1 ≈ 1). Hence GBR is non-informative over a large interval of y’s (in our
example for y ∈ [≈ 1,≈ 2]), i.e., we “learn” from Bayesian updating over the
class made-up by all f ∈ [−1, 1] that P ∗ ∈ [0, 1]. This phenomenon is similar
to the result found before for GBR and dissatisfying if it could be avoided by
more informative learning rules.

The priors with f → −1 display a further type of “instability” that are not
shown by f → +1: Let κ =: 1 + ε. Then µ′(f = −1) = (y− 2µ)/ε, according to
Eq. 22. This implies for κ ≈ 1, ε ¿ 1. Hence Bayesian learning in the strongly
anticorrelated limit is very unstable with respect to the measurement y even on
the level of the individual prior.

For all those reasons, we feel tempted to restrict the gradient of prior den-
sities which would exclude |f | → 1. Before we do so in Subsection 6.7, we
would like to implement the remaining three learning rules (besides GBR) for
the non-restricted class, for the sake of illustration and completeness.
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Figure 8: Illustration of Eqs. 24 and 25: Bayesian learning for the two degenerate
priors P (f = ±1) and ση → 0 (given the standard values κ = 1.05, x∗1 = 0.95).
These two priors alone are sufficient to open the rather larger non- informative
window between y ≈ 1 and y ≈ 2 when GBR is used for updating. As before
the prior probability of ruin is indicate by the dotted line.

6.5 Implementing the semi-classical learning rule

As outlined above, strongly anticorrelated priors may lead to extreme as well as
unstable results. This comes along with the likelihood intersecting mostly in the
tails with such prior (see Figure 5 (left graph) in combination with Figure 7), a
regime of low probability. The very fact that for “most” y, the likelihood and
the prior for f = −1 intersect in the “tails” of that prior, is the underlying
reason why the classical method may successfully eliminate such type of priors
from our prior class.

We define a volume of confidence as described in Subsection 4.1. First we
select a fixed value for the quantile Q := 0.98. In this article we shall not
discuss how to optimize the selection of Q. However, we have done so on a
pragmatic level: we tested a couple of numerical candidates for Q on whether
they would reveal informative results for the type of graphs derived below. As
always in classical statistics, it is important, however, to take the decision on Q
not in view of one particular measurement y but of all potential measurements
(observations) y′.

Then by Appendix A.3 for any f we determine the lower Q-quantile Y(f)
that would allow to decide whether y is compatible with f or not (see also
Figure 1, upper graph). From this we construct the volume of confidence in
the class of priors that for the present class is equivalent with an interval of
confidence for f within [−1, 1]:

Py,Q := V(y) := {P (f) | f ∈ [−1, 1] and y ∈ Y(f)}, (26)

i.e., we assemble priors for which y does not lie outside the lower Q- quantile.
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Hence we have constructed a one-sided interval of confidence such that priors
with y in their tails, leading to high µ′, highly sensitive to y, are omitted. The
one-sidedness somewhat contradicts the classical tradition of defining symmet-
ric intervals of confidence, unbiased tests, and so on. That was necessary as
the tradition desired to decouple the statistical procedure from potential ap-
plication, i.e., it aimed at universality of the statistical procedure. Once we
drop that request and focus on a particular application, we may optimize our
definition of the volume of confidence with respect to the decision situation at
hand. Below we will frame such a decision as the stylized insurance problem.

In view of Subsection 4.3 we still have to specify how to proceed in cases of
extreme values of y that would lead to a rejection of any prior under the quantile
Q. As we outlined in Subsection 4.3 we do not add spurious information when
we add priors to the set of priors used for updating. We decide to add P (f = 1)
to the set of priors if V(y) = ∅. That choice appears natural as P (f = 1) is the
last prior to be rejected by the semi-classical filter when y were continuously
to assume more and more extreme values. For κ = 1.05, ση = σ/10, that
mechanism becomes activated e.g. for y > y∗∗, y∗∗ ∈ [2, 3].

In Figure 6, classically pre-selected estimates for GBR are added to the
updating rules already introduced for the uniform marginals by solid curves in
the upper graph. It becomes apparent that the interval spanned by upper and
lower P ∗ is much narrower than for traditional GBR for most values of y. The
kink at y ≈ κ (that in that Figure equals 1.05) is a “resonance-type effect”
stemming from the very narrow members of the class, for the “rare” cases of y
when the likelihood intersects the (f = −1)-prior in its center. (At this stage
of analysis, the nesting correction of Subsection 4.2 has not been applied yet.)

6.6 Maximum likelihood update results

Again in Figure 6, the center graph reveals the results for the maximum likeli-
hood update methods. In the Appendix A we outline that Pm consists of exactly
one element for which reason we can drop upper and lower bar for P ∗m(y). The
standard maximum likelihood update method results in a non-monotonous func-
tional relation P ∗m(y). This can be understood when relating the center to the
lower graph: For extreme cases of y, the method selects f = 1 as the correlated
prior gives the most weight to the extremes among all priors. When discussing
only branches with f = 1, P ∗m(y) is monotonous as it must be. However, in
between, around y ≈ κ, the method prefers the anticorrelated prior which must
lead to a sharp switch in P ∗m(y) as y ≈ κ is crossed (see Eq. 22 and remark
afterwards). Hence the interplay of changing y as well as the prior does lead to
a non-monotonous P ∗m(y).

As a key result, in Figure 6, center graph, it becomes apparent that standard
(solid line) and weighted (dashed lines) maximum likelihood Bayesian learning
qualitatively deviate for y > 1.5. Figure 9 illuminates the underlying reason.
Large values of y force the standard method to select f = 1 which comes with
P ∗ = 0 for y < 1.9 (see Eq. 25). However, the center graph of Figure 9 reveals
that if one allowed for f mildly smaller than 1, P ∗ = 0 is not structurally stable,
hence, a weighting method must result in much larger values for P ∗, also found
in the lower graph. The lower graph furthermore illustrates the “purifying”
mechanism within any of the likelihood methods: those priors resulting in P ∗ =
1 due to dilation-type behavior come with zero weight, hence their influence on
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Figure 9: Relation of weight function W (.), parameter f specifying the prior,
and probability of ruin, for the special case y = 1.7, κ = 1.05, x∗1 = 0.95, ση =
σ/10. The maximum likelihood update rule requires to select the f , i.e., the
prior for which W , the prior probability of y is largest. Hence, fml = 1 (see upper
graph). This was to be expected as for the rather “large” value of y, the prior
with highest correlation (i.e., f = 1) prefers the “extreme” y the most among
all priors. However, P ∗(y = 1.7, f = 1) = 0 (see Eq. 25 and center graph). The
important point is that the case f = 1 is exceptional within the class of priors as
for f ∈ [−1, 0.5], P ∗ > 0.1 (center graph). The bottom graph shows that when
averaging P ∗(f(W )) over the W -scale weighted with W , an average somewhat
between 0.1 and 0.3 is to be expected (weighted maximum likelihood update
method), drastically differing from standard maximum likelihood update.
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Figure 10: Extreme members of the class of priors for a bounded gradient
condition, consistent with 5 blocks in the 2D parameter space (N2 = N1 = 5 ⇒
β = 0 along the notation of Subsection 3.4). Left graph for f = −1, centre for
the (standard) uncorrelated case (f = 0), right graph for f = 1.

P ∗ is eliminated by both likelihood methods (and not by standard GBR).
The fact that standard maximum likelihood update drastically deviates from

its weighted counterpart supports unease with standard maximum likelihood
update leaving its user with the impression that it may be fundamentally “non-
robust”. One may argue that all these inconveniences may disappear once the
class of priors is chosen more adequately – by avoiding extremely degenerate
cases like f = ±1 that come along with diverging gradients. We will see, how-
ever, that this is not the case in the following Subsections; quite the contrary
any effect observed so far will be found again (although in a somewhat softer
version) when gradients become restricted.

6.7 Imposing constraints on gradients

Figures 10 and 11 display the most extreme members of P if we set N1 := 5 (see
Subsection 3.4) and β := 0 or := 1, respectively (i.e., N2 := N1 or N2 := N2

1 ,
respectively). In the latter case, we allow for “more” prior, mutually distinct
opinions.

Figures 12 (for β = 0) and 13 (for β = 1) reveal the effects of bracketing
the class of priors by those extreme elements. (We consider that type of class
for our future investigations with climate models.) The P ∗(y)-curves become
smoother, in particular in the first case, and more similar. However, still drastic
differences between various updating methods remain:

• For y < 1.6, standard Bayesian learning (i.e., the uncorrelated case, curved
dotted line) results in a much more optimistic estimate of the upper prob-
ability of ruin than (classically constrained) GBR.

• For 1.4 < y < 1.8, the upper probability of ruin according to the weighted
maximum likelihood method (lower graph, dashed curve) exceeds the es-
timate according to the (standard) maximum likelihood update method
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(lower graph, solid line), in part by an order of magnitude. That demon-
strates that (standard) maximum likelihood update for the class of Gaus-
sian priors is not a structurally robust pre- selection rule. This finding
fuels distrust in results obtained by that method and highlights the need
for alternatives to the (standard) maximum likelihood update rule.

Quite remarkably, the upper estimates according to the two new updating
rules, the weighted maximum likelihood update method and the classically con-
strained GBR, coincide to a certain degree, much more than with the remaining
methods (see Figure 14).
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Figure 11: The same as in Figure 10, yet for dimension-adjusted resolution (i.e.,
β = 1): N2 := N2

1 = 52. Note that in higher dimensions n (here: n = 2) the pre-
scriptions for Nn according to the present versus the previous graph would the
more diverge, the larger n. We propose that a realistic description prescriptions
for Nn would imply a compromise between these extremes of spatial resolution
that are synonym with the degree of sophistication expert options may display.
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Figure 12: The same as Figure 6, however, for bounded gradients according
to N2 := 5. (Again, the lower curves of GBR and the semi-classical method
coalesce in the upper graph.) Bounding of the gradients reveals much softer
curves.
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Figure 13: The same as the previous Figure, yet for more independent expert
opinions, i.e. N2 := 52 (again, the lower curves of GBR and the semi-classical
method coalesce in the upper graph). The curves provide a compromise between
the last two Figures of that type. Note that even for this class of priors “regu-
larized” by the gradient filter, standard maximum likelihood update to strongly
deviate from weighted maximum likelihood update. That demonstrates how
questionable it may be to use standard maximum likelihood update – that is
based on very few priors – if one desires a more balanced (through weighting)
influence of all the priors.
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Figure 14: Extract from the previous Figure, solid line: classically constrained
GBR (upper limit), dashed line: weighted maximum likelihood update method
(upper limit). These two, newly introduced and favored methods, display a
much larger degree of similarity among themselves than when compared to the
other methods. As these two methods are the favored ones, this leaves the user
with a convenient robustness of derived results.
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Figure 15: The same as Figure 13, upper graph, yet with the nesting-correction
provided by Eqs. 27 and 28. Upper dotted line: A potential maximum upper
P
∗
, an insurance company may accept. It becomes apparent that the company

would use standard GBR (upper dashed curve) rather than nested GBR (upper
solid line) as a decision rule which client to insure, as the former rule would
allow for a mildly larger threshold in y. For that case, the classical method has
not paid off.

6.8 Utilizing the nesting formulas

We now consider the nested interpretation of the classically constrained class.
Previous graphs just showed the effects of eliminating members of P on the basis
of a classical rule, however, did not take the additional uncertainty into account
that comes with injecting the classical method into the Bayesian formalism.

The ideas outlined in Subsection 4.2 read for this case as follows. Suppose
that Q was chosen, then y measured. In the first case, the “true” prior is ∈ Py,Q

and it is meaningful to consider P
∗
(y, Q). In the second case with chance 1−Q,

P was falsely eliminated from Py,Q . In that case, a conservative estimate would
be P ∗(y) = 0 and P

∗
(y) = 1. By a tree diagramme on both cases, we obtain a

conservative estimate

P ∗(y, Q,nested) = Q · P ∗(y,Q) + (1−Q) · 0, (27)

P
∗
(y, Q,nested) = Q · P ∗(y,Q) + (1−Q) · 1. (28)

In Figures 15 and 16 two potential thresholds for P
∗

are indicated below
which an insurance company may insure a client (for the more conservative case
β = 1), read from Figures 3 and 4, respectively. Both Figures allow to read

31



0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Measurement  y

P
* ap

os
t

Figure 16: The same as Figure 15, yet for a higher potential threshold in P
∗
.

Here, the classical method would be advantageous over standard GBR as cases
y ∈ [1.34, 1.66] could be insured in addition.
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Figure 17: y∗ as upper limit of y’s with which clients would be insured: Circles:
pooling with 30 clients; crosses: pooling with 100 clients. The abscissa indicates
the six learning rules according to the tabular of this Subsection. Rules #1, 2
and 6 are “GBR”, “nested semi-classical method” and “maximum likelihood
update.” It is remarkable that – for 100 clients – more than 50% of the gap
between the objective, yet, least informative GBR and the most optimistic, yet
non-robust rule (maximum likelihood update) can be regained when using the
objective nested semi-classical method. (Any entry for κ = 1.05, x∗1 = 0.95, ση =
σ/10.)

clients with which characterizing y may be insured and focus on the (nested)
GBR as the more objective updating method (compared to (weighted) maximum
likelihood update method). While for the former Figure one looses information
over the standard GBR (dashed-dotted lines) due to the nesting (solid lines),
in the latter Figure the insurance company and the clients face a win-win-
situation by using the here introduced nested semi-classical GBR: the cases
y ∈ [1.37, 1.66] could be insured in addition! Among the learning rules depicted
in the last Figure, the standard uncorrelated prior (curved dotted line) would
allow for the most insurance contracts if the insurance company believed in that
rather optimistic choice of a prior. However, from our expert interviews, we do
not find that standard procedure very adequate.

6.9 Summary on Gaussian priors for a stylized decision-
maker

We would like to summarize the results on Bayesian updating (learning) for the
class of Gaussian priors that is restricted by prescribed marginals, analyzed in
this Section. We do so by comparing all learning rules discussed so far. We
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highlight their effects on the decision (by the insurance company introduced
in Section 5) on which clients to sign on contract and which to reject. This is
done by systematically performing the kind of inference indicated in the last two
Figures for any of the learning rules. Among the three cases of gradient filtering
analyzed so far (number of effective cells in x1−x2-space N2: ∞, 5, 52, compare
Figures 5, 10 and 11), we select the intermediate one, i.e. N2 = 52 ⇔ β = 1.
The company would choose those clients that are characterized by y ∈ ]−∞, y∗[
and we display y∗ in the tabular below (as well as in Figure 17), for J = 30 and
for J = 100 clients:

J 30 100
updating rule

1 generalized Bayes rule (GBR) 1.23 1.37
2 semi-classical rule after nesting 1.26 1.66
3 semi-classical rule before nesting 1.34 1.69
4 weighted maximum likelihood 1.43 1.78
5 uncorrelated prior 1.50 1.68
6 standard maximum likelihood 1.86 1.90

As expected, the standard Bayesian updating (uncorrelated prior) is found
more on the more optimistic (upper) end of y∗. However, standard maximum
likelihood is even more optimistic. Overall, we do not find any of the rules as
good approximations of one of the others. In particular can standard maximum
likelihood not be related by a simple transformation as for the other two classes.
Quite the contrary, it may underestimate the weighted probability of ruin by
an order of magnitude. Finally, the semi-classical variant of GBR turns out as
being significantly more informative than GBR for large intervals of y.
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7 General discussion

We have set up a model for subjective uncertainty that aims at reflecting the
opinions held by many climate modelers – or more generally, Earth system mod-
elers, comprising climate, biosphere and economy. By means of a questionnaire
we qualify that the experts assume much more confidence in marginals of pri-
ors (on model parameters) rather than in the correlation structure within those
priors. We have presented a show-case accordingly, based on the simplest multi-
dimensional transfer function possible, i.e. y = κx1 + x2 in combination with
Gaussian probability density functions. As we demonstrated, even this rather
simple example unfolds a rich class of phenomena when treated under various
generalizations of Bayesian updating, that refer to updating classes of priors
rather than a single prior.

We have considered:

1. The generalized Bayes’ rule (GBR) stating that each member of the prior
class shall be updated, then the extremes among the posteriors shall be
selected.

2. The maximum likelihood update method focuses on those priors that opti-
mize the prior expectation for the measurement. It leads to more informa-
tive results than GBR. However, we find it hard to justify as it completely
disregards even those priors who may perform only infinitesimally worse
than the optimal priors.

3. For that reason we have introduced a weighted maximum likelihood up-
date method that considers all priors, yet weights their influence on the
posterior result. When applied to the class of priors that appears as most
realistic in practice (i.e., the class of gradient-limited Gaussians) we find
that the two likelihood methods may deviate by an order of magnitude
in probability of ruin. To our taste that demonstrates how questionable
(standard) maximum likelihood inference is and how desperately a gen-
eralization was needed. The weighted method carries the drawback that
the weighting function is subjective. We have chosen a weighting propor-
tional to the expectation of the measurement. Both likelihood methods
are more informative than GBR, however, share the disadvantage that
they may add spurious information in case the class of priors is overly
inclusive (i.e., contains incompetent expert opinions), in contrast to GBR.

4. This added to our interest in an objective improvement of GBR. We
opened a new dimension for designing updating rules by suggesting –
for any of the above rules – to consider only a certain classical volume
of confidence, depending on the measurement, within the class of priors.
We applied this method to GBR and obtained a remarkable gain in in-
formation. In order to facilitate a coherent interpretation of such results,
we derived an overall probability of ruin, nesting the classical and the
Bayesian type of information by giving subjective knowledge a frequentist
interpretation. Readers who do not follow such a potentially controversial
proposal still can digest the results derived from the other three updating
rules.
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5. For comparison we also updated the uncorrelated prior as the standard
version of Bayesian learning. This typically leads to much lower probabil-
ities of ruin, when compared to GBR or the weighting method.

Here we propose to consider GBR as the most conservative and easiest to
justify rule first. If the outcome is not informative enough, the weighted maxi-
mum likelihood update method may be used, although harder to interpret. In
case one is willing to accept some classical testing, implying that one accepts
to pool with similar potential future cases, one may consider a nested classical-
Bayesian method, using the presented nesting formulas. The decision, whether
a nested method and, if so, for which level of confidence Q it ought to be used,
must be taken before taking notice of the actual value of the measurement. The
reason for that is that classical statistics pool with potential future realizations.

Independently from these issues one has to select a level of sophistication one
thinks experts may be capable of in terms of resolution in parameter space. If
one allows for infinite resolution, i.e., δ-type structures, one notoriously ends up
with quite non-informative results. The maximum likelihood update methods
are prone to shift too much influence to experts that were right for the wrong
reason. The only conservative way of dealing with too large a class of priors is to
use GBR – and if not informative enough, in combination with a well-designed
classical pre-selection plus nesting correction. In Figure 6 it becomes apparent
that this method is much more informative over a class with unrestricted reso-
lution than standard GBR. However, when considering the non-parameterized
classes at the beginning of this Section, even the classical component could not
repair for the too inclusive choice of priors.

Before more sophisticated, constraint-based classes are implemented, we sug-
gest to pragmatically use transforms of the Gaussian class we have discussed
in the end of our article. That may serve as a first iteration in order to ad-
dress absent prior knowledge on multidimensional parameter spaces of complex
dynamical models such as climate models.

We are pleased to note that both newly introduced updating methods, i.e.
weighted maximum likelihood as well as nested classical GBR, lead to qualita-
tively identical results for the most realistic class of priors (of those discussed),
namely the gradient-based Gaussians.

In summary, we have introduced the class of priors with prescribed marginals
as a model for subjective uncertainty. We presented innovations along two
dimensions: on learning rules and on further shaping the class of priors by
additional filters. As we found GBR as well as maximum likelihood updating
dissatisfying, we introduced two new updating rules that represent an interesting
trade-off between objectivity and being informative. Finally, we introduced
further restrictions on the class of priors that improve the model of subjective
uncertainty and either remove spurious information or make the results more
informative. For future work it will be an exciting task to see how the various
newly introduced updating rules will perform under the curse of dimension, i.e.
for increasing number of parameters.
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A Analytic treatment for Gaussian priors

A.1 Parameterizing the class of priors

First we recall a well-known (see e.g. [20], pages 22 and 40)
Lemma 3: Let x, γ denote n-dimensional vectors, P (x) a probability density

function for x. Let for all x: y := (γ|x), (.) denoting the scalar product. Then

1. mean(y)=(γ| mean(x)),

2. covar(y)=(| covar(x)|γ), (|M |v) := vtMv denoting the standard symmet-
ric quadratic form.

Let P a 2-dimensional Gaussian. Then it can be expressed as

P (x) = c e−
1
2 (|Σ−1|(x−x̄)), c =

1
(2π)

√
detΣ

, (29)

x̄ denoting the mean, Σ the covariance matrix (see, e.g., [1]).
We now relate the properties of the first marginal ∼ N(µ, σ) to P by noting

x1 = (γ|x) with γ := (1, 0)t. By applying item number 1 of Lemma 3, we
conclude that ((1, 0)|x̄) = µ. The analogous argument holds for the second
marginal, hence we establish x̄ = (µ, µ)t. In analogy, by applying item number 2
of Lemma 3, we derive Σ11 = Σ22 = σ2. Furthermore we note that Σ must be
symmetric as a covariance matrix. Hence, it remains to show that f ∈ [−1, 1].

In order to do so, we exploit the fact that a symmetric matrix Σ defines a
Gaussian in Eq. 29 iff it is positive semi-definite (as a covariance matrix must
be), hence its two eigenvalues λ1,2 ≥ 0. By deriving λ1,2 = σ · (1 ± |f |), we
conclude

{Σ positive semi-definite} ⇔ {|f | ≤ 1} . (30)

A.2 Derivation of the posterior

A.2.1 Derivation of the bivariate posterior

Let hy := 1/σ2
η (i.e. the “precision” of the likelihood), x := (x1, x2)t, x̄ = (µ, µ)t,

k := (κ, 1)t. Then according to Bayes’ rule, with sorting quadratic and linear
terms in x

Papost(x1, x2) = N ((µ, µ), Σ) (x1, x2) ·N(κx1 − x2, 1/hy)(y) (31)

∝ e−
1
2 Q′ with (32)

Q′ := (|A|x)− 2(γ|x) and (33)
A := Σ−1 + hy k ⊗ kt, (34)
γ := Σ−1x̄ + y hy k. (35)

As

Σ = σ2

(
1 f
f 1

)
, (36)

Σ−1 = Γ
(

1 −f
−f 1

)
, with Γ :=

1
σ2 (1− f2)

. (37)
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In order to transform Q′ to standard form we make the ansatz

Q′ = (|A|x− x0) + C (38)

where x0, C do not depend on x. We determine x0 by differentiating Eq. 38
w.r.t. x and obtain

x0 = A−1 γ, hence (39)
Papost(x1, x2) = N

(
A−1γ,A

)
(x1, x2). (40)

A.2.2 Derivation of the posterior marginal in x1

From the bivariate posterior in Eq. 40 we easily obtain the marginal in x1 when
we recall the following Lemma (see e.g. [4], page 283)

Lemma 4: The marginal density for a single element x1 is N(µ
′
1,Σ

′
11) if

N(µ
′
, Σ

′
) denotes the multivariate density.

Eqs. 18 are then obtained through Eq. 40 and the previous definitions by
symbolic manipulation in MATHEMATICA5.2.

A.3 Derivation of the prior probability density of y

Recall that

Papost(x1, x2) = N ((µ, µ), Σ) (x1, x2). (41)

Let again x := (x1, x2)t, x̄ = (µ, µ)t, k := (κ, 1)t. Set F := (k, x) = κx1+x2.
Utilizing Lemma 3 (see Subsection A.1) we then know

PF (F ) = N(µF , σ2
F )(F ) with (42)

µF = (γ|(µ, µ)t) = µ(1 + κ), (43)

σF =
√

(γ|Σ|γ), (44)

= σ
√

1 + 2κf + κ2 (45)

Then we recall that P (y|x) = N(F (x), σ2
η)(y), hence

Py ∼ N(µF , σ2
y) with σy :=

√
σ2

F + σ2
η (46)

So we have derived Py and can implement Eq. 26 readily:

Papriori(]−∞, y[) =

y∫

−∞
dy′ Py(y′). (47)

In the upcoming Subsection we will further need the following relation: by
means of Eq. 45 we show readily that

inf
f∈[−1,1]

σy =
√

(σ(κ− 1))2 + σ2
η =: σy.min, (48)

sup
f∈[−1,1]

σy =
√

(σ(κ + 1))2 + σ2
η =: σy.max. (49)
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A.4 Derivation of the maximum likelihood priors

Py(y) < ∞ sets also the weight function W (y) according to which we preselect
priors for the maximum likelihood updating rule: W ≡ Py. Let µy, σy the mean
and standard deviation of the prior distribution for y. The present class of
priors is conveniently parameterized by f which influences σy but not µy. But
standard curve discussion we find that for given y, W (f) is maximized if

σy.ml = |y − µy| (50)

in case that equation has a solution for f ∈ [−1, 1]. If we conclude from σy

on f , we obtain

fml =





−1 for |y − µy| < σy.min

+1 for |y − µy| > σy.max

((y−µF )2−σ2
η)/σ2−1−κ2

2κ otherwise





. (51)

A.5 Derivation of the weighted maximum likelihood result

We note that the derivative W ′(f) vanishes at maximum once over [−1, 1],
namely for the term given in Eq. 51. Hence, the equation W (f) = w, w given,
can have at maximum one solution left, and one right from fml. Either solution
is found numerically by specifying [−1, fml] and [fml, 1] as search intervals. Then
we discretize the space for w between [0,W (fml)] and apply Eq. 7.

A.6 Derivation of the maximum-derivative condition

Let a Gaussian probability density function P be given as

P (x) = c e−
1
2 (x|Σ−1|x), c =

1
(2π)

√
detΣ

, (52)

x being a two dimensional vector (see [1]).

A.6.1 Derivation of the maximum gradient of P

From elementary manipulations one establishes

G(x) := |grad P |2(x) = P 2(x)
(
x|Σ−2|x)

(53)

which is the function the maximum of which will be the criterion on whether
P will be considered as member of the prior class or not.

In order to determine the maximum of G, we establish the necessary condi-
tion for a local maximum:

∀i∈{1,2}
∂

∂xi
G = 2 P

∂

∂xi
P

(
x|Σ−2|x)

+ P 2 2
(
ei|Σ−2|x)

= 0, (54)

where ei denote the unit vectors of the coordinate system. Then we note
that without loss of generality we can choose the unit vectors identical with the
normalized eigenvectors vi of Σ−1 (to which may also belong the eigenvalues
λi). We conclude
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∀i∈{1,2} − λi (vi|x)
(
x|Σ−2|x)

+ λi (vi|x) = 0 (55)

Case 1: λ1 6= λ2:
Without loss of generality we assume λ1 > λ2.

Case 1.1: (v1|x) 6= 0:
Then we conclude

(
x|Σ−2|x)

= λ1. (56)

Case 1.1.1: (v2|x) 6= 0:
Then we conclude

(
x|Σ−2|x)

= λ2. (57)

However, as λ1 6= λ2, the last two equations cannot be fulfilled simultane-
ously, hence, Case 1.1.1 can be ruled out.

Case 1.1.2: (v2|x) = 0:

In summary for Case 1 we can conclude that x must be parallel to one of
the eigenvectors:

∃i∈{1,2} x = αivi with αi = 1/
√

λi, (58)

hence, the local maxima of G are along the eigenvectors at the standard
deviations. It is then easily verified that the global maximum of G is along the
larger eigenvector.

Case 2: λ1 = λ2:

The maximization problem can be reduced to a one-dimensional one due to
rotational symmetry in x-space. By identifying the radial coordinate with α1

of Case 1, one finds that Eq. 58 holds for Case 2 as well.

A.6.2 Operationalization of the gradient information

We now use the above information in order to preselect members of the class of
priors according to their maximum norm of the gradients of their densities.

As a reference, we use the maximum gradient of the marginals which in our
example are both ∼ N(µ, σ). Their maximum gradient G∗ is readily derived as

G∗ =
1√
2πe

· 1
σ2

. (59)

Let p the dimension of x (in our example p = 2). Then for p > 1, the
gradient of P will have a different unit than that of one of the marginals (in
case x has a unit). Hence, a meaningful (in terms on units) restriction of the
gradient reads as

|gradP | · (∆x)p−1 < N ·G∗, (60)

where ∆x denotes the typical scale per coordinate (in our example ∆x =
1 = 4σ), N the “expert’s resolution” (see Subsection 3.4). The factor (∆x)p−1

can be interpreted as follows: first, it adjusts units. Second, for a P whose
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density fills ∆x in p − 1 coordinates while being denser in a single coordinate,
above expression in essence reveals the 1D gradient along the eigenvector v∗

with the largest eigenvalue λ∗ of Σ−1. If P were higher concentrated in further
dimensions as well, the left hand side became larger. Hence, above expression
reveals the p-dimensional resolution, equivalent to N of Subsection 3.4.

In order to determine |gradP | at its maximum, we consider the 1D-function
of α, P ((µ, µ) + αv∗), if v∗ is the eigenvector for the maximum eigenvalue λ∗ of
Σ−1. Let σ′ := 1/

√
λ∗. Then P ((µ, µ) + αv∗) = c

√
2πσ′N(0, σ′)(α), hence the

maximum modulus of gradient of P reads c
√

2πσ′ · 1/(
√

2πeσ′2). Combining
this information with Eq. 60 leads to a test on σ′, and, in turn on Σ and on f .
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