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Abstract

A novel concept for estimating smooth functions by selection techniques based on
boosting is developed. It is suggested to put radial basis functions with different
spreads at each knot and to do selection and estimation simultaneously by a com-
ponentwise boosting algorithm. The methodology of various other smoothing and
knot selection procedures (e.g. stepwise selection) is summarized. They are com-
pared to the proposed approach by extensive simulations for various unidimensional
settings, including varying spatial variation and heteroskedasticity, as well as on a
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1 Introduction

In the last decades, a tremendous amount of methods has been developed for
the estimation of smooth functions f in an uni-dimensional regression setting
y = f(x) + ε. Besides localized approaches (see e.g. Fan and Gijbels, 1996),
one distinguishes between methods based on smoothing splines or regression
splines. The former (see Eubank (1988) or Wahba (1990)) uses many knots (up
to the sample size n) which are placed in the design space, and the roughness
of the estimate is controlled by a specific penalty term. The latter, on which
we will focus in the present paper, is based on an expansion of f into basis
functions, f =

∑
αjBj. In this setting, the number of actually chosen knots

is much less than n. To avoid overfitting, one uses penalization strategies (P-
splines, see Eilers and Marx, 1996) as well as knot selection strategies which
are based on well known variable selection techniques. Stone et al. (1997)
and He and Ng (1999) use stepwise selection, whereas Osborne et al. (1998)
propose knot selection by Lasso (see Tibshirani, 1996). Knot selection from
a Bayesian perspective has been treated by Smith and Kohn (1996), Denison
et al. (1998) and Lang and Brezger (2004).

In the present paper, we aim at knot selection by employing recent develop-
ments in variable selection based on boosting techniques. Bühlmann and Yu
(2003) propose a boosting algorithm constructed from the L2-loss, which is
suitable for high dimensional predictors in an additive model context. Bühlmann
(2006) extends L2Boost to the special issue of fitting high-dimensional linear
models, where the number of covariates may exceed the sample size. This ap-
proach can straightforwardly be adapted to a regression spline context. It is
possible to work with a very high number of basis functions, which are se-
lected componentwise in a stepwise fashion. In order to obtain high flexibility
in the resulting fits, we recommend to use radial basis functions (e.g. Ripley,
1996) with spreads chosen data-adaptively by componentwise boosting. As
simulations will show, this leads to superior performance for the estimation of
functions with high spatial variation as well as to robustness against violations
of model assumptions.

The outline of the paper is as follows: in Section 2, we give an outline of the
boosting algorithm. Section 3 contains a brief review over some alternative
smoothing methods. The procedures are compared by a simulations study in
the style of Wand (2000). In Section 4, the approach is extended to surface
fitting.
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2 A Smoothing Procedure Based on Componentwise L2-Boosting

We consider the problem of conventional uni-dimensional nonparametric re-
gression. For a dependent variable yi and a covariate xi, i = 1, . . . , n, the
model

yi = f(xi) + σ(xi)εi, εi ∼ N (0, 1), (1)

is assumed, where f(.) is a smooth function and σ(.) is a positive function.
A very popular approach to this problem is the expansion of f into basis
functions, i.e.

f(xi) = α0 +
m∑

j=1

αjBj(xi), (2)

where the αj are unknown coefficients, m is the number of knots and Bj

denote the basis functions. Basis functions that have often been used in the
literature are e.g. the truncated power series basis (see Ruppert and Carroll
(2000) or Wand (2000)), the B-spline basis (Eilers and Marx, 1996) and the
natural spline basis (Green and Silverman, 1994). Alternative basis functions
that are suggested in the neural network community are the so-called radial
basis functions (e.g. Ripley, 1996). An example for the latter are localized
Gaussian densities, given by

Bj(x) = exp

(
−|x− τj|2

2h2

)
, (3)

where τj is the center of the basis function, and h determines the spread.

In the following, we will focus on radial basis functions, since they have some
properties which are useful for the proposed procedure based on component-
wise boosting. First, if we assume a sequence of knots {τj}m

j=1, the Bj(x) as
given in (3) are only linked to one knot τj. Furthermore, radial basis func-
tions provide support on the entire real line. In contrast, B-splines—which are
widely-used due to their numerical stability—are determined by q + 2 knots
if they are of degree q. They have local support, i.e. they take values greater
than 0 only on q + 2 consecutive knots. This implies for knot selection that
the whole B-spline basis has to be recomputed, if a certain knot is added or
deleted. It entails further a re-estimation of all coefficients.

The use of basis functions as given in (3) raises the question how to choose the
spread h appropriately. A simple concept would be to take the same h at each
knot, and to determine it e.g. by a data driven choice. However, this strategy
is doubtful if one aims at constructing a flexible smoothing procedure, which
should also be able to handle the estimation of functions with high spatial
variation (see for example Ruppert and Carroll, 2000). We suggest to put at
each knot τj, j = 1, . . . , m, several radial basis functions with different spread
h. Suppose we have a sequence of r distinct spread variables h1 < · · · < hr,
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then the expansion into basis functions from (2) is given as

f(xi) = α0 +
m∑

j=1

r∑

k=1

αjkBjk(xi), (4)

where Bjk(xi) = exp(−|xi − τj|2/2h2
k). From (4), it is seen that the number

of parameters is large, if the number of knots m is high enough and the
grid of hk is subtle enough to get satisfying flexibility. Thus, a procedure
is needed which is able to estimate high dimensional problems and avoids
overfitting. In our simulation studies we found that the use of more than one
spread improves the performance distinctively. As we will demonstrate, it is
useful to center the basis functions by their means, i.e. we suggest to use
B̃jk(xi) = Bjk(xi)− 1

n

∑n
i=1 Bjk(xi).

In the following, we propose a boosting method that selects the basis func-
tions which are important for the data set at hand. Related approaches based
on statistical variable selection techniques are given in Stone et al. (1997).
We will refer to it in detail later. Boosting has originally been developed in
the machine learning community to improve classification procedures (e.g.
Schapire, 1990). With Friedman’s (2001) gradient boosting machine it has
been extended to regression modelling (see Bühlmann and Yu (2003) and
Bühlmann (2006)). The basic concept in boosting is to obtain a fitted func-
tion iteratively by fitting in each iteration a ”weak” learner to the current
residual. Componentwise boosting in the sense of Bühlmann and Yu (2003)
means that in one iteration, only the contribution of one variable is updated.
However, in the problem considered here, componentwise does not refer to
variables but to basis functions. Thus in each iteration only the contribution
of one basis function is updated. The procedure automatically selects a sub-
set of basis functions which produce a proper fit. Bühlmann (2006) developed
an algorithm for estimation and variable selection in high-dimensional linear
models, which can be brought forward to the smoothing problem given in (4).
The weak learner that we used is ridge regression as proposed by Hoerl and
Kennard (1970); for boosted variants of ridge regression, see also Tutz and
Binder (2005). Before outlining the algorithm, the data are given in matrix
notation: y = (y1, . . . , yn)′, x = (x1, . . . , xn)′. Then, the expansion into radial
basis functions yields the data set (y, B̃), where

B̃ = (B̃11(x), . . . , B̃m1(x), . . . , B̃1r(x), . . . , B̃mr(x))

denotes a (n × mr)-matrix with columns B̃jk(x) = (B̃jk(x1), . . . , B̃jk(xn))′,
and µµµ = (µ1, . . . , µn)′.

One might consider several ways to handle the intercept term in boosting al-
gorithms. Since we propose to use centered basis functions, a computationally
efficient way is to set the intercept term fixed to α̂0 = ȳ. It may be shown
that this suggestion yields the same results as estimation with updating of the
intercept in each step, but using basis functions which are not centered.
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L2KnotSmooth

Step 1 (Initialization)

Standardize y to zero mean, i.e. set α̂0 = ȳ, α̂αα(0) = (ȳ, 0, . . . , 0)′ and µ̂µµ(0) =
(ȳ, . . . , ȳ)′.

Step 2 (Iteration)

For l = 1, 2, . . . , compute the current residuals u(l) = y − µ̂µµ(l−1).

(1) Fitting step
For j = 1, . . . ,m, k = 1, . . . , r, compute the ridge regression estimator
with tuning parameter λ for the linear regression model

u(l) = αjkB̃jk(x) + εεε.

The resulting ridge estimate is given by α̂jk = B̃jk(x)′u(l)/[B̃jk(x)′B̃jk(x)+
λ].

(2) Selection step
Choose from the pairs (j, k) ∈ {1, . . . ,m} × {1, . . . , r} the pair (jl, kl)
such that ||u(l) − α̂jkB̃jk(x)||2 is minimized.

(3) Update
Set

α̂
(l)
jk =





α̂
(l−1)
jk + α̂jlkl

, if (j, k) = (jl, kl),

α̂
(l−1)
jk , otherwise,

and

µ̂µµ(l) = µ̂µµ(l−1) + α̂jlkl
B̃jlkl

(x).

In order to prevent overfitting, it is necessary to include a stopping criterion.
The often used cross-validation criterion is not recommended because it im-
plies heavy computational effort. A much more appropriate criterion is the
AIC criterion which balances goodness-of-fit with the degrees of freedom (for
AIC in smoothing, see Hastie and Tibshirani, 1990). In order to use the AIC
criterion, the hat matrix of the smoother has to be given. For the present pro-
cedure, it can be obtained in a similar way as for componentwise L2Boost in
linear models. With Sl = B̃jlkl

(x)B̃jlkl
(x)′/[B̃jlkl

(x)′B̃jlkl
(x) + λ], l = 1, 2, . . .

and S0 = 1
n
1n1

′
n, 1n = (1, . . . , 1)′, one has in the lth iteration

µ̂µµ(l) = µ̂µµ(l−1) + Slu
(l) = µ̂µµ(l−1) − Sl(µ̂µµ

(l−1) − y),
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and therefore
µ̂µµ(l) = Hly,

where

Hl = I− (I− Sl)(I− Sl−1) · · · (I− S0) =
l∑

j=0

Sj

j−1∏

i=0

(I− Sj−i−1). (5)

Since Hl corresponds to the hat-matrix after the lth iteration, tr(Hl) may
be considered as degrees of freedom of the estimate. A possible stopping rule
for boosting iterations is based on the corrected AIC criterion proposed by
Hurvich et al. (1998), given by

AICc(l) = log(σ̂2) +
1 + tr(Hl)/n

1− (tr(Hl) + 2)/n
, (6)

where σ̂2 = 1
n
(y − µ̂µµ(l))′(y − µ̂µµ(l)). An alternative stopping criterion that has

been recently used by Bühlmann and Yu (2006) in a boosting context is the
g-prior minimum description length (gMDL),

gMDL(l) = log[nσ̂2/{n− tr(Hl)}] +
tr(Hl)

n
log

[ ∑n
i=1 y2

i − nσ̂2

tr(Hl)nσ̂2/{n− tr(Hl)}

]
.

(7)
It is a hybrid between AIC and BIC (see Schwarz (1978) and Hansen and Yu
(2001)). Thus, the complexity of the fit is penalized stronger, and models using
less basis functions are expected. The optimal number of boosting iterations,
which in our framework plays the role of a smoothing parameter, is estimated
by lAICc

opt = arg minl AICc(l) or lgMDL
opt = arg minl gMDL(l).

It is noteworthy to emphasize that L2KnotSmooth may choose more than one
basis function with different spreads hk at a certain knot τj. Furthermore,
due to its componentwise fitting strategy, L2KnotSmooth is able to handle
problems where mr is fairly large, even if it exceed the sample size n.

The hat matrix may also be used as a starting point for the derivation of
standard deviations of function estimates. Assuming that E(ε2

i ) = σ2, one
obtains

cov(µ̂µµ(l)) = Hlcov(y)H′
l = σ2HlH

′
l,

Using σ̂2
ε = 1

n−tr(Hl)
(y − µ̂µµ(l))′(y − µ̂µµ(l)) as an estimate for σ2, one obtains

ĉov(µ̂µµ(l)) = σ̂2
εHlH

′
l, (8)

from which confidence intervals for µ̂µµ(l) can be derived. Note that the resulting
confidence intervals should be regarded as a rough approximation. As simula-
tions show (not given), the estimated standard deviations obtained from (8)
tend to underestimate the true one, especially when the latter is high. This is
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presumably due to the fact that the hat matrix is implicitly a function of the
response y.

A referee suggested to use place a knot at each observation and to use one
unique spread h which should be rather large. We tried this in several examples
given in Section 3. The simulations indicated that this strategy in most cases
yields inferior results compared to using less knots but basis functions with
different spreads. Thus, we do not pursue this approach in the rest of the
present paper.

3 Numerical Comparisons for Univariate Settings

3.1 Simulation Settings

In the following, we give an outline of a simulation study which aims on the
comparison of several smoothing methods, including the boosting approach
presented in Section 2. The simulations were conducted similar to the settings
used by Wand (2000). In all investigated scenarios, we considered the model
given in (1), where the xi, i = 1, . . . , n, were drawn from a U [0, 1]-distribution.
In each of the three investigated settings, a particular factor has been modified:
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Figure 1. Setting I (spatial variation), typical data set for s = 3 (left panel) and
s = 6 (right panel).

Setting I: Spatial variation Since the adaption to high spatial variability
is one of the main issues of the proposed method, we consider the so called
”Doppler” function which has also been used by Donoho and Johnstone (1994),

f1(x) =
√

x(1− x) sin

(
2π(1 + 2(9−4s)/5)

x + 2(9−4s)/5

)
.

The oscillation can be controlled by the parameter s = 1, . . . , 6, where s = 1
yields low spatial variation and s = 6 yields high spatial variation, respectively.
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The standard deviation σ(xi) was set constant to σ = 0.2 in this setting. The
sample size was n = 400. See Figure 1 for typical data sets.
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Figure 2. Setting II (varying noise level), typical data set for s = 2 (left panel) and
s = 5 (right panel).

Setting II: Varying noise level This part of the study examines the in-
fluence of changes in the noise level on the resulting fits. The investigated
function was

f2(x) = 1.5φ
(

x− 0.35

0.15

)
− φ

(
x− 0.8

0.04

)
, (9)

where φ(.) denotes the standard normal density function. The standard de-
viation was set to σ(xi) ≡ σs, where σs = 0.02 + 0.04(s − 1)2 varied from
s = 1, . . . , 6. We used a sample size of n = 200 in this setting. See Figure 2
for typical data sets.
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Figure 3. Setting III (heteroskedasticity), typical data set for s = 2 (left panel) and
s = 5 (right panel).

Setting III: Heteroskedasticity Even though smoothing methods are
mainly based on the homoskedasticity assumption of the error, it is interest-
ing to compare the performance of smoothers if this assumption is dropped.
Robustness against heteroskedastic errors may be an important property in
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practice. Therefore, we considered the function from (9), and chose a standard
deviation that depends on the response x,

σs(x) = 0.15{1 + 0.4(2s− 7)(x− 0.5)},

where s varied again from 1 to 6. Small values of s yield a higher variance for
values of x near 0, whereas high ss result in higher variance for x-values near
1. Again a sample size of n = 200 was used. See Figure 3 for typical data sets.

The various fitting methods were compared by their out-of-sample perfor-
mance. Therefore, 1000 new observations x

(new)
i , i = 1, . . . , 1000, were drawn

from a U [xmin, xmax]-distribution where xmin = min{xi} and xmax = max{xi},
and the averaged squared error (generalization error),

ASE =
1

1000

1000∑

i=1

[f̂(x
(new)
i )− f(x

(new)
i )]2,

was computed using the new observations.

The settings for the L2KnotSmooth procedure were as follows: m = m′ + 2
knots τj, j = 1, . . . , m, were chosen, where according to Wand (2000), m′ inte-
rior knots were placed at (x(dj′)+x(dj′+1))/2, j

′ = 1, . . . , m′, with m′ = bn/d−1c
and d = max{4, bn/35c}, ensuring that there are at least d observations be-
tween each knot. To keep dimensions comparable, we placed τ1 at min{xi}
and τm at max{xi}. At each knot, r = 13 basis functions were allocated, with
spreads hk ranging from 0.02 to 0.2 (from 0.02 to 0.1 with step size 0.01, from
0.1 to 0.2 with step size 0.025). We tried several other ranges for h, espe-
cially with higher values for h, and found out that the results changed only
marginally. For the ridge parameter, a fairly large value of λ = 50 was chosen.
We believe that the chosen setting is a sensible compromise between accuracy
and computational feasibility. The numerical analyses were carried out using
the programming package R (R Development Core Team, 2006).

3.2 Alternative Approaches

In this section, we briefly review some alternative approaches for smoothing
problems, which are included in the simulation study. Thereby, we take a closer
look on methods which aim on knot selection.

The mgcv package in R The mgcv package (see Wood (2006)) aims mainly
on the problem of multiple parameter selection for fitting generalized addi-
tive models with multiple smooth components. In the present case with an
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unidimensional predictor and metric response, the fit is performed by penal-
ized thin plate regression splines. This method bypasses the problem of knot
placement by constructing an optimal approximating basis to thin plate splines
(for details, see Wood, 2003). The roughness of the resulting fit is guided by
a smoothing parameter, which is chosen by the GCV criterion. Hence, the
comparison of this alternative to knot selection techniques presented in this
paper is of special interest.

Multiple adaptive regression splines (MARS) The procedure suggested
by Friedman (1991) is based on an expansion in basis function as in (2). This is
done in a stepwise fashion, where basis functions are constructed successively
from products of linear splines of the form (xi− τj)+. The knots τj are chosen
data adaptively by partition techniques. In each step, a new linear spline is
included until a large model is constructed, which has to be pruned by back-
ward deletion techniques (for details, see Friedman, 1991). For the present
simulation study, we used the implementation mars() given in the R package
mda, written by T. Hastie and R. Tibshirani. It should be noted that a MARS
fit is not smooth, since it results from a linear combination of linear splines.
It is more appropriate for multivariate design with nonlinear interactions.

Stepwise selection Stepwise selection of knots in regression splines goes
back to Smith (1982). In the simulations, an algorithm is used which can be
found more generally in Stone et al. (1997) and might be considered as a gener-
alization of MARS. It has been formulated for uni-dimensional nonparametric
regression in Wand (2000) and utilizes truncated power series of degree q, i.e.
one has the matrix of basis functions

B = (1,x, . . . ,xq, (x− τ1)
q
+, . . . , (x− τm)q

+), (10)

where all operations are considered componentwise and {τj}m
j=1 denotes the

sequence of knots. Let B
(t)
j (x) = (x− τm)q

+, j = 1, . . . , m, then the algorithm
is given as follows:

Step 1 (Initialization)

Define the minimal basis, Bmin = (1,x, . . . ,xq) and set the current basis to
Bc = Bmin.

Step 2 (Stepwise addition)

Repeat until Bc = B:

10



For each basis function that is not in Bc, compute the Rao statistic,

Rj =
B

(t)
j (x)′(I−Hc)y√

B
(t)
j (x)′(I−Hc)B

(t)
j (x)

,

where Hc = Bc(B
′
cBc)

−1B′
c, and include B

(t)
j (x) in Bc which maximizes |Rj|.

Fit the model with Bc,new = (Bc, B
(t)
j (x)) by least squares and compute the

corresponding GCV.

Step 3 (Stepwise deletion)

Repeat until Bc = Bmin:

For each basis Bt
j(x) that is in Bc, compute the Wald statistic,

Wj =
[(B′

cBc)
−1B′

cy]j√
[(B′

cBc)−1]jj
,

where [.]j denotes the jth component of a vector and [.]jj denotes the jth

diagonal element of a matrix. Delete the basis function B
(t)
j (x) that minimizes

|Wj|. Fit the model with the reduced basis Bc,new by least squares and compute
the corresponding GCV criterion.

We used the GCV criterion proposed by Stone et al. (1997), which is defined
as

GCV =
σ̂2

(1− a(J − 1)/n)2
,

where σ̂2 is the residual sum of squares scaled by n, J denotes the number of
parameters in the current model and a is an additional parameter that is set
to 2.5. For the simulations conducted here, we followed Ruppert and Carroll
(2000) by setting q = 2 and choosing the same initial set of knots as described
for L2KnotSmooth (without the first knot at min{xi} and the last knot at
max{xi}, respectively).

Constrained B-spline smoothing A somewhat different approach to knot
selection for regression splines has been proposed by He and Ng (1999). It
is based on quantile regression techniques for smoothing problems (see e.g.
Koenker et al., 1994). The idea is as follows: Consider bivariate random vari-
ables (x, y), then for the pth conditional quantile function of y given x, fp(x),

P (y ≤ fp(x)|x) = p
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holds. When p is taken to 0.5, one obtains the conditional median function,
which can be seen as a measure of central tendency. Consequently, it may be
exploited in order to describe the relationship between x and y.

He and Ng (1999) distinguish between smoothing and regression spline ap-
proaches. In the present paper, we will focus on the latter (also called ”me-
dian regression B-splines, see He and Shi (1994)). Let p = 0.5, then one is
interested in estimating f ≡ f0.5. The function f is decomposed into a B-
spline basis (e.g. De Boor (1978) or Eilers and Marx (1996)), i.e. we have
f(x) =

∑m+q+1
j=1 αjBj(x; q), where m is the number of internal knots and q

denotes the degree of the B-splines. The initial sequence of knots is given
by {τj}m+2(q+1)

j=1 , and the selection of knots is carried out again in a stepwise
fashion:

Step 1 (Initialization)

Compute median regression B-splines for t = 0, . . . , m interior knots of the
initial sequence. They are obtained by minimizing the L1-norm,

min
αt
|yi −

∑

t

αtBt(x; q)|. (11)

Select that t with the smallest AIC-criterion,

AIC(Tt) = log(
1

n

n∑

i=1

|yi − f̂Tt(xi)|) + 2(t + q)/n,

where Tt denotes the chosen knot sequence and f̂Tt denotes the fit given by
(11). Set Tt = Tc

Step 2 (Stepwise deletion)

Delete each of the t internal knots chosen in step 1 and compute the corre-
sponding AIC. Choose the knot that results in the largest reduction of AIC
and delete it in the updated current knot sequence Tc. Repeat this step until
no further reduction in AIC occurs. Denote the remaining knot sequence as
Tmin and take the corresponding fit resulting from (11) as the final fit.

Note that for each change of the knot sequence, the B-spline basis has to be
recomputed. Since the estimation is based on the L1-norm, the procedure is
expected to show robustness to outlying response variables. It is implemented
in the library cobs of R. In the simulation studies, we used B-splines of degree
q = 2. In order to attain comparability, the same set of initial knots as for
L2KnotSmooth was used.
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Knot selection using the Lasso This knot selection procedure aims on
knot selection by the least absolute shrinkage and regression operator proposed
by Tibshirani (1996) originally for linear regression. The idea is to solve a
least squares problem under a constraint on the L1-norm of the vector of
coefficients. Osborne et al. (1998) transferred the approach to a regression
spline framework. Assume an initial sequence of knots {τj}m

j=1 and a truncated
power series basis of degree q, the design matrix of basis functions B is given
by (10). The proceeding is as follows:

Let t be a shrinkage parameter that determines an upper bound of the L1-norm
of the parameters under constraint. For a grid of values tu, minimize

(y −Bααα)′(y −Bααα) subject to
m+q+1∑

j=q+2

|αj| ≤ tu, (12)

where ααα = (α0, . . . , αm+q+1)
′. Since Lasso is able to do variable selection,

choose the sequence of knots Tu = {τj|αj+q+1 6= 0, j = 1, . . . , m}. Define
the design matrix Bu that contains—besides the first q + 1 bases—only the
columns that belong to the knots in Tu and compute an ordinary least squares
fit by using Bu, yielding α̂ααu. Choose the optimal shrinkage parameter topt and
the corresponding optimal fit by minimizing AIC, where the residual sum of
the unconstrained fit is penalized by the number of nonzero parameters in α̂ααu.

One may wonder why an unconstrained fit is used instead of the coefficients
obtained by Lasso. Osborne et al. (1998) found that the method performs
much better with this strategy, and our experiments support their observa-
tions. In contrast to Osborne et al. (1998), in (12) we put only the coefficients
under the constraint that belong to the truncated bases. It seems to be more
sensible than a constraint on all parameters, since we aim on knot selection,
and the first q + 1 coefficients are not linked to a certain knot. The Lasso fit
was performed by the function l1ce() of the library lasso2 in R (for details,
see Lokhorst (1999)), where the basis functions were not standardized. Fur-
thermore, the adjustments and the initial knot mesh of the stepwise selection
procedure were used. In the following, we refer to this method as OPT.

3.3 Results

The results of the spatial variation setting are given in Table 1, where for the
various knot selection techniques the median of the relative change (in %) in
ASE compared to MGCV, i.e.

ASE− ASE(MGCV)

ASE(MGCV)
× 100,
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s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

MARS q.5 (%) 79.47 99.57 806.57 398.13 38.91 10.28

[q.25, q.75] [ 25.93,163.18] [ 55.59,164.06] [592.48,1222.81] [348.32,460.40] [ 27.83, 49.09] [ 6.05, 14.68]

L2KS, AICc q.5 (%) 129.63 39.83 35.98 -74.23 -83.14 -76.33

[q.25, q.75] [ 60.03,230.56] [ 14.30, 76.04] [ 17.14, 66.73] [-79.59,-69.38] [-86.81,-79.85] [-79.20,-72.86]

L2KS, gMDL q.5 (%) 83.82 11.50 32.53 -73.30 -81.44 -74.96

[q.25, q.75] [ 30.14,174.16] [ -4.09, 32.28] [ 8.08, 58.55] [-79.01,-67.82] [-84.98,-76.74] [-77.80,-70.91]

Stepwise q.5 (%) 80.71 52.52 73.68 -65.04 -81.37 -74.03

[q.25, q.75] [ 25.78,160.02] [ 9.89,136.30] [ 28.24, 144.28] [-70.94,-58.34] [-84.82,-76.24] [-78.62,-68.92]

COBS q.5 (%) 123.93 53.64 60.70 -59.52 -70.40 -65.83

[q.25, q.75] [ 54.67,242.97] [ 14.45,110.06] [ 18.34, 129.07] [-69.54,-50.04] [-76.47,-64.39] [-71.78,-59.00]

OPT q.5 (%) 152.39 24.30 38.79 -74.19 -81.95 -75.44

[q.25, q.75] [ 70.99,331.89] [-13.19,130.30] [ 0.65, 113.62] [-79.44,-62.61] [-85.04,-77.65] [-78.80,-70.66]

Table 1
Setting I, median percentage change of ASE relative to MGCV over S = 200 simu-
lated data sets, along with the corresponding 25th and 75th percentiles.

is reported over S = 200 simulated data sets (the best two performers are given
in bold faces—if MGCV is among these, only one number is in bold face). It is
seen that for lower spatial variation (s = 1, . . . , 3), MGCV performs very well,
compared to knot selection techniques, whereas for higher spatial variation,
the procedure is less adequate than knot selection approaches. L2KnotSmooth
shows good results and outperforms COBS in most settings. Stepwise selection
and OPT are very competitive for high spatial variation, but the former does
clearly worse than gMDL-stopped L2KnotSmooth for s = 2 and 3. Not sur-
prisingly, AICc-stopped boosting yields slightly better results for high spatial
variation, while gMDL works distinctively better in the case of lower spatial
variation. The reason is that the complexity of the fit is penalized stronger by
gMDL, which is an advantage for low spatial variation cases, where a smaller
number of chosen basis functions is sufficient for a proper fit. High spatial vari-
ation implies a more complex model, which is provided by boosting stopped
by the AICc-criterion, but differences are only marginal. Note that in the case
of s = 6, there occurred 16 data sets where a distinct minimum of the AICc

criterion was not found within the maximum number of 1000 boosting itera-
tions, compared to only two where gMDL was used. When taking a look at the
quartiles, it is seen that L2KnotSmooth tends to show comparable, sometimes
even less variation than most of the competitors.

Table 2 shows the results of the varying noise setting. It is seen that L2KnotSmooth
dominates the other knot selection methods in most experiments. The gMDL
criterion does better for high noise, while AICc has marginal advantages in
low noise cases. For a low signal-to-noise ratio (s = 6), MGCV performs bet-
ter than the knot selection methods, but shows serious drawbacks for higher
signal-to-noise ratio. This observation, together with the results of setting I,
indicates that MGCV tends to oversmooth the data. Due to its piecewise linear
structure, MARS cannot compete with L2KnotSmooth or stepwise selection in
the case of low noise, but shows reasonable performance for high noise cases.
OPT performs distinctively worse than the other knot selection approaches
when noise is high.
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s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

MARS q.5 (%) -50.75 -41.08 -9.74 -7.05 23.09 49.28

[q.25, q.75] [-66.37,-32.72] [-57.62,-21.46] [-26.08, 5.37] [-24.34, 14.71] [ -5.75, 60.89] [ 13.88, 88.32]

L2KS, AICc q.5 (%) -96.37 -78.94 -27.96 6.00 39.15 61.16

[q.25, q.75] [-97.17,-94.73] [-83.35,-72.50] [-40.06, -9.08] [-12.34, 36.31] [ 5.21, 82.73] [ 11.37,123.89]

L2KS, gMDL q.5 (%) -95.64 -76.80 -38.66 -15.49 16.18 44.48

[q.25, q.75] [-96.80,-94.13] [-82.57,-70.91] [-47.35,-21.05] [-31.89, 2.21] [-12.94, 49.91] [ 1.95,106.17]

Stepwise q.5 (%) -93.86 -65.79 9.15 38.53 33.89 39.64

[q.25, q.75] [-95.07,-92.04] [-75.34,-54.94] [-18.37, 49.01] [ 11.87, 75.30] [ -3.10, 79.91] [ 3.41,100.61]

COBS q.5 (%) -93.31 -60.64 45.25 69.14 62.98 61.27

[q.25, q.75] [-95.11,-90.69] [-70.76,-49.48] [ 12.85, 89.67] [ 28.79,117.28] [ 18.89,132.80] [ 9.79,124.72]

OPT q.5 (%) -95.18 -69.67 15.99 67.20 137.64 175.03

[q.25, q.75] [-96.30,-92.87] [-77.12,-55.41] [-21.10, 75.96] [ 18.91,194.97] [ 59.46,279.17] [ 83.21,418.56]

Table 2
Setting II, median percentage change of ASE relative to MGCV over S = 200
simulated data sets, along with the corresponding 25th and 75th percentiles.

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

MARS q.5 (%) -25.67 -22.33 -24.63 -14.96 -5.51 2.95

[q.25, q.75] [-42.48, -8.31] [-38.73, -5.73] [-37.14, -6.59] [-30.79, 8.85] [-24.52, 17.68] [-16.91, 24.55]

L2KS, AICc q.5 (%) -25.88 -32.94 -36.85 -35.17 -23.86 -13.73

[q.25, q.75] [-37.82, -2.28] [-42.85,-17.12] [-46.54,-20.87] [-47.13,-17.49] [-41.85, -0.71] [-37.13, 17.01]

L2KS, gMDL q.5 (%) -33.14 -39.62 -42.23 -41.15 -36.25 -31.59

[q.25, q.75] [-46.89,-19.21] [-51.37,-26.02] [-54.84,-29.08] [-52.91,-27.23] [-49.95,-22.09] [-45.89,-12.35]

Stepwise q.5 (%) 17.18 -4.86 -12.28 -2.81 19.88 47.76

[q.25, q.75] [-14.38, 77.88] [-27.92, 37.87] [-31.88, 23.21] [-27.17, 30.43] [-12.60, 67.50] [ 6.12,105.25]

COBS q.5 (%) 20.01 14.67 20.02 25.42 37.53 47.33

[q.25, q.75] [ -9.86, 75.45] [ -9.49, 48.40] [ -4.96, 46.99] [ -0.44, 65.94] [ 8.46, 83.60] [ 14.21, 96.31]

OPT q.5 (%) 33.32 12.38 0.54 2.30 20.93 53.11

[q.25, q.75] [-10.92,120.96] [-23.75, 86.20] [-31.34, 40.34] [-29.75, 60.44] [-20.42,106.74] [ -1.33,152.42]

Table 3
Setting III, median percentage change of ASE relative to MGCV over S = 200
simulated data sets, along with the corresponding 25th and 75th percentiles.

Table 3 summarizes the results of the heteroskedasticity setting. The boosting
methods outperform all other predictors whereas gMDL dominates the AICc

criterion in all cases. This shows the robustness of L2KnotSmooth to the vio-
lation of common model assumptions. MARS does surprisingly well for small
values of s = 1, 2 (i.e. for small values of x, the corresponding error variance is
high) and outperforms the other knot selection techniques. Interestingly, the
MGCV procedure yields fairly moderate results throughout all investigated
settings.

In order to learn more about the functionality of L2KnotSmooth, it is inter-
esting to look at the development of chosen basis functions and parameter
estimates in dependence of the number of iterations. Figure 4 shows the num-
ber of chosen basis functions (left panel) and the L1-norm of parameters,∑

j,k |αj,k| (right panel), for 300 boosting iterations on typical data sets of set-
ting II with s = 2 (lower noise) and s = 5 (higher noise). The optimal number
of boosting iterations, estimated by AICc and gMDL for the two data sets, is
represented by vertical lines. From the left panel, it is seen that the number
of chosen basis functions is similar up to iteration 60. For higher number of
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Figure 4. Number of selected basis functions (left panel) and L1-norm of coefficients
(right panel) vs. the number of boosting iterations for setting II, s = 2 (low noise,
solid) and s = 5 (high noise, dotted). The thin vertical lines give the optimal number
of iteration for s = 2 (AICc: dashed; gMDL: dash-dotted), the bold lines for s = 5,
respectively.

iterations the procedure tends to choose more basis functions in the low noise
case than for high noise. On the other hand, as the right panel shows, the curve
of the L1-norm shows some saturation after 50 iterations for s = 2, whereas it
grows considerably faster for s = 5. This behavior might be interpreted as sign
for overfitting with increasing number of iterations, since a high L1-norm for
the parameters indicates a wiggly curve. The optimal numbers of iterations
suggest that the two proposed criteria show a reasonable resistance against
overfitting.

3.4 Sensitivity to outliers

Often it is instructive to explore the behavior of a smoothing method when
outliers are present in the data. Some approaches to robustifying the choice of
the smoothing parameter have been suggested in the literature (see e.g. Härdle
(1984)). In the following we do not develop robustified methods but investigate
the behavior of L2KnotSmooth and the methods described in Subsection 3.2
when response outliers are present in a small simulation study similar to Leung
(2005). To this end, regression function (9) was used, where we considered the
case of no contamination of the response using σ(xi) ≡ 0.1 and two types

of contamination: for type 1, let σ(xi) = 0.1b1,i + 0.9(1 − b2,i), where b1,i
iid∼

B(1, 0.1) and for type 2, let σ(xi) = 0.1b2,i+1.5(1−b2,i), where b2,i
iid∼ B(1, 0.2).

All other configurations were the same as in setting II. Typical data sets for
the three scenarios are given in Figure 5.

In Table 4, the median ASE evaluated over S = 200 simulated data sets
is given, as well as its median relative change compared to the results of the
corresponding fitting method without contamination. For the latter, the fits by
L2KnotSmooth show the best performance. When outliers are present, COBS
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Figure 5. Exemplary data sets along with the true function (solid) and a
L2KnotSmooth fit (dash-dotted; gMDL-stopped). Left panel: no contamination;
mid panel: contamination, type 1; right panel: conatmination, type 2.

med(no cont.) med(cont. 1) rel. change [%] med(cont. 2) rel. change [%]

MGCV 0.0017 0.0052 197.51 0.0141 764.47

MARS 0.0012 0.0047 300.69 0.0190 1396.95

L2KS, AICc 0.0007 0.0061 683.26 0.0237 3183.71

L2KS, gMDL 0.0007 0.0046 533.26 0.0197 2755.58

Stepwise 0.0011 0.0081 654.47 0.0243 2088.96

COBS 0.0014 0.0020 30.09 0.0053 268.15

OPT 0.0012 0.0100 726.02 0.0384 3428.91

Table 4
Median ASE for different degrees of contamination over S=200 simulated data sets,
along with percentage of increase in ASE compared to the uncontaminated case

which is based on minimizing the L1-norm is—not surprisingly—by far the
best solution. The penalized regression spline fit obtained by mgcv seems to
be less sensitive to outliers than the remaining knot selection techniques. It is
seen that stopping L2KnotSmooth by gMDL yields more robust results than
using AICc. One should emphasize that in absolute terms of ASE, gMDL-
stopped L2KnotSmooth outperforms most of the knot selection approaches
(except COBS) also in the contaminated cases.

3.5 Example: LIDAR Data

LIDAR (Light Detection And Ranging) is a method for detection of chemical
compounds in the atmosphere; it uses the reflection of laser-emitted light. We
consider a typical LIDAR data set which has been previously analyzed by Holst
et al. (1996) and Ruppert and Carroll (2000). The dependent variable (range)
measures the distance traveled before the light is reflected back to its source.
The response (log-ratio) is the logarithm of received signals at frequencies on
and off the resonance frequency of the chemical species of interest (mercury).
The data set is of special interest to the proposed smoothing method, since
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Figure 6. LIDAR data: Fits (and approximate pointwise 0.95 confidence intervals)
for AICc-stopped (left panel) and gMDL-stopped (right panel) L2KnotSmooth,
along with the location of chosen knots and the number of chosen basis functions
at each knot.

there is heteroskedasticity in the data (see Figure 6) and the simulations above
show good performance of L2KnotSmooth in that case.

In Figure 6, the L2KnotSmooth fits are shown, where boosting was stopped
with AICc (left panel) and gMDL (right panel). All settings were the same as
in the simulation study. Additionally, the location of the actually chosen knots
are given, along with the number of contributing basis functions at each knot.
It is seen that AICc-stopped boosting (lopt = 50) chose more basis functions
on the right end of range, yielding a somewhat more wiggly fit. In contrast,
gMDL-stopped boosting (lopt = 24) chose less knots especially for a range
> 640. For smaller values of range the location and number of basis functions
is the same for both criteria, and the fits are very similar in this region. We
compared L2KnotSmooth with the alternative approaches presented above
in terms of the corrected AIC. AICc-stopped L2KnotSmooth performs best
(AICc = −4.059); the stepwise approach and MGCV comes closest (−4.033
and −4.019, respectively). We also give approximate confidence intervals ac-
cording to (8). Note that this confidence bands should be regarded only as a
rough guide, since heteroskedasticity of errors is not taken into account.

4 Extension to Surface Fitting

In the following, we consider the problem of estimating a smooth function
g : Rp 7→ R of p covariates x1, . . . , xp, i.e. we assume the model

yi = g(xi1, . . . , xip) + σ(xi1, . . . , xip)εi, εi ∼ N (0, 1). (13)
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L2KnotSmooth can straightforwardly be extended to model (13) by expan-
sion of g into p-dimensional radial basis functions. For simplicity, let p = 2.
Consider a grid of knots {τττ j,l}m

j,l=1 where τττ j,l = (τ
(1)
j , τ

(2)
l )′ ∈ R2, and two-

dimensional radial basis functions which are given by

Bjlk(x1, x2) = exp

(
−((x1, x2)

′ − τττ j,l)
′((x1, x2)

′ − τττ j,l)

2h2
k

)
.

Thus, the basis expansion results in the model

g(xi1, xi2) = α0 +
m∑

j=1

m∑

l=1

r∑

k=1

αjlkBjlk(xi1, xi2), (14)

where at each knot τττ j,l, r radial basis functions with different spreads are allo-
cated. To fit (14), the L2KnotSmooth algorithm can be applied directly, along
with the corresponding stopping criteria. Note that we again suggest to center
the basis functions by their mean, i.e. we use B̃jlk(xi1, xi2) = Bjlk(xi1, xi2) −
B̄jlk, where B̄jlk = 1

n

∑n
i=1 Bjlk(xi1, xi2).

We analyze the performance of L2KnotSmooth for surface fitting in a small
simulation study. The following settings were investigated:

• In setting IV, we used a function which has previously been considered by
Smith and Kohn (1997),

g1(x1, x2) = x1 sin(4πx2), (15)

see Figure 7 (left panel). It represents a nonlinear interaction that shows
very different partial derivatives in the direction of x1 and x2. The covariates
xi = (xi1, xi2)

′ were drawn independently from a uniform distribution on
[0, 1] × [0, 1], which was also the case for settings V and VII below. In
accordance with Smith and Kohn (1997), n = 300 observations were drawn
and σ(x1, x2) was set constant to 0.5.

• Since heteroskedasticity of the error was of special interest in the unidimen-
sional case, in setting V it was also considered for surface fitting. Therefore,
we followed Crainiceanu et al. (2004) and investigated the function given in
(15), with the same sample size as in setting IV and a standard deviation
function given by

σ(x1, x2) =
1

16
+

3

16
x2

1.

• Setting VI aims on assessing the performance of bivariate smoothers when
the covariates are correlated. The regression function (15) was applied,
and the xi were generated from a bivariate normal distribution with mean
(0.5, 0.5)′, variance 0.1 and a correlation of 0.5. We used the same error
distribution as in setting IV.

• To examine the ability of smoothers to detect surfaces with complex struc-
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Figure 7. Plots of the surface functions used in the simulation study. Left panel:
g1(., .) (setting IV and V), right panel: g2(., .) (setting VI).

tures, in setting VII the function

g2(x1, x2) = sin(5x1) cos(5(x2 + 1)2),

displayed in the right panel of Figure 7, was investigated. The standard
deviation was set constant to σ(x1, x2) ≡ 0.2, and n = 400 observations
were drawn.

We used an initial number of m = max{20, min{bn/4, 150c}} basis functions
for L2KnotSmooth, as suggested by Ruppert et al. (2003). The placement
of the knots is not as simple as in the univariate case. One might consider
to use marginal sample quantiles, but this might yield undesirable results
when the design is not uniform across the unit square. Instead, we followed
Crainiceanu et al. (2006), who use the function cover.design() from the R
package fields (Nychka, 2005). This approach finds the initial knot mesh
by minimizing a geometric space-filling criterion (for details, see also Johnson
et al. (1990)). At each knot, r = 13 radial basis functions were allocated. The
spreads hk ranged from 0.02 to 0.4 (from 0.02 to 0.1 with step size 0.02, from
0.1 to 0.4 with step size 0.04). Experiments with other ranges (e.g. higher
values for h) changed the results only marginally. For the ridge parameter we
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chose λ = 10, since when higher values of λ were chosen, especially the AICc-
criterion did not reach a distinct minimum after 1000 boosting iterations for
many data sets.

We compared our approach with the two-dimensional version of penalized thin
plate regression splines implemented in the library mgcv and with MARS,
which is well suited for detecting interactions in the data, see Section 3.2.
Furthermore, the local fitting method called ”locfit” (Loader (1999), see also
Cleveland and Grosse (1991)) was applied, which has also been considered e.g.
by Smith and Kohn (1997) in the context of surface smoothing. It performs a
local quadratic fit, where the nearest neighbor smoothing parameter has been
chosen by GCV. An implementation can be found in the R library locfit

(Loader, 2006).

MGCV MARS locfit L2KS,AICC L2KS,gMDL
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Figure 8. Surface fitting, boxplots of log(MSE) for various fitting methods, set-
ting IV (upper left panel), setting V (upper right panel), setting VI (lower left
panel) and setting VII (lower right panel). The dotted lines represent the median
of gMDL-stopped L2KnotSmooth.

The results of the simulation study are presented in the boxplots of Figure 8,
where log(MSE), with MSE = 1

n

∑n
i=1(µ̂i − µi)

2, is given. From the upper left
panel it is seen that in setting IV MGCV is the strongest competitor and out-
performs the other approaches. L2KnotSmooth does distinctively better than
MARS, however. Interestingly, gMDL dominates the AICc criterion clearly in
this case, but has inferior performance compared to locfit. In the heteroskedas-
tic setting (setting V, upper right panel), locfit yields the best results. The
two boosting alternatives show similar behavior in terms of the median and
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outperform MGCV. MARS yields noticeably worse results. It should be noted
that for 33 data sets, the AICc criterion did not reach a distinct minimum
within the maximum number of 1000 iterations. In contrast, this phenomenon
never occurred for gMDL-stopped L2KnotSmooth. In the case of a correlated
design (setting VI), the proposed boosting approach works well. MGCV and
MARS are distinctively outperformed, whereas locfit is more competitive. The
results for setting VII are given in the lower right panel of Figure 8. It is seen
that L2KnotSmooth performs best in fitting the complex surface. Note that
also here AICc-stopped boosting exceeded the maximum number of iterations
for 2 data sets, whereas gMDL never did.

The Noshiro example is taken from Ruppert (1997). In Noshiro (Japan) a
major earthquake took place, where much of the damage was caused by soil
movement activated by the quake. Since the slope of the land is supposed to
be an important factor for soil movement, it is of interest to estimate it from
land survey data. The data set used here, which has also been investigated
by Crainiceanu et al. (2004), consists of n = 799 observations, where the
independent variables are longitude and latitude, and the response is elevation,
measured at several locations in Noshiro.

In Figure 9, the fitted surface and the corresponding contour plot of a gMDL-
stopped L2KnotSmooth fit to the Noshiro data is shown. The same settings
as in the simulation study were used, and boosting stopped after lopt = 81
iterations. We concentrate on gMDL-stopped boosting, since the AICc cri-
terion did not achieve a distinct minimum after 1000 iterations. The fitted
surface shows a rather sharp peak at a longitude of 0.4 and a latitude 0.42
(after scaling the covariates to the unit interval), and seems much smoother
at the boundary, which indicates the presence of spatial variation. Addition-
ally, Crainiceanu et al. (2004) reported severe heteroskedasticity in the data.
Thus, L2KnotSmooth is supposed to show good performance for this type of
data. To emphasize this prospect, we compared our approach with MGCV and
MARS in terms of gMDL. The gMDL-stopped boosting algorithm shows the
best performance (gMDL = −0.019), clearly outperforming MGCV (0.362)
and MARS (0.732).

5 Conclusion

A knot selection technique is introduced that is based on componentwise L2-
boosting. It shows high flexibility, especially in the case of spatial variation,
and robustness against heteroskedastic errors. Simulations and examples show
that it is a strong competitor to other knot selection approaches. The method
can be easily extended to the fitting of surfaces of higher dimensions. An
extension to additive models may be done straightforwardly.
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Figure 9. Noshiro data: Fit with gMDL-stopped L2KnotSmooth, surface (upper
panel) and contour plot (lower panel)

Since boosting can be seen as a very general optimization technique in function
space (e.g Friedman, 2001), our approach might also be extended to models
with non-Gaussian response. The basic concept is to consider models of the
type E(yi|xi) = h(f(xi)) where h is a known link function and f(xi) is the
unknown predictor which is parameterized in basis functions. More general
one assumes that yi|xi follows a simple exponential family, including binary
and Poisson responses. The L2 loss function used in L2KnotSmooth algorithm
has to be replaced by the corresponding log-likelihood. Such approaches to
likelihood based boosting can be found e.g. in Ridgeway (1999) or Tutz and
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Binder (2006).
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