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Abstract

In this article we introduce a latent variable model (LVM) for mixed ordinal and
continuous responses, where covariate effects on the continuous latent variables are mod-
elled through a flexible semiparametric predictor. We extend existing LVM with simple
linear covariate effects by including nonparametric components for nonlinear effects of
continuous covariates and interactions with other covariates as well as spatial effects. Full
Bayesian modelling is based on penalized spline and Markov random field priors and is
performed by computationally efficient Markov chain Monte Carlo (MCMC) methods.
We apply our approach to a large German social science survey which motivated our
methodological development.

Keywords: Latent variable models, mixed responses, penalized splines, spatial effects,
MCMC.

1 Introduction

In many scientific fields, latent variable models (LVM) are used successfully to explain the
interrelationships between the components of multivariate observable responses, to measure
underlying unobservable constructs, and to assess the influence of covariates on observable
and latent variables. A recent comprehensive introduction to LVM is provided by Skrondal
and Rabe-Hesketh (2004). LVM presented in the literature so far mostly assume that the
effects of covariates on both the observable responses or indicators and the latent variables
are modelled in simple linear parametric form. In many research settings, as in the application
which motivated our methodological development, this assumption is often too restrictive for
revealing the true functional relationships between the covariates and the latent variables.

In this paper, we introduce a flexible semiparametric LVM with mixed binary, ordinal and
continuous indicators. The effects of covariates of different type are modelled through a semi-
parametrically structured additive predictor including the usual linear parametric component,
nonparametric functions for possibly nonlinear effects of continuous covariates as well as non-
parametric interactions with other covariates, and – as a particular feature – spatial effects
resulting from geographical information about the location or residence of units or individu-
als in the sample. Covariate effects of this type are present in our application in Section 4,
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where we investigate a substantive research question emerging from the social science internet
survey ”Prospect Germany”. Based on binary and ordinal indicators we analyze two latent
variables: the attitude of German citizens if social coverage should be taken care primarily
by the citizens or by the state, and the ambition of the respondent to achieve something in
job and in society. Apart from effects of categorical covariates, we explore nonlinear effects of
age and its interaction with sex as well as the spatial effect of the district in Germany where
the respondent lives.

The origin of the LVM with covariate effects can be traced back to Jöreskog and Goldberger
(1975) who named and discussed a multiple indicators and multiple causes model (MIMIC).
Muthén (1989) extended the MIMIC model to include binary and ordinal manifest variables.
Sammel, Ryan and Legler (1997) discussed a LVM with covariates for mixed outcomes in
the Item Response Theory (IRT) context. A comparison of different approaches for ordinal
indicators including covariate effects is provided by Moustaki, Jöreskog and Mavridis (2004).
Zhu, Eickhoff and Yan (2005) firstly discussed the influence of spatial covariates on the latent
variables using a ML approach. A latent variable model for mixed categorical and survival
data has been recently suggested by Moustaki and Steele (2005). In all this work the effects of
covariates are modelled through a simple linear predictor. A notable exception are nonlinear
latent variables suggested by Arminger and Muthén (1998), but the nonlinear relationship is
still of conventional parametric form. The semiparametrically structured additive predictor
used in our LVM is described in Fahrmeir, Kneib and Lang (2004), and Brezger and Lang
(2006) in the context of semiparametric generalized regression for univariate responses.

Traditionally most LVM rely on frequentist estimation methods such as maximum likelihood
or weighted least squares. In this paper a fully Bayesian approach is employed where all
unknown population parameters are considered to be random variables. This includes the
specification of prior distributions for all parameters that have to be estimated. The posterior
distribution of those parameters is obtained by using Markov chain Monte Carlo (MCMC)
methods. A small primer of Bayesian models within the context of social sciences is provided
by Rupp, Dey and Zumbo (2004).

This paper is structured in the following way: Section 2 presents the statistical model of
the LVM which consists of two parts, the measurement model and the structural equation
including the prior distributions of all parameters; Section 3 discusses the Bayesian model
including the posterior distribution (all individual MCMC steps are summarized in Appen-
dix 5); Section 4 demonstrates the application of our semiparametric LVM with the survey
”Prospect Germany”.

2 Statistical model

The LVM with covariate effects consists of two components: the measurement model for
continuous, binary and ordinal response with covariates influencing the indicators directly
(direct effects); and the structural model explaining the modification of the latent variables
by covariates (indirect effects).
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2.1 Measurement model

In all LVM, p different indicators or manifest variables are observed for n observations. Each
indicator j (1 ≤ j ≤ p) can be of continuous, binary or ordinal type. The response value of
indicator j of individuum i (1 ≤ i ≤ n) is denoted by yij . All indicators of a single individuum
are contained in the p× 1-dimensional vector yi = (yi1, . . . , yip)′. For notational convenience
we sort the manifest variables in such a way that the first p1 indicators are binary or ordinal
valued, and the remaining p2 = p− p1 indicators are continuous.

For ordinal indicators, an underlying unobserved variable y∗ij is postulated. Let’s assume that
ordinal indicator j has Kj categories and its cutpoints are denoted by τjk (0 ≤ k ≤ Kj). The
discrete value of an ordinal indicator yij is generated by the underlying variable y∗ij through
the threshold mechanism

yij = k ⇐⇒ τj,k−1 < y∗ij ≤ τjk , (1)

for 1 ≤ j ≤ p1. Since ordinal categories are ordered, we have to impose an order restriction
on the cutpoints as stated by −∞ =: τj0 < τj1 < τj2 < . . . < τjKj := ∞ . The distribution
of the underlying variable is governed by the equation y∗ij = µij + εij where µij denotes the
mean value and εij is a random error variable drawn from the standard normal distribution.
Let Φ denote the respective cumulative distribution function. Using (1) the probability pijk

that category k for individual i and indicator j is observed, leads to

pijk = P (yij = k|µij) = P (τj,k−1 < y∗ij ≤ τjk|µij) = Φ(τjk − µij)− Φ(τj,k−1 − µij) .

The logistic distribution function could also be used instead of the standard normal distribu-
tion function which leads to the logit model commonly used in the IRT approach; we use the
standard normal distribution function because parameter estimates for both function lead to
very similar results in prediction (Moustaki, 2003) and the Gibbs sampler can be employed.
Due to identification restrictions, the cutpoints τj1 of all indicators j are fixed to zero. For
more information on ordinal modelling we refer to Fahrmeir and Tutz (2001), or Johnson and
Albert (1999). Continuous variables are observed directly, i. e. y∗ij = yij for p1 < j ≤ p.

The relationship between the y∗i variables and the q latent variables zi = (zi1, . . . , ziq)′ is
given by the measurement model according to

y∗i = λ0 + Λzi + Awi + εi , (2)

with εi ∼ Np(0,Σ) and Σ = diag(σ2
1, . . . , σ

2
p). The q-dimensional vector z contains q la-

tent variables which explain the relationships between the indicators y∗i . The p indicators
y∗i result from a linear combination of q latent variables plus individual error terms for each
indicator. The p × q matrix Λ is composed of the factor loadings indicating the strength
of relationship between latent factors and indicators; λ0 is a p-dimensional intercept vec-
tor. The direct covariates are summarized in the d-dimensional vector wi = (wi1, . . . , wid)′

and the p × d-dimensional matrix A contains the respective regression coefficients. As
in factor analysis, the latent variables are i. i. d. with zi ∼ Nq(0, Iq). Then the proper-
ties of the measurement model are conveniently described by its characterising moments
(i) Var(yij |z, w) = σ2

j , (ii) Var(yij) =
∑q

r=1 λ2
jr + σ2

j , (iii) Cov(yij , yil|z,w) = 0, and
(iv) Cov(yij , yil) =

∑q
r=1 λjrλlr.
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Although direct effects are typically not in the focus of an analysis – most of the times the
researcher is more interested in the factor loadings, the latent scores, and the influence of
covariates on the latent variables – they still provide additional information about the data
structure by including associations between indicators yi and covariates wi, and not only
among the yi themselves (see Muthén, 1989).

The model still holds two identification problems; the first problem is associated with the
modelling of ordinal variables, and the second problem is related to the uniqueness of the
factor loadings matrix Λ and factor scores. Firstly, we recognize that the probability P (yij ≤
k) = P (y∗ij ≤ τjk) = Φ

(
(τjk − λj0)/

√
Φjj

)
is not altered when we multiply the nominator

and the denominator by a constant c2 implying that τjk, λj0 and φjj are only identified up to
a multiplicative constant. In our model, we dispose of this identification problem by setting
the error variances V (εij) = σ2

j = 1. In the frequentist literature instead, it is common to fix
the total variance of ordinal indicators to one. For that reason the parameter estimates of the
Bayesian and the frequentistic models can not be directly compared, but the parameters can
be converted easily. The reason why we proceed in a different way in the Bayesian context
lies in the fact that full conditional distributions used in MCMC are of an easier form for the
constraint V (εij) = σ2

j = 1. Secondly, there is an indeterminacy with respect to the factor
loadings matrix and factor scores. The model is invariant under transformations with any
orthogonal q × q matrix V of the form Λ̃ = ΛV ′ and z̃i = V zi because this transformation
keeps the variance of the latent scores unchanged (V (zi) = V IkV

′ = Ψ). An indefinite
number of models exists again since all orthogonal rotations of the latent space could occur.
The solution lies in the restriction of parameters of the factor loadings matrix Λ in a suitable
way (e. g. Seber, 1984).

2.2 Structural model

Now we allow covariates or indirect effects to modify the latent variables by introducing the
structural equation part of the model, i. e.

zi = ηi + ξi ,

with ξi ∼ Nq(0, Iq) and a structured additive predictor vector ηi. In the literature (e. g.
Moustaki, Jöreskog and Mavridis, 2004), the predictor ηi is always of the linear form ηi = γui

where γ is a q×m matrix of regression coefficients, and ui is a m×1 vector of fixed covariates
of observation i which are summarized in the n ×m matrix U = {uil}, 1 ≤ l ≤ m. These
parametric effects imply that the means of the latent variables are linearly dependent on
the covariates ui which is a severe restriction in many real-life research settings: firstly, for
continuous covariates the assumption of a strictly linear effect on the predictor may not be
appropriate – additionally, effects of continuous covariates may vary for different subgroups
of the population; secondly, the latent variables might be spatially correlated. To incorporate
those issues, we employ a more versatile predictor

ηir = fr1(xi1) + . . . + frg(xig) + fr,spat(si) + γ ′rui , (3)

where g denotes the number of nonparametric functions frh′ of continuous covariates xih′

(1 ≤ h′ ≤ g), fr,spat is the spatial effect of the location si and γr is the vector of values in the
r-th row of the q×m dimensional matrix γ of regression coefficients. The index h comprises

4



all g functions of continuous covariates plus the spatial effect, i. e. h ∈ 1, . . . , g, spat. We
recognize that a separate function per covariate has to be estimated for each of the latent
variables, leading to

ηi = f1(xi1) + . . . + fg(xig) + f spat(si) + γui, (4)

where fh are now q-dimensional vector valued functions. If (4) does not contain a spatial
effect f spat and all covariates xih′ are continuous, an additive LVM is obtained. The structure
of the predictor stems from the class of generalized additive models (GAM) as described by
Hastie and Tibshirani (1990). If (4) additionally contains a spatial effect f spat, a geoadditive
LVM is obtained whose predictor is structured as in geoadditive models (see Kammann and
Wand, 2003). Finally, interactions of continuous and categorical covariates can be included
when the functions are of the form frh′(xih′) = frh′(x̃ih′ , vih′) = grh′(x̃ih′)vih′ . This leads to
the class of varying coefficient LVM derived from varying coefficient models (VCM) according
to Hastie and Tibshirani (1993). Hence we obtain a structured additive predictor (STAR)
which embodies a wide range of models (see Fahrmeir, Kneib and Lang, 2004).

We assume the structure of the linear predictor to be equal for all latent variables, although
in general a different structure of the predictor might be used for each latent variable. In
component notation, the predictor of equation (4) yields

ηi =




ηi1

ηi2
...

ηiq


 =




f11(xi1)
f21(xi1)

...
fq1(xi1)


+. . .+




f1g(xig)
f2g(xig)

...
fqg(xig)


+




f1,spat(si)
f2,spat(si)

...
fq,spat(si)


+




γ11 . . . γ1m

γ21 . . . γ2m
...

...
...

...
γq1 . . . γqm


·




ui1

ui2
...

uim


 .

For each function frh, a comparably large number of parameters dh have to be estimated. Let
βrh = (βrh,1, βrh,2, . . . , βrh,dh

)′ denote the coefficient vector of function frh. The vectors of
function evaluations βrh allow a feasible notation of the vector ηr which contains the predictor
values of all observations i in the following way:

η(r) = (η1r, η2r, . . . , ηnr)′ = X1βr1 + . . . + Xgβrg + Xspatβr,spat + Uγr , (5)

with suitably defined n × dh dimensional design matrices Xh whose entries depend on the
type of function and modelling approach. The most compact form of the predictor η is then
obtained by

η =




η11 . . . η1q
... . . .

...
ηn1 . . . ηnq


 = X1β1 + . . . + Xgβg + Xspatβspat + Uγ =

spat∑

h=1

Xhβrh,

where the dh × q dimensional matrix βh = (β1h, β2h, . . . , βqh) contains all vectors parame-
terizing functions. Additionally one smoothing parameter κrh has to be estimated for each
function frh which is further explained in Section 2.3.2. In total, the structural model con-
tains q · g functions plus q ·m regression coefficients plus q · g smoothing parameters, adding
up to q · (∑g

h=1 dh + m + g) parameters.

It has to be noted that there is no constant intercept allowed in the predictor due to iden-
tification restrictions. This can be readily seen by assuming a simple model with one latent
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factor zi, no direct effects, an intercept γ0 in the predictor of the structural equations and
no further indirect effects. This leads to E(y∗ij) = λj0 + λj1γ0. Accordingly, the intercept
γ0 in the structural equation can not be estimated independently from the intercepts λj0 in
the measurement model because adding a constant c3 to γ0 can be offset by reducing λj0

with c3λj1. Another consequence of this restriction is the necessity to center all functions frh

around zero.

2.3 Prior distributions

This section presents the prior specifications of all parameters. Since the prior distributions
of the underlying variables y∗ and the latent variables z are implicitly determined by the
prior distributions of all other parameters and the distributional assumptions about εi and
ξi, only the prior distributions for the parameter vector θ = vec{λ0,Λ,A,Σ, β, γ, τ} have to
be specified. From now on, let’s assume that the indivual parts of the model are stochastically
independent, thus the prior distribution yields

p(θ) = p(λ0,Λ, A) · p(Σ) · p(τ ) · p(β, γ) . (6)

2.3.1 Prior distribution of parameters excluding functions and spatial effects

Regarding the intercepts, factor loadings and direct effects, we define a p · (1 + q + d)
dimensional vector λ̄ which contains all parameters of λ0, Λ and A arranged as follows
λ̄ := (λ10, λ11, . . . , λ1q, a11, . . . , a1d, . . . . . . , λp0, λp1, . . . , λpq, ap1, . . . , apd). The prior distribu-
tion selected for λ̄ is a p ·(1+q+d) dimensional multivariate normal density with the mean λ̄

∗

and the precision matrix Λ̄∗, i. e. λ̄ ∼ N(λ̄∗, Λ̄∗−1). If the researcher has no prior information
about the parameters, noninformative priors should be used. In order to compare Bayesian
parameter estimates with frequentist estimates, it is recommended to use noninformative pri-
ors because then the posterior solely depends on the likelihood part, and both parameter
estimates coincide. For our purposes, we choose noninformative priors for the intercepts λ0

and the regression coefficients A of the direct effects. However we are forced to include prior
information for the factor loadings for ordinal indicators in order to prevent the occurrence
of Heywood cases in the Bayesian setting (Heywood, 1931; Bartholomew, 1987). A Heywood
case appears when one latent factor loads up completely on one indicator, hence the latent
variable accounts for the full variability of the respective indicator, and the corresponding
communality equals 1. Since this result is highly implausible, informative priors are chosen
with a normal density centered at zero with a certain variance. A standard choice in applica-
tions (Lopes and West, 2004; Quinn, 2004) is a prior variance of one because this prevents the
occurrence of Heywood cases, is highly diffuse and therefore does not influence the estimation
of the factor loadings. In this work two different MCMC algorithms are used – the second
algorithm sometimes requires a stronger normal prior on the factor loadings. Hence our prior
precision matrix Λ̄∗ equals zero for the off-diagonal elements, and the diagonal elements also
equal zero except for the factor loadings parameters λjr which are set to one of the values 1.0
(standard prior) or 4.0 (strong prior).

For continuous indicators, error variances have to be estimated. Since the error variance
matrix Σ is diagonal, its prior distribution can be given by specifying the individual prior
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distributions of σ2
j . The standard conjugate prior choice for error variances in a linear

model with normally distributed errors is the inverse Gamma distribution, hence σ2
j ∼

IG
(
ν/2, νs2/2

)
for j = p1 + 1, . . . , p with two hyperparameters: the degrees of freedom

ν > 0, and the scale parameter s > 0 (see Gelman et al., 2004). The prior density is
p(σ2

j ) ∝ (σ2
j )
−(ν/2+1) exp(−νs2/(2σ2

j )) for σ2
j > 0. A noninformative prior distribution is ob-

tained for ν −→ 0 and νs2 −→ 0, and results in the improper prior distribution p(σ2
j ) ∝ 1/σ2

j

with σ2
j ∈ [0;∞[. We eschew the use of improper priors for the error variances σ2

j to prevent
Heywood cases and improper posteriors. Hyperparameters ν and s should be chosen in such a
way to correctly include prior information if available. If noninformative priors are to be used,
the prior distributions should have a vanishing probability for σ2

j −→ 0 to prevent Heywood
cases (Lopes and West, 2004).

For the cutpoints τ , we choose noninformative diffuse prior distributions so that the order
condition 0 < τj2 < τj3 < . . . < τj,Kj−1 < ∞ for j = 1, . . . , p1 is fulfilled.

The conjugate prior distribution of the vector of regression coefficients γr is a m-dimensional
multivariate normal density with the mean γ∗r and the precision matrix Γ∗r, i. e. γr ∼
N(γ∗r,Γ

∗
r
−1). In our analyses, we always choose noninformative priors for all regression pa-

rameters γr, hence all values of Γ∗r are set to zero.

2.3.2 Prior distributions for functions of continuous covariates

In this section, priors for the nonparametric function parameters β and for the parametric
effects γ are specified. We assume the independence of prior specifications between separate
functions and parametric effects, and between functions and parametric effects of different
latent variables, thus p(β, γ) =

∏q
r=1

∏spat
h=1 p(βrh)·∏q

r=1 p(γr). Priors for nonparametric con-
tinuous covariates are based on Gaussian smoothness priors (see Fahrmeir and Tutz, 2001),
and priors for spatial covariates are based on Markov random fields (see Besag and Kooper-
berg, 1995). Conveniently, in the Bayesian approach both types of covariates can be treated
in a unifying framework involving the use of a penalty matrix K.

The nonparametric effects for continuous covariates are modelled as P-splines. Dropping
indices to simplify the notation, f denotes a nonparametric function, β is the vector of function
parameters, x represents the continuous covariate, and d denotes the dimension of the vector
of function parameters. Our Bayesian approach is based on the work of Lang and Brezger
(2004), and Brezger and Lang (2006) who give a detailed account on Bayesian P-splines in
various settings. The unknown function f of a continuous covariate x is approximated by a
polynomial spline of degree D defined on a set of equally spaced knots xmin = %0 < %1 <
. . . < %I−1 < %I = xmax with I intervals. This polynomial spline is constructed by a linear
combination of d = D + I B-spline basis functions Bc in the following way:

f(x) =
d∑

c=1

βcBc(x) .

The vector of function parameters now contains the regression coefficients or weights of the
individual B-spline basis functions, short β = (β1, β2, . . . , βD+I)′. The characteristics of B-
splines are described in the above mentioned literature. The smoothness of the function
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f is achieved by penalizing too high differences of coefficients of adjacent B-splines. In a
Bayesian approach, this penalization is incorporated conveniantly by applying a first-order
or second-order random walk prior to the B-splines regression coefficients f . The first-order
and second-order random walks are defined as

βt = βt−1 + ut and βt = 2βt−1 − βt−2 + ut

with ut ∼ N(0, κ2), respectively. First-order random walk has a diffuse prior β1 ∝ constant;
second-order random walk additionally has β2 ∝ constant. The variance κ2 determines the
smoothness of the resulting function f , and acts as an inverse smoothing parameter. The
entire prior distribution of a function f can equivalently be rewritten in form of a global
smoothness prior

p(β) =
d∏

t=2

p(βt|βt−1, κ
2) ∝ exp(− 1

2κ2

d∑

t=2

(βt − βt−1)2) = exp(− 1
2κ2

β′Kβ) ;

in the case of the first-order random walk the penalty matrix leads to

K =




1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1




.

Classic first-order and second-order random walks are obtained when P-Splines of degree 0
are chosen and the knots are equal to the unique observations of x. The design matrix X is
constructed in the following way: each row i of X contains the values of the B-spline basis
functions evaluated at xi, hence Xic = Bc(xi). X consists of D + I columns, and each row in
X has D + 1 non-zero values. Thus the vector of function evaluations for all observations i is
given by Xβ. In our analyses, we choose B-splines of degree D = 3 with I = 10 intervals.

Considering nonparametric interactions in a VCM, the function is of the form f(xi) =
f(x̃i, vi) = g(x̃i)vi where the effect modifiers x̃i are continuous covariates, and the interacting
variables vi are continuous or categorical. We restrict our model to cope with categorical
interacting variables. Since the differences between two categories of an ordinal or categorical
variable are not interpretable, we apply a dummy coding for v (see Fahrmeir and Tutz, 2001).
Let’s assume that v has K categories, then we define

v
(k)
i =

{
1 , if sample i observes category k
0 , else

, k = 1, . . . , K .

The dummy coding implies the estimation of K different functions f (k) with function para-
meter values β(k), so that the predictor for the function f results in

f = f (1)+ . . .+f (K) = X∗β(1)+diag(v(2)
1 , . . . , v(2)

n )X∗β(2)+ . . .+diag(v(K)
1 , . . . , v(K)

n )X∗β(K).

Here the reference category was set to category 1, but arbitrary reference categories are
possible. The design matrix X∗ is the usual design matrix associated with the continuous
function g(x̃).
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2.4 Prior distribution for the spatial effect

Let us assume the covariate si denotes the region of observation i, and the vector of function
evaluations β = (β1, β2, . . . , βd) contains the estimates of the d different regions. The spatial
function evaluations of all observations i can be written as Xβ with the n × d dimensional
design matrix X, where Xis = 1 if observation i is associated to region s; all other values
of row i equal zero. The basic assumption is that adjacent regions should have a similar
impact on the latent scores whereas two regions far apart from each other do not exhibit such
a similarity. In order to make a prior specification, the full neighborhood structure for each
region has to be known. In our context, two regions are considered neighbours when they
share a common boundary. We apply the following spatial smoothness prior to the function
evaluations βc (c = 1, . . . , d) for all d regions:

βs|βs′ , s
′ 6= s, κ2 ∼ N


 ∑

s′∈∂s

βs′

Ns
,
κ2

Ns


 , (7)

where Ns indicates the number of adjacent sites of region s, and s′ ∈ ∂s denotes all regions s′

being neighbours of region s. Hence the conditional mean of βs is an unweighted average of
the function values of all adjacent regions. Since spatial data, e. g. regions, does not inhibit a
natural ordering, a symmetric conditioning is applied. Different definitions of neighbourhood
are given in Besag, York and Mollie (1991) and can be modelled by a more general prior dis-
tribution including equation (7) as a special case as described in Fahrmeir and Lang (2001b).
The entire prior distribution follows as p(β) ∝ exp(−β′Kβ/(2κ2)) with the d-dimensional
penalty matrix K whose entries are

kss = Ns and kss′ =
{−1 , s′ ∈ ∂s ,

0 , otherwise .

More information about Markov random fields is given in Rue (2005).

2.4.1 Prior distributions of smoothing parameters

All priors for nonparametric functions and the spatial effect are defined conditional on the
inverse smoothing parameter κ2, i. e. p(β) = p(β|κ2)p(κ2). It is automatically estimated in
our Bayesian approach. To complete the prior specification for nonparametric effects, we
define the prior of the hyperparameter κ2 to be p(κ2) ∝ 1

(κ2)a+1 exp(−b/κ2) where a ∈ R and
b > 0. If a > 0, this expression corresponds to an inverse Gamma distribution IG(a,b). The
parameters a and b have to be chosen appropriately. Common choices include a = b = 0.001
leading to an almost noninformative prior for κ2; or a = 1 and b equal a very small value,
e. g. b = 0.005 as proposed by Besag et al. (1995). The choice of such highly vague but proper
priors prevents problems associated with noninformative priors such as the nonconvergence
of the Gibbs sampler (see Hobert and Casella, 1996) due to improper posterior distributions.
However, further studies (see Raach, 2005) show that certain noninformative priors (Sun,
Tsutakawa and He, 2001) lead to proper posteriors and correct function estimates.

To conclude, we want to emphasize that priors of all nonparametric effects (continuous, spa-
tial, and interaction) can be modelled in a unifying framework with p(β) ∝ exp(− 1

2κ2 β′Kβ)
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and a suitably defined penalty matrix K. Finally, the full prior specification is given by

p(β,γ) =
q∏

r=1

spat∏

h=1

p(βrh) ·
q∏

r=1

p(γr) ∝
q∏

r=1

spat∏

h=1

exp(− 1
2κ2

rh

β′rhKrhβrh)p(κ2
rh) ·

q∏

r=1

p(γr) .

3 Bayesian inference

The posterior distribution is obtained via Bayes’ formula according to p(θ|y) ∝ p(θ)p(y|θ)
where θ is the parameter vector that has to be estimated and y represents the given data.
The parameter vector that has to be estimated is θ = vec{λ0,Λ,A,Σ, β, γ, τ}. The data
y includes indicators yi, direct effects wi, indirect nonparametric effects xi, and indirect
parametric effects ui for i = 1, . . . , n. It turns out that this Bayesian setup does not lead to
a posterior that can be estimated by a convenient MCMC algorithm due to high-dimensional
integrals which have to be solved. This problem can be resolved by extending the parameter
space with nonobservable data, i. e. the underlying variables y∗ for ordinal indicators, and
the latent variables z. This is a common approach in Bayesian methodology called data
augmentation which was introduced by Tanner and Wong (1987). Albert and Chib (1993)
implemented this approach for the estimation of regression parameters and cutpoints for
ordinal response. The resulting Bayesian model yields

p(θ, y∗, z|y, w, x,u) ∝ p(θ) p(y, y∗, z|θ, w, x, u) . (8)

The augmented posterior distribution is not just a mere technicality to enable efficient and
easy sampling, it also empowers the interpretation of latent variables because the values of
all latent variables zir are automatically estimated. For example, this enables to rank ob-
servations according to their respective latent variable value, and statements can be made
about the probability that observation i1 has a higher latent variable value than observation
i2. This property is an important advantage of the Bayesian approach compared to the fre-
quentist approach. The underlying variables y∗ are also automatically estimated but usually
are of minor importance to the researcher. The following subsection deals with the prior
specifications p(θ).

The posterior distribution is obtained by multiplying the prior distributions with the likeli-
hood, leading to

p(θ, y∗, z|y, w, x, u) ∝ p(θ) · p(y, y∗, z|θ,w,x, u)
= p(θ) · p(y∗, z|θ, w,x, u) · p(y|y∗,z,θ, w,x, u)
= p(θ) · p(y∗, z|θ, w,x, u) · p(y|y∗, τ ).

The simplification from the second to the third row is induced by equation (1) which states
that the ordinal response yij is solely determined by the corresponding underlying variable
y∗ij and the cutpoints τ j . Accordingly, the likelihood splits into two separate parts, the joint
distribution of the underlying and latent variables given the parameters and covariates, and
the distribution of the actual response given the underlying variables and the cutpoints. The
joint distribution of y∗i and zi results from a combination of the measurement model and the
structural equation, and is easily obtained by standard statistical calculus for multivariate
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densities, hence y∗i ,zi|θ, wi, xi, ui results in
[
y∗i
zi

]
∼ N

([
λ0 + Awi + Ληi

ηi

]
,

[
ΛΛ′ + Σ Λ

Λ′ Im×m

])
, (9)

where the predictor ηi is a function of xi and ui according to equation (4). The second
part of the likelihood is trivial for continuous indicators. The probability density is constant
because no underlying variable is necessary, and y∗i equals the actual response yi. For ordinal
indicators however, the response yij is unambiguously determined by the underlying variable
y∗ij and the cutpoints τ j through equation (1). Assuming independently and identically
distributed observations, we obtain

p(θ,y∗,z|y,w,x, u) ∝ p(θ)
n∏

i=1


p(y∗i , zi|θ, wi, xi, ui)×




p1∏

j=1

Kj∑

k=1

1τj,k−1<y∗ij≤τjk
1yij=k





 ,

with p(y∗i , zi|θ, wi, xi, ui) as given in Equation (9). Obviously the analytical calculation of
this high-dimensional density is impossible, and direct sampling is a difficult task to do and
highly inefficient. For that reason we introduce two different MCMC algorithms which sample
the parameters in a sequential fashion as outlined in the Appendix 5. In particular, we will
make extensive use of the Gibbs sampler that is well suited to sample from normal densities.

The first MCMC procedure for the estimation of cutpoints for ordinal indicators was presented
by Albert and Chib (1993) based on Gibbs sampling steps; unfortunately this algorithm
exhibits poor convergence properties. Therefore our two samplers are based on two improved
algorithms which both improve convergence considerably: firstly, Cowles (1996) introduced
a Metropolis-Hastings step for the sampling of the cutpoints based on the idea of collapsed
sampling (this algorithm is therefore called MH sampler or MHS); secondly, Liu and Sabatti
(2000) use a transformation of some parameters at the end of each MCMC iteration.

In the MCMC context, the theorem of Liu and Sabatti (2000) can be used by applying a
transformation to a group of parameters. Since the transformation maintains the distribution
of those parameters, the stationary posterior distribution is not altered by this procedure. A
Gibbs sampler with such a transformation is called a Generalized Gibbs sampler (GGS) and
the transformation in each iteration is called a Generalized Gibbs move. Whether a GGS
shows a better convergence than its parent MCMC algorithm depends crucially on the choice
of the transformation group, and the form of the posterior distribution. Clearly the slowly
converging parameters should be transformed by the Generalized Gibbs move in order to
improve convergence and sampling the transformation parameters should be straightforward
and fast. Note that in practice it is often difficult to find a suitable transformation group which
both improves convergence and allows efficient sampling of the transformation members.
However this method has proved to enhance the convergence of cutpoint parameters in ordinal
probit models with an underlying latent variable (e. g. see Liu and Sabatti, 2000). The full
conditionals of the MHS and the GGS are presented in Appendix A in detail.

Performance of MCMC inference is investigated in Raach (2005) through several simulation
studies. Results can be summarized as follows. For both the MHS and GGS, convergence
properties and quality of parameter estimates are very satisfactory. The MHS should be used
for low number of observations because the probability of obtaining a Heywood case is lower
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than for the GGS; for a high number of observations, the GGS should be preferred due to
its slightly better convergence properties and its far superior computational speed. For both
samplers, parameter estimates of the semiparametric predictor are excellent apart from a bias
which occurs for estimated functions belonging to non-reference categories for nonparametric
interactions when a low number of samples are observed.

4 Application

In this section the practicability of our LVM is demonstrated with the real data set of an
internet survey from 2001 called ”Perspektive Deutschland 1” or ”Prospect Germany 1”,
abbreviated by PD1. This internet survey was initiated by the companies McKinsey&Comp.,
stern.de and T-Online, and approximately 170.000 people participated in the survey. The
general goal of the survey was to receive answers from the population in which areas of life
people are willing to bear responsibility, and in which areas they consider the state to fulfill the
duty; another focus of the study is to measure the happiness of the population with the living
conditions and the state’s infrastructure offerings at their place of living. As common for
social surveys, almost all of the variables are of binary and ordinal type. The only continuous
variable is given by age, and one spatial variable is provided by the administrative district of
the participant.

Our analysis includes two latent variables and ten indicators. We have generated a subsample
which contains valid answers for all employed indicators and covariates, resulting in N =
6804 observations. The first latent construct used in our analysis is supposed to reflect
the participant’s attitude if social coverage should be ensured by the citizens on one’s own
responsibility, or if the state has to take care of social coverage; for example, a person with
a high value of the latent construct would rather like citizens to take on more responsibility,
to lay aside a certain amount of money in case of unemployment, to save privately for their
retirement and to possess a private health insurance according to their needs. The second
latent construct shall reflect the ambition of the person to achieve something in job and in
society. Since both latent variables can not be observed directly, we try to measure them by
using ten manifest variables which are described in Table 1.

Four indirect covariates are used in our analyses. There are two categorical covariates (Sex,
Inc denoting income), one continuous covariate (Age), and one spatial covariate (Reg), all
summarized in Table 2. The covariate Inc is based on Germany’s old currency, the ”Deutsche
Mark” (DM), and one EURO equals 1.95583 DM. The spatial covariate Reg is determined by
the 402 administrative districts (excluding the island of Rügen).

The factor loading λ12 is fixed to zero due to identification restrictions. The measurement
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Explanation of the ten indicators
No. Indicator

(type)
Question/statement Response categories

1 Health
(ordinal)

To what extent should the state
make provisions for the citizens’
health care ?

1.
2, 3, 4, 5,
6.

Completely.
. . .
Not at all.

2 System
(binary)

Which type of social system
would you prefer ?

1. The state guarantees each citizen a suf-
ficient social coverage. The associated
costs are payed by all citizens in the form
of taxes and contributions according to
their income.

2. Citizens can decide by themselves if
and to which extent they want to cover
themselves and their families in the
case of illness, unemployment, retire-
ment and nursing. Everybody who is
not insured in order to save contribu-
tions will have to bear the risks.

3 Initiative
(ordinal)

I think it’s correct that in future
every individual must increas-
ingly take care about his/her pro-
vision for old age than it’s the
case today.

1.
2, 3, 4, 5,
6.

Absolutely true.
. . .
Absolutely wrong.

4 Retirement
(ordinal)

To what extent should the state
take care of the provision of old
age ?

1.
2, 3, 4, 5,
6.

Completely.
. . .
Not at all.

5 Emergency
(ordinal)

To what extent should the state
take care of the citizens’ protec-
tion in difficult life circumstances
and emergencies ?

1.
2, 3, 4, 5,
6.

Completely.
. . .
Not at all.

6 Perform
(ordinal)

I consider it important to per-
form better than other people.

1.
2, 3, 4, 5,
6.

Absolutely true,
. . .
Absolutely wrong.

7 Society
(ordinal)

I want to achieve something in
the society.

1.
2, 3, 4, 5,
6.

Absolutely true.
. . .
Absolutely wrong.

8 Reputation
(ordinal)

How important is the following
regarding your job: To gain re-
spect and a good reputation in
the public.

1.
2, 3, 4, 5,
6.

Absolutely important.
. . .
Not important at all.

9 Salary
(ordinal)

How important is the following
regarding your job: a high salary.

1.
2, 3, 4, 5,
6.

Absolutely important.
. . .
Not important at all.

10 Career
(ordinal)

How important is the following
regarding your job: To make a
career.

1.
2, 3, 4, 5,
6.

Absolutely important.
. . .
Not important at all.

Table 1: Variable names, variable types, questions/statements, and response categories of the ten
indicators.
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Covariates used in the analyses
Covariate name Covariate type Response categories/range

Sex Categorical 1.
2.

Male
Female

Inc Categorical 1.

2.

3.

4.

Less than 2500 DM net household in-
come per month.
Between 2500 DM and 4500 DM net
household income per month.
Between 4500 DM and 7500 DM net
household income per month.
More than 7500 DM net household in-
come per month.

Age Metric 20, 21, . . . , 70 years of age.
Reg Spatial 1, 2, . . . , 402 regions of Germany.

Table 2: Variable names, variable types, and response categories of the four indirect covariates used
in the analyses.

model results in
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, with εij ∼ N(0, 1) .

The predictor of the structural equation is

ηi =
(

ηi1

ηi2

)
=

(
f11(Agei)
f21(Agei)

)
+

(
f12(Agei) · Sex2i

f22(Agei) · Sex2i

)
+

(
f13(Regi)
f23(Regi)

)
+

(
γ11 γ12 γ13

γ21 γ22 γ23

)
·



Inc2i

Inc3i

Inc4i


 .

In this context indicator variables are used; for example Sex2i is set to one if observation i
is female, otherwise it is set to zero. The estimates of the factor loadings and parametric
regression coefficients are summarized in Table 3, and the smooth functions for the basic
age effect and the age effect of females (all modelled by P-splines priors of degree 3 and 10
intervals) are drawn in Figure 1; the spatial functions of covariate Reg are shown in Figure 2.

Looking at the estimated mean factor loadings, it follows that the variation of all ten indicators
is based significantly on the two latent constructs. The factor loadings indicate that the first
latent variable loads onto the first five indicators, and indicators 6 to 10 measure the second
latent variable. Concerning the first latent variable, indicator 4 (Retirement) stands out by
having the highest factor loading of 1.3 because the corresponding question regarding the
old-age provision aims very closely at the idea of the latent construct. For the second latent
variable, indicator 10 (Career) shows the highest factor loading. In general, LVM including
covariate effects have slightly lower factor loadings than models without covariate effects; the
reason for this behaviour lies in the fact that the covariates explain some of the variation of
the latent variables and thus also of the manifest variables.
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Parameter Mean Std. 10% Mode 90%
dev. quantile quantile

Factor loadings of first latent variable
1. Health λ11 0.906 0.024 0.874 0.905 0.937
2. System λ21 0.854 0.030 0.817 0.853 0.893
3. Initiative λ31 -0.926 0.026 -0.959 -0.925 -0.891
4. Retirement λ41 1.280 0.035 1.235 1.280 1.326
5. Emergency λ51 0.692 0.019 0.667 0.691 0.717
6. Perform λ61 -0.178 0.020 -0.203 -0.178 -0.153
7. Society λ71 0.070 0.022 0.042 0.070 0.099
8. Reputation λ81 0.145 0.020 0.119 0.145 0.170
9. Salary λ91 0.069 0.020 0.044 0.069 0.094
10. Career λ10,1 0.050 0.037 0.004 0.051 0.097

Factor loadings of second latent variable
1. Health λ12 0.000 0.000 0.000 0.000 0.000
2. System λ22 0.264 0.026 0.231 0.264 0.297
3. Initiative λ32 -0.266 0.023 -0.295 -0.266 -0.236
4. Retirement λ42 -0.024 0.027 -0.058 -0.025 0.010
5. Emergency λ52 -0.027 0.019 -0.051 -0.027 -0.004
6. Perform λ62 -0.630 0.019 -0.654 -0.630 -0.606
7. Society λ72 -0.790 0.021 -0.817 -0.790 -0.763
8. Reputation λ82 -0.680 0.019 -0.704 -0.679 -0.656
9. Salary λ92 -0.644 0.019 -0.668 -0.644 -0.621
10. Career λ10,2 -1.570 0.052 -1.637 -1.569 -1.503

Parametric indirect effects of first latent variable
Inc2 γ11 0.150 0.042 0.097 0.150 0.202
Inc3 γ12 0.477 0.044 0.421 0.477 0.533
Inc4 γ13 0.941 0.051 0.876 0.942 1.007

Parametric indirect effects of second latent variable
Inc2 γ21 0.152 0.042 0.100 0.152 0.205
Inc3 γ22 0.297 0.044 0.240 0.297 0.354
Inc4 γ23 0.587 0.054 0.517 0.588 0.656

Table 3: Estimates of factor loadings and parametric indirect effects.
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Figure 1: Estimates of the smooth functions f1(Age) and f2(Age) of model 2 modelled by P-splines
priors. The mean values are connected by the solid line, 10%- and 90%-quantiles are connected by the
dashed line.

Continuing the discussion with parametric effects, the covariate Inc exerts a very strong
influence on the first latent construct concerning the attitude towards social coverage. With
increasing income, the mean of the latent variable increases considerably, for example about
0.941 for a person in income category 4 compared to the reference category 1. This effect might
be explained by the fact that people with high incomes generally show a higher inititiative of
one’s own and a higher readiness to take risks than people with lower incomes. In addition, big
earners make high monetary contributions to the social system without getting an adequate
service in return. The covariate Inc also has a similar effect on the second latent variable,
although with lower absolute values. People with a higher ambition to have success will
naturally have higher incomes.

The smooth function f11 of covariate Age shows a distinctive sinusoidal shape for the first
latent variable. Given the same sex and income, young people prefer to take care of themselves,
while medium aged people shortly before retirement seem to prefer a strong state. Moving to
even older ages, respondents seem to become more progressive again. This result might be
explained by the fact that young people suffer from the contributions to the social systems and
do not get an appropriate service in return when they are old due to the ageing population.
Additionally, young people are prepared to take bigger risks than older people. Medium-aged
people around the age between 40 and 60 have to take care of their children, maybe pay
mortgages on their property, save for their retirements, and hence would suffer tremendously
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Figure 2: Left: Function estimates f1,spat (top) and f2,spat (bottom) of the spatial covariate Reg.
Minimum and maximum values are set to 2.5% and 97.5% quantiles of the observed function estimates,
respectively. Right: Regions with a significant negative effect (black), a significant posivite effect
(white), or a non-significant effect (grey) are plotted for f1,spat (top) and f2,spat (bottom).
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from a loss of job. Therefore those people would rather avoid risks and prefer a stronger
state. This sinusoidal smooth function of the age effect also demonstrates that a big error is
made if the covariate Age was only treated by a linear, parametric effect; we have carried out
MCMC simulations where Age is included as a parametric linear effect which only recovers
the almost linear drop between the age of 30 and 50 which is the range of age where most of
the observations are located. The smooth function f21 of Age of the second latent variable
shows an even more pronounced effect; young people seem to have a much higher ambition
to be successful in job and society than older people which seems quite natural. This positive
effect drops fast and approaches its minimum at the age of 45 and rises very slowly again for
increasing age; obviously people at 45 are more concerned with other values, e. g. their family,
than with success.

Having a short look at the smooth additional functional effect of females, we can see that the
first latent variable seems to be more negative for females than for males (f12). This negative
effect is strongest for the youngest female participants, and rises slowly for increasing age.
Women seem to prefer a social system where risks are hedged and the state transfers money
from richer people to the less fortunate. For the second latent variable (f22), however, there is
only a very weak, constant and almost non-significant difference between males and females.
It seems that the ambition to succeed in job and society is universal for both males and
females. We see that the estimation of a VCM for the first latent variable provided additional
insight, whereas a parametric effect for Sex would suffice for the second latent variable.

For the first latent variable, the spatial function estimate shows that the south has a small
preference for a system based on the inititiative of one’s own, and the inhabitants from
north-west and eastern Germany would rather have a strong state caring for them. Please
remark that this effect is significant for the north-west part, but not significant for eastern
Germany. This coincides with the political landscape where the north-western area which
was traditionally governed by the social-democratic party of Germany, and the south by the
conservative party. The second latent variable only shows a very weak and non-significant
dependancy on the geographical location.

This analysis of the real data set of ”PD1” confirms that a nonparametric predictor influencing
the latent variable can be estimated and that the results can deliver additional insight about
the latent variable and its interrelationships with covariates. Furthermore, our model allows
to make predictions based on indirect covariates for the expected latent scores even if the
indicator response is not available for the new observation.

5 Conclusions

In this thesis we introduce a latent variabe model (LVM) for mixed continuous, binary, and
ordinal response including covariates that can influence both the manifest and the latent vari-
ables. This thesis expands the existing models in the literature by using a semiparametric
instead of a pure parametric predictor in the structural equation – this enables various types
of covariates such as parametric effects, smooth functions of continuous and spatial covari-
ates, and interactions of continuous and categorical variables (VCM) to influence the latent
variables. This model allows the applied statistician to conduct much more detailed analyses
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about the influence of covariates on the latent variables than currently available models.

Apart from applications in other disciplines, the following methodological research is of inter-
est: model choice is an important issue for answering questions on variable selection, linear
versus nonlinear effects, etc. We have experimented with the deviance information criterion
(DIC), but a better understanding of DIC and other model selection methods in LVM re-
quires additional research. Extensions to other types of observable responses such as count
variables, non-negative continuous variables and survival times will be of relevance in various
fields of application.
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A MCMC algorithms

Two different MCMC algorithms are presented in this section; the first algorithm uses the
work of Cowles (1996) for the sampling of cutpoint parameters, the second one is based on
the paper of Liu and Sabatti (2000). We start the discussion with the sampling steps A–F
that are identical for both algorithms – sampling step G differs for the two sampler types.
Simulation is done with the statistical software R and the code uses functions provided by
MCMCpack (2005).

A. Full conditionals of the underlying variables. For continuous indicators this step
can be ommitted because there is no underlying variable y∗ij , hence y∗ij = yij . For ordinal
indicators, the problem of sampling y∗ simplifies to the sampling of the individual y∗i because
the observations are independently and identically distributed. Furthermore, the multivariate
vector y∗i can be obtained by sampling the individual components y∗ij because the conditional
covariance matrix V (y∗i |θ, zi, yi, wi, xi, ui) = Σ is diagonal:

y∗ij |zi, θ \ {β, γ}, yij , wi ∼ N

(
λj0 +

d∑

c=1

ajcwic +
q∑

r=1

λjrzir, 1

)
×

Kj∑

k=1

1τj,k−1<y∗ij≤τjk
1yij=k .

(10)

B. Full conditionals of the latent variables. The full conditional p(z|θ,y∗,y,w, x, u) =
p(z|θ, y∗, w, x,u) springs from the joint distribution of y∗i and zi given θ, xi, ui and wi in
(9), and is a multivariate normal distribution with the expectation vector

E(zi|θ, y∗i , wi, xi,ui) = ηi + Λ′(ΛΛ′ + Σ)−1(y∗i − λ0 −Awi −Ληi) , (11)

and covariance matrix

V (zi|θ, y∗i ,wi,xi, ui) = Iq×q −Λ′(ΛΛ′ + Σ)−1B , (12)

where ηi denotes the predictor of the structural part of the model as defined in (4). A
conditioning on yi is not necessary since yi is implicitly known through y∗i . Random samples
from this multivariate density are generated by sampling from a multivariate standard normal
density with dimension q, multiplying the result with the Cholesky matrix of the covariance
matrix (12), and adding the expectation vector (11). Since the number of indicators p is
typically much higher than the number of latent variables q, it is computationally more
efficient to calculate the inversion of ΛΛ′ + Σ by applying the matrix inversion lemma, i. e.

(ΛΛ′ + Σ)−1 = Σ−1 −Σ−1Λ(Iq×q + Λ′Σ−1Λ)−1Λ′Σ−1 .

Now, only the q × q matrix Iq×q + Λ′Σ−1Λ has to be inverted instead of the p × p matrix
ΛΛ′ + Σ, and the diagonal matrix Σ is inverted easily.

C. Full conditionals of the nonparametric indirect effects. The structural part of the
model in equation (5) forms the basis of the full conditional for all indirect effects. Since the
error variance matrix of the latent variables zi is diagonal and priori information about the
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nonparametric indirect effects is defined per latent variable and function, we can draw the
parameter vectors βrh of functions frh sequentially. The conditional expectation vector yields

E(βrh|βr \ {βrh},zr, xr, u) =
(

X ′
hXh +

1
κh

Kh

)−1

X ′
h(zr − η̃r) , (13)

and the covariance matrix is given by

V (βrh|βr \ {βrh}, zr,xr,u) = M−1
h =

(
X ′

hXh +
1
κh

Kh

)−1

. (14)

The term η̃r contains the sum of all remaining parts of the predictor, i. e.

η̃r = X1βr1 + . . . + Xh−1βr,h−1 + Xh+1βr,h+1 + . . . + Xgβrg + Xspatβr,spat + Uγr .

Although the parameter vector βrh is drawn from a standard multivariate normal distrib-
ution, efficient sampling is not straightforward because linear equation systems with high-
dimensional precision matrices Mh have to be solved in every iteration of the MCMC algo-
rithm. We implemented an approach presented by Rue (2001) as described in the manual
of BayesX (2005). Since the parameter vector is high-dimensional and often contains several
hundred parameters, the solving of linear equations has be done in a very efficient way to limit
the computational task. Therefore all penalty matrices K should be transformed into a band
matrix like structure (e. g. using the reverse Cuthill-McKee algorithm) and all computational
operations concerned with solving linear equations should be optimized for band matrices in
an appropriate way.

After having sampled the parameter vector βrh, it is necessary to center the sampled para-
meter vector appropriately around zero because there is no intercept allowed in the structural
part of the model due to identification restrictions. If there is no proper centering, different
offsets will appear in all nonparametric functions in the predictor leading to highly fluctuating
or even non-converging parameter estimates.

The smoothing parameter is a priori inverse Gamma distributed, short κrh ∼ IG(arh, brh).
Accordingly the full conditional distributions are also inverse Gamma distributed, i. e.
κrh ∼ IG(a′rh, b′rh) with a′rh = arh + rank(Kh)/2 and b′rh = brh + β′rhKrhβrh/2.

D. Full conditionals of the parametric indirect effects. Since the priori information of
the parametric indirect effects is also defined for each latent variable r, γr ∼ N(γ∗r,Γ

∗
r
−1), we

can again estimate the regression parameters γr sequentially due to the diagonal covariance
matrix of ξi. Ergo for each latent variable r, we obtain a linear model with Gaussian response
and the full conditional distribution for the parametric indirect effects yields the expectation
vector

E(γr|βr,zr, xr,u) = (Γ∗r + U ′U)−1
(
Γ∗rγ

∗
r + U ′(zr − η̃r)

)
,

and the covariance matrix

V (γr|βr, zr,xr, u) = (Γ∗r + U ′U)−1 ,

with the n × m-dimensional design matrix U defined in the usual way, containing the co-
variates uil. Again the term η̃r contains the sum of all values of the remaining parts of the

21



predictor. We always use diffuse priori distributions for parametric indirect effects leading to
the following simplified expressions

E(γr|βr, zr, xr,u) =(U ′U)−1U ′(zr − η̃r) , and

V (γr|βr, zr, xr,u) =(U ′U)−1 .

E. Full conditionals of the intercepts, direct effects and factor loadings. The vector
λ̄ contains all parameters λ0, Λ and A. For an informative prior distribution N(λ̄∗, Λ̄∗−1), the
full conditional p(λ̄|θ \{λ̄}, y∗, z, y, w, x,u) = p(λ̄|Σ,y∗, z,w) is a p · (1+d+ q) dimensional
multivariate normal distribution with expectation vector

E(λ̄|Σ,y∗,z,w) =

(
∆∗ +

n∑

i=1

L′iΣ
−1Li

)−1 (
Λ̄∗

λ̄
∗ +

n∑

i=1

L′iΣ
−1y∗i

)
,

and covariance matrix

V (λ̄|Σ,y∗,z,w) =

(
∆∗ +

n∑

i=1

L′iΣ
−1Li

)−1

.

The p × p(1 + d + q) dimensional matrix Li is defined as Li = Ip×p ⊗ li with
li = (1, wi1, . . . , wid, zi1, . . . , ziq).

For diffuse priors, priors with a diagonal prior precision matrix Λ̄∗, and priors with a preci-
sion matrix Λ̄∗ with off-diagonal zero-entries for parameters for different indicators, the full
conditional can be calculated sequentially for each indicator because V (εi) = Σ is diagonal.
Let the vector λ̄

j contain the parameters of row j, short λ̄
j = (λj0, aj1, . . . , ajd, λj1, . . . , λjm)′.

Ergo the full conditional distribution of λ̄
j is a (1 + m + q)-dimensional multivariate normal

distribution with expectation vector

E(λ̄j |σ2
j , y

∗
j , z, w) = (L′L)−1L′y∗j ,

and covariance matrix
V (λ̄j |σ2

j , y
∗
j , z, w) = σ2

j (L
′L)−1 .

The n × (1 + d + q) dimensional matrix L is defined by L = (l1, . . . , ln)′ with the rows
li = (1, wi1, . . . , wid, zi1, . . . , ziq). For our choice of priors, we can always use the second way
of sampling the parameters which provides faster computation.

Here it becomes clear why we fixed the error variances for ordinal indicators to 1. In order
to obtain a standardized solution, we had to sample the factor loadings under the restriction∑q

r=1 λ2
jr + θ2 = 1. Since this can not be achieved by a standard full conditional, we fix the

error variances of ordinal manifest variables to 1 instead. A standardization is easily possible
after the simulation run.

F. Full conditionals of the error variances. For ordinal variables, the sampling of error
variances is ommitted because error variances are set to 1 due to identification restrictions
of the model. Since error variances are distributed normally with a diagonal error variance
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matrix Σ, the full conditional p(σ2
j |θ\{σ2}, y∗i ,z, w) results to an inverse gamma distribution

with n + ν degrees of freedom and scale parameter s2, i. e.

σ2
j |θ \ {σ2}, y∗i , z, w ∼ IG

(
n + ν

2
,
(n + ν)S2

2

)
, (15)

with

S2 =
1

n + ν




n∑

i=1

(
y∗ij − λj0 −

d∑

c=1

ajcwic −
q∑

r=1

λjrzir

)2

+ νs2


 , (16)

where σ2
j is a priori IG(ν/2, νs2/2) distributed. In the case of a noninformative prior distri-

bution for σ2
j , the full conditional distribution is obtained by setting the values of ν and s in

(15) and (16) to zero.

So far, all sampling steps are identical for the MHS and the GGS – the final sampling step
differs for both sampler types.

G1. MHS – full conditionals of the cutpoints. Cowles (1996) proposed the following
Metropolis-Hastings step (also described in Johnson and Albert, 1999) for the cutpoints in
order to improve convergence compared to the method of Albert and Chib (1993):

Repeat for j = 1, . . . , p1

� Draw a set of proposal cutpoints τ̃

For k = 2, . . . , Kj − 1, sample τ̃k ∼ N(τ (t−1)
jk , σMH) truncated to the interval

[τ̃k−1, τ
(t−1)
j,k+1 ].

� Compute the acceptance ratio R

R =
n∏

i=1

Φ(τ̃yi − µ
(t−1)
ij )−Φ(τ̃yi−1 − µ

(t−1)
ij )

Φ(τ (t−1)
yi − µ

(t−1)
ij )−Φ(τ (t−1)

yi−1 − µ
(t−1)
ij )

×
Kj−1∏

k=2

Φ((τ (t−1)
k+1 − τ

(t−1)
k )/σMH)−Φ((τ̃k−1 − τ

(t−1)
k )/σMH)

Φ((τ̃k+1 − τ̃k)/σMH)−Φ((τ (t−1)
k−1 − τ̃k)/σMH)

τ̃yi denotes the cutpoint proposal corresponding to the ordinal value of observation yi,
similarly τ

(t−1)
yi is the actual value of the cutpoint corresponding to the observed ordinal

category at iteration t − 1. The term µ
(t−1)
i denotes the value of the linear predictor

in the measurement model at iteration t − 1 for observation i and indicator j, short
µ

(t−1)
i = λ

(t−1)
j0 +

∑d
c=1 a

(t−1)
jc wic +

∑q
r=1 λ

(t−1)
jr z

(t−1)
ir .

� Accept or reject proposal value τ̃

Set τ
(t)
j = τ̃ with probability R, otherwise set τ

(t)
j = τ

(t−1)
j .

The value σMH can be considered a tuning parameter and has to be set by the researcher
before starting the simulation. A rule of thumb recommends setting σMH = 0.05/Kj which
should lead to acceptance ratios of 25-50%. If necessary, a different σj

MH for each indicator
could be employed to achieve proper acceptance ratios for all indicators j, for example if
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the number of ordinal categories vary across indicators. This popular standard algorithm
of sampling the cutpoints still inhibits some drawbacks. Convergence is still not optimal, a
MH step has to be employed with the serious drawback of setting and adjusting the tuning
parameter σMH , and the calculation of the acceptance ratio is computationally demanding,
especially in an analysis involving many ordinal indicators.

G2. GGS – full conditionals of the cutpoints and parameter transformation. For
ordinal indicators, the full conditionals of τjk (2 ≤ k ≤ Kj − 1) given yj , y∗j and θ \ {τjk}
are uniform distributions in the interval [lτk, rτk], with the interval borders (see Albert and
Chib, 1993)

lτ,k :=max
{

τj,k−1, max
i=1,...,n

{y∗ij |yij = k}
}

,

rτ,k :=min
{

τj,k+1, min
i=1,...,n

{y∗ij |yij = k + 1}
}

,

where max(∅) = −∞ and min(∅) = ∞. Now it becomes very clear why this sampling algo-
rithm exhibits bad convergence properties. The cutpoints τjk have almost no room to move in
the small interval [lτk, rτk], especially for a moderate or high number of observations. This also
leads to a poor convergence of some other parameters of the model, especially the intercepts
λ0. In order to receive even better convergence properties than the MHS and compensate
for its drawbacks, a Generalized Gibbs move is carried out for some parameters based on
the work of Liu and Sabatti (2000). The difficulty is to find a suitable transformation group
Γ so that the resulting distribution allows a fast sampling of the transformation members γ
(not related to the regression coefficients of the structural model). Since a Generalized Gibbs
move for the whole posterior can not be deducted, we develop a Generalized Gibbs move for
each of the p1 linear submodels in the measurement model for all ordinal indicators. This is
possible due to the diagonal form of the error variance matrix Σ. We identified the partial
scale group on S to be a suitable transformation group:

Γv := {γ > 0 : γ(θ) = (γθ1, . . . , γθv, θv+1, . . . , θdim)} .

Here only v components are transformed, the others remain fixed. The left-Haar measure
for this group is γ−1dγ as for the total scale group. The determinant of the Jacobian is
det(∂γ(θ)/∂θ) = γv. This yields π(γ(θ)) |Jγ(θ)|L(dγ) = γv−1π(γ(θ)) dγ. Now we specify
suitable subsets θj of the total parameter vector θ, so that we can transform these subsets’
parameters for each indicator j. Accordingly we define the p1 parameter vectors θj per ordinal
indicator j as θj = (y∗j1, . . . , y

∗
jn, λj0, aj1, . . . , ajd, λj1, . . . , λjm, τj2, . . . , τjKj−1) each of which

contains v = n + d + m + Kj − 1 parameters. Thus we get p1 different Generalized Gibbs
moves

γj(θj) = (γy∗j1, . . . , γy∗jn, γλj0, γaj1, . . . , γajd, γλj1, . . . , γλjm, γτj2, . . . , γτjKj−1) ,

that transform the corresponding parameter set θj . All other parameters of the full parameter
vector remain constant and are not transformed. The individual parameter sets θj can be
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derived by arranging the posterior distribution in the following way:

p(θ)
n∏

i=1


p(y∗i , zi|θ, wi, xi, ui)×




p1∏

j=1

Kj∑

k=1

1τj,k−1<y∗ij≤τjk
1yij=k







=p(θ)
n∏

i=1


p(zi|θ, wi, xi, ui) · p(y∗i |θ, zi, wi, xi,ui)×




p1∏

j=1

Kj∑

k=1

1τj,k−1<y∗ij≤τjk
1yij=k







=p(θ)
n∏

i=1


p(zi|θ, wi, xi, ui)×

p∏

j=p1+1

p(y∗ij |zi,θj \ {β, γ}, wi)

×
p1∏

j=1


p(y∗ij |zi, θj \ {β, γ}, wi)

Kj∑

k=1

1τj,k−1<y∗ij≤τjk
1yij=k







=p(θ)
n∏

i=1

p(zi|θ, wi, xi, ui)×
n∏

i=1

p∏

j=p1+1

p(y∗ij |zi, θj\{Γ},wi)

×
p1∏

j=1




n∏

i=1

(
p(y∗ij |zi, θj\{Γ}, wi)

) Kj∑

k=1

1τj,k−1<y∗ij≤τjk
1yij=k

︸ ︷︷ ︸


 .

Thus we deploy p1 distinct Generalized Gibbs moves for the p1 components of the posterior
distribution which are underbraced in the above formula. Based on the underbraced part of
the posterior, we can formulate the densities γv−1

j π(γjθj |·) to be proportional to

γv−1
j exp



−

1
2

n∑

i=1

(
γjy

∗
ij − γjλj0 −

d∑

c=1

γjajcwic −
q∑

r=1

γjλjrzir

)2




=
(
γ2

j

) v−1
2 exp



−

1
2
γ2

j

n∑

i=1

(
y∗ij − λj0 −

d∑

c=1

ajcwic −
q∑

r=1

λjrzir

)2


 .

(17)

We dropped the right hand side of the underbraced formula because the right term remains
constant under the transformation according to

Kj∑

k=1

1γjτj,k−1<γj ȳij≤γjτjk
1yij=k ⇐⇒

Kj∑

k=1

1τj,k−1<ȳij≤τjk
1yij=k .

It follows from equation (17) that γ2
j follows a Gamma distribution Γ(aj , bj) with parameters

aj =
v + 1

2
=

n + d + m + Kj

2
,

bj =

∑N
i=1

(
y∗ij − λj0 −

∑d
c=1 ajcwic −

∑q
r=1 λjrzir

)

2
,

(18)

and the density of Γ(a, b) is given by f(x|a, b) = baxa−1e−bx/Γ(a) for x ≥ 0. After having
sampled the cutpoints from the uniform distributions as described above, p1 Generalized
Gibbs moves (j = 1, . . . , p1) are carried out in the following way:
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� Draw γ2
j from Γ(aj , bj) with aj and bj as defined in equations (18), and update all

parameters of the subset θj in the following way:

y∗·j
new ←− γj y∗·j

current

λnew
j· ←− γj λcurrent

j·
anew

j· ←− γj acurrent
j·

τnew
j· ←− γj τ current

j· .

For both samplers, starting values are as follows: intercepts λ0 and regression parameters of
direct effects A are set to zero; the first free factor loading parameter of each latent variable
is set to 0.7 to promote a positive solution for those parameters, all other factor loadings are
also set to zero; variances θ2

j for continuous indicators start at the value 1; the nonparametric
function parameters β and standard regression coefficients γ start at zero; cutpoints τjk are
set to be 1, . . . , Kj−2 for k = 2, . . . , Kj−1. This choice of starting values implies zero values
for the latent variables z, while specifying starting values for the underlying variables y∗ is
not necessary because they are sampled in the first iteration. We performed a sensitivity
analysis and tested variations of different starting values for all involved parameters. The
results show that starting values do not affect the resulting parameter estimates, as long as
we refrain from using implausible and far-fetched starting values (e. g. factor loadings higher
than 5).
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