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Geoadditive Survival Models: A Supplement

Andrea Hennerfeind, Andreas Brezger, and Ludwig Fahrmeir∗

ABSTRACT

This technical report supplements the paper Geoadditive Survival Models (Hennerfeind, Brezger and
Fahrmeir, 2005, Revised for JASA). In particular, we describe the simulation study of this paper in greater
detail, present additional results for the application, and provide a complete proof of Theorem 1, Corollary
1, as well as the lemmata and corollaries in the appendix.

1. INTRODUCTION

Hennerfeind et al. (2005) consider Cox–type hazard rate models

λi(t) = exp(ηi(t)) (1)

with geoadditive predictor

ηi(t) = g0(t) +
p∑

j=1

gj(t)zij +
q∑

j=1

fj(xij) + fspat(si) + v′iγ + bgi . (2)

Here g0(t) = log{λ0(t)} is the log–baseline effect, gj(t) is a time–varying effect of the covariate zj , fj(xj) is

the nonlinear effect of a continuous covariate xj , fspat(s) is the (structured) effect of the spatial covariate s,

with si = s if subject i is from area s, s = 1, . . . , S, γ is the vector of usual linear fixed effects, and bg is a

subject– or group–specific frailty or random effect, with bgi = bg if individual i is in group g, g = 1, ..., G. For

G = n, we obtain individual–specific frailties, for G < n, bg might be the effect of center g in a multicenter

study or the unstructured (uncorrelated random) spatial effect of an area (i.e. bg = bs), for example. Several

other extensions of the model, such as choice of other link functions, inclusion of interactions, random slopes

and competing risks, are possible. For identifiability reasons, all unknown functions are centered about zero,

and an intercept term is included in the parametric linear term.

Under the usual assumption about noninformative censoring, the likelihood is given by

L =
n∏

i=1

λi(ti)δi · exp
(
−

∫ ti

0

λi(u)du

)
=

n∏

i=1

λi(ti)δi · Si(ti) . (3)
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For defining priors and developing posterior analysis the observation model (1) is rewritten in generic matrix

notation. Let η = (η1, . . . , ηi, . . . , ηn)′ denote the predictor vector, where ηi := ηi(ti) is the value of predictor

(2) at the observed lifetime ti, i = 1, . . . , n. Correspondingly, let gj = (gj(t1), . . . , gj(tn))′ denote the vector

of evaluations of the functions gj(t), j = 0, . . . , p, f j = (fj(x1j), . . . , fj(xnj))′ the vector of evaluations of

the functions fj(xj), j = 1, . . . , q, fspat = (fspat(s1), . . . , fspat(sn))′ the vector of spatial effects, and b =

(bg1 , . . . , bgn
)′ the vector of uncorrelated random effects. Furthermore, let g̃j = (gj(t1)z1j , . . . , gj(tn)znj)′, j =

1, . . . , p. Then the vectors g0, g̃j , f j , fspat and b can always be expressed as the matrix product of an

appropriately defined design matrix Z, say, and a (possibly high-dimensional) vector β of parameters, e.g.

g̃j = Zjβj , f j = Zjβj , etc. Then, after reindexing, we can represent the predictor vector η in generic

notation as

η = V γ + Z0β0 + . . . + Zmβm. (4)

For fixed effect parameters γ in (4) diffuse priors p(γ) ∝ const are assumed.

Priors for functions and spatial components are defined by a suitable design matrix Zj , j = 0, . . . , m, and a

prior for the parameter vector βj . The general form of a prior for βj in (4) is

p(βj |τ2
j ) ∝ τ

−rj

j exp

(
− 1

2τ2
j

β′jKjβj

)
, (5)

where Kj is a precision or penalty matrix of rank(Kj) = rj , shrinking parameters towards zero or penalizing

too abrupt jumps between neighboring parameters. For P–splines and MRF priors, Kj will be rank deficient,

i.e., rj < dj = dim(βj), and the prior is partially improper.

The variance τ2
j acts as an (inverse) smoothing parameter, following inverse Gamma priors IG(aj ; bj)

p(τ2
j ) ∝ 1

(τ2
j )aj+1

exp

(
− bj

τ2
j

)
(6)

to all variances. They are proper for aj > 0, bj > 0, and we use aj = bj = 0.001 as a standard choice

for a weakly informative prior. From our experience results are rather insensitive to the choice of aj > 0

and bj > 0 for moderate to large data sets and the posterior distribution is proper in any case (see Section

4 for a proof). However, since the limiting case, when aj and bj are zero, leads to an improper posterior

distribution, we present a sensitivity analysis in Section 2 and compare the results to those we obtained with

a uniform prior for the standard deviation τj , as proposed in Gelman (2004). Note that uniform priors are

a special (improper) case of the prior (6) with aj = −0.5, bj = 0, still leading to proper posteriors under

regularity assumptions.

The general form (5) of priors covers, among others, Bayesian P–splines for nonlinear effects of a continuous

covariate and for time–varying effects, spatial priors in form of MRFs, stationary GRFs and 2d tensor

product smoothing splines as well as uncorrelated random intercepts and slopes. For details about these

priors as well as for MCMC inference, we refer to Hennerfeind et al. (2005).
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2. SIMULATION STUDY

Performance was investigated through simulation studies. In particular we were interested in the following

questions: First, how influential is the choice of MRF versus smoother spatial priors, and of an exponential

model (P–spline of degree zero) versus a cubic P–spline model for the baseline hazard rate? And second,

how sensitive are the results with respect to the hyperparameters for the variance parameters?

Life times Ti, i = 1, ..., 1236, were generated according to the hazard model

λi(t) = λ0(t) exp(f1(xi) + fspat(si) + γvi) = exp(log(3t2) + sin(xi) + sin(xsi
· ysi

)− 0.3vi),

with Weibull baseline hazard rate λ0(t) = 3t2, a binary covariate v, with the vi´s randomly drawn from a

Bernoulli B(1; 0.5) distribution, and a continuous covariate x, with the xi´s randomly drawn from a uniform

U [−3, 3] distribution. The spatial covariate si denotes one of the s = 1, . . . , S = 309 counties of the former

Federal Republic of Germany and xsi and ysi are the centered coordinates of the geographic center of county

si. We simulated four observations per county, resulting in 309 × 4 = 1236 observations in total. The

censoring was done as follows: We randomly selected a certain proportion of observations (≈ 17% and ≈
50%, respectively) that were to be censored. Censoring variables Ci for these selected observations were then

generated as i.i.d. draws from corresponding uniform U [0, Ti] distributions.

Keeping the predictor fixed, 100 replications {T (r)
i , C

(r)
i , i = 1, ..., 1236} respectively {(t(r)i , δ

(r)
i ), i =

1, ..., 1236}, r = 1, ..., 100 of censored survival times were generated.

To investigate the first question, the log–baseline hazard g0(t) was modelled by second order random walk

priors, corresponding to a piecewise exponential model, and alternatively as a cubic P–spline with 20 knots.

The spatial effect was modelled as a MRF and alternatively as a two–dimensional cubic P–spline with 12×12

knots. Simulations with GRF priors are not feasible due to much higher computation times, but the general

message will be the same. A cubic P–spline prior with 20 knots was chosen for f1(x) = sin(x) in each case.

Hyperparameters of inverse Gamma priors for variance components were set to a = 0.001, b = 0.001, the

standard choice.

For each replication r = 1, ..., 100, we computed the mean square errors

MSEr(g0) =
1

1236

1236∑

i=1

(ĝ(r)
0 (t(r)i )− g0(t

(r)
i ))2,

for the log–baseline hazard g0(t),

MSEr(f1) =
1

1236

1236∑

i=1

(f̂ (r)
1 (xi)− f1(xi))2

for f1(x) = sin(x), and

MSEr(fspat) =
1

1236

1236∑

i=1

(f̂ (r)
spat(si)− fspat(si))2
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Table 1: Summary of MSEs

p.e.m. 17% P–spline–m. 17%
MSE–type MRF 2d P–spline MRF 2d P–spline
meanMSE(g0) 0.200 0.197 0.164 0.163
minMSE(g0) 0.056 0.054 0.041 0.036
maxMSE(g0) 0.433 0.441 0.385 0.389
meanMSE(f1) 0.0076 0.0063 0.0080 0.0065
minMSE(f1) 0.0014 0.0008 0.0015 0.0009
maxMSE(f1) 0.0241 0.0197 0.0278 0.0198
meanMSE(fspat) 0.042 0.022 0.043 0.022
minMSE(fspat) 0.028 0.010 0.028 0.010
maxMSE(fspat) 0.065 0.042 0.066 0.045
meanMSE(γ) 0.0059 0.0051 0.0064 0.0051
minMSE(γ) ≈ 0 ≈ 0 ≈ 0 ≈ 0
maxMSE(γ) 0.0365 0.0255 0.0379 0.0247

p.e.m. 50% P–spline–m. 50%
MSE–type MRF 2d P–spline MRF 2d P–spline
meanMSE(g0) 0.534 0.527 0.456 0.446
minMSE(g0) 0.314 0.312 0.237 0.217
maxMSE(g0) 0.923 0.916 0.810 0.844
meanMSE(f1) 0.0168 0.0132 0.0175 0.0140
minMSE(f1) 0.0006 0.0011 0.0005 0.0009
maxMSE(f1) 0.0591 0.0396 0.0605 0.0429
meanMSE(fspat) 0.055 0.031 0.056 0.032
minMSE(fspat) 0.032 0.013 0.032 0.013
maxMSE(fspat) 0.099 0.064 0.107 0.066
meanMSE(γ) 0.0104 0.0086 0.0110 0.0087
minMSE(γ) ≈ 0 ≈ 0 ≈ 0 ≈ 0
maxMSE(γ) 0.0507 0.0489 0.0497 0.0509

Table 2: Summary of MSEs

prior IG,a=b=0.001 IG,a=b=0.0001 IG,a=b=1e-05 IG,a=b=1e-08 uniform
meanMSE(g0) 0.164 0.164 0.165 0.166 0.157
minMSE(g0) 0.041 0.039 0.038 0.038 0.032
maxMSE(g0) 0.385 0.391 0.383 0.385 0.363
meanMSE(f1) 0.0080 0.0079 0.0079 0.0079 0.0085
minMSE(f1) 0.0015 0.0015 0.0015 0.0016 0.0019
maxMSE(f1) 0.0278 0.0269 0.0280 0.0287 0.0296
meanMSE(fspat) 0.043 0.043 0.043 0.043 0.043
minMSE(fspat) 0.028 0.027 0.027 0.028 0.028
maxMSE(fspat) 0.066 0.065 0.067 0.066 0.066
meanMSE(γ) 0.0064 0.0064 0.0063 0.0063 0.0064
minMSE(γ) ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
maxMSE(γ) 0.0379 0.0398 0.0380 0.0392 0.0390
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for the spatial effect fspat(s) = sin(xc · yc), where ĝ
(r)
0 and f̂

(r)
k , k = 1, spat, are posterior mean estimates

for simulation run r. The MSE(γ) was computed in the usual way.

Table 1 summarizes the results, displaying meanMSE = 1
100 (

∑100
r=1 MSEr) as well as minrMSEr and

maxrMSEr in each cell. As was to be expected, the P–spline model has smaller MSEs for g0 when

compared to the piecewise exponential model. Interestingly, the MSEs for γ = −0.3, f1(x) and fspat(s) are

more or less unaffected by the choice of the smoothness prior for the log–baseline g0(t). Estimated functions

of replication r, with r chosen such that MSEr is the median of MSE1, . . . , MSE100, for g0(t), f1(x) and

fspat(s) are displayed in Figures 1-3 (for the censoring level of 17%). Regarding the two different levels of

censoring Tables 1 shows that the estimation of the log–baseline effect is the effect that is strongest influenced

by the level of censoring. While increasing the censoring level from 17% to 50% leads to an approximately

2.75 times larger MSE for g0(t) the MSE for fspat(s) is only increased by a factor of ca. 1.35.

In order to analyze the behavior of the Markov chains when a and b approach zero (and the prior for

the hyperparameters thus approaches the IG(0; 0) distribution, that leads to an improper posterior), we

exemplary single out the P–spline model with MRF-prior and a censoring level of 17% and alternatively

set a = b = 0.0001, a = b = 0.00001 and a = b = 0.00000001. We additionally run the simulation study

with uniform priors (i.e. a = −0.5, b = 0) on the standard deviations τ0, τ1 and τspat that act as smoothing

parameters for the log-baseline, the nonlinear effect of x and the spatial effect, respectively. Selected

sampling paths of run r = 1 are exemplary shown in Figure 4. We did not face problems with mixing or

convergence of Markov chains with any of these prior distributions. An exception are the first one or two

parameters of the baseline effect, i.e. β0,1 and β0,2, corresponding to the effect of small times t, where the

mixing properties are not always optimal. This can be explained by the very steep increase of the ’true’

log–baseline, reaching to minus infinity as t approaches zero whereas it is quite flat elsewhere. In this

situation a global variance might not be an ideal choice. Another point may be the usage of conditional

prior proposals that usually lead to poorer mixing properties than IWLS–proposals do. Figure 5 displays

kernel density estimators of the posterior mean of the variance parameters based on τ̂2
j

(r)
, r = 1, . . . , 100

for j = 0, 1, spat. Obviously the different choices of the hyperparameters a and b of the inverse Gamma

prior do not seem to have much effect, whereas the uniform prior on the standard deviations tends to result

in larger estimates for the variance parameters and thus in less smooth effects. The posterior distribution

of the variance parameter of the spatial effect is less sensitive to the different choices of priors, as the full

conditional is dominated by the values of rj =rank(Kj) and β′jKjβj at this. Table 2 summarizes the

MSEs, that are computed and displayed as before. While the MSEs are quite unaffected by the choice

of the hyperparameters a and b of the inverse Gamma prior, the uniform prior results in a slightly smaller

MSE for g0(t), but a slightly bigger MSE for f1(x). Altogether we come to the conclusion that (at least

with this model) it does not seem to be crucial, which one of these weakly informative priors is assumed for

the variance parameters.

5



−
6

−
4

−
2

0
2

4

g
_

0
(t

)

0 1 2 3

t

(a)

−
6

−
4

−
2

0
2

4

g
_

0
(t

)

0 1 2 3

t

(b)

−
6

−
4

−
2

0
2

4

g
_

0
(t

)

0 1 2 3

t

(c)

−
6

−
4

−
2

0
2

4

g
_

0
(t

)

0 1 2 3

t

(d)

Figure 1: (log–)Baseline effects for the various model specifications; displayed are posterior mean estimates

and 95% credible intervals of run r, with r chosen such that MSEr is the median of MSE1, . . . , MSE100

(solid line and grey shaded area), and the true (log–)baseline effect (dashed line). a) p.e.m., MRF, r=11,

MSE=0.183 b) p.e.m., 2d P–spline, r=51, MSE=0.181 c) P–spline model, MRF, r=51, MSE=0.148 d) P–

spline model, 2d P–spline, r=7, MSE=0.145
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Figure 2: Nonparametric effects for the various model specifications; displayed are posterior mean estimates

and 95% credible intervals of run r, with r chosen such that MSEr is the median of MSE1, . . . , MSE100

(solid line and grey shaded area), and the true function (dashed line). a) p.e.m., MRF, r=53, MSE=0.0064

b) p.e.m., 2d P–spline, r=36, MSE=0.0053 c) P–spline model, MRF, r=67, MSE=0.0068 d) P–spline model,

2d P–spline, r=19, MSE=0.0056
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Figure 3: Spatial effects for the various model specifications; displayed are posterior mean estimates of run

r, with r chosen such that MSEr is the median of MSE1, . . . , MSE100 a) true function b) p.e.m., MRF,

r=41, MSE=0.041 c) p.e.m., 2d P–spline, r=13, MSE=0.021 d) P–spline model, MRF, r=12, MSE=0.042 e)

P–spline model, 2d P–spline, r=13, MSE=0.021
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Figure 4: Selected sampling paths of run r = 1 for parameters βj,1 and βj,13, j = 0, 1, spat and different

choices for the parameters a and b of the IG(a; b) hyperpriors.
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3. APPLICATION: WAITING TIMES TO CABG

In Hennerfeind et al. (2005) we illustrate our methods by an application to data from a study in London

and Essex that aims to analyze the effects of area of residence and further individual specific covariates on

waiting times to coronary artery bypass graft (CABG). The data comprise observations for 3015 patients

with definite coronary artery disease who were referred to one cardiothoracic unit from five contiguous health

authorities. Waiting times from angiography to CABG are given in days. Covariates are, among others, sex,

age (in years), number of diseased vessels (1, 2, 3), and the area of residence (one of 488 electoral wards). We

analyzed and compared a hierarchy of models, with model comparison based on the deviance information

criterion (DIC), but we concentrated on IG(0.001; 0.001) priors for the variances. In this supplement we

exemplary present some additional results of model 8 in Hennerfeind et al. (2005) that were obtained with

other choices of IG(a; b) priors. Model 8 corresponds to a model with hazard rate

λ(t) = exp(g0(t) + fage(age) + fspat(ward) + γ1sex + γ2dv2 + γ3dv3),

where g0(t) is the log–baseline rate, fage(age) is the nonlinear effect of age and fspat(ward) is the structured

spatial effect. The remaining covariates are dummy–coded: sex = 1 for female, and sex = 0 for male,

dv2 = 1 if the number of diseased vessels equals 2, dv2 = 0 else, and dv3 = 1 if the number of diseased

vessels equals 3, dv3 = 0 else.

For g0(t) and fage we assumed cubic P–spline priors with 20 knots and the spatial effect fspat(ward) is

modelled through a MRF prior. Inverse Gamma priors IG(a; b) were assumed for the variances. In addtion

to our standard choice a = b = 0.001 we set a = b = 1e− 08 and a = −0.5, b = 0 (i.e. uniform prior on the

standard deviation).

Figure 6 exemplary shows sampling paths of the first and 19th parameter of each vector βj , j = 0, age, spat

corresponding to the log–baseline effect, the effect of age and the spatial effect, respectively. Independently

of the choice of the prior for the hyperparameters the mixing is not optimal for the first parameters of the

parameter–vector β0 corresponding to the log–baseline effect. In accordance with our simulation study this

might be due to the usage of conditional prior proposals and the assumption of a global variance, since the

effect is steeply dropping in the first 100 days, but comparatively flat elsewhere. Apart from that we did not

face problems with mixing or convergence in the case of IG(0.001; 0.001) and IG(−0.5; 0) priors. However,

in the case of an IG(1e− 08; 1e− 08) prior mixing properties are poor for the first parameters of the effect

of age, where we have sparse data since there is only a very small number of young patients that suffer from

coronary artery diseases. As shown in Figure 7 a) the estimated log–baseline effects g0(t) are not influenced

by the choice of the hyperprior. The same applies to the fixed effects as well as the spatial effect. Figure 7

b) however reveals a much smoother effect with the IG(1e − 08; 1e − 08) prior compared to the effects the

other two choices for the hyperpriors yield. But since credible intervals are quite large, each estimated effect

is within the 95% credible interval of each other estimated effect of age.

We conclude that the results are in general quite insensitive regarding the choice of non–informative hyper-
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Figure 6: Selected sampling paths for parameters βj,1 and βj,19, j = 0, age, spat and different choices for the

parameters a and b of the IG(a; b) hyperpriors.
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Figure 7: Estimated log–baseline effects g0(t) and effects of age fage with different specifications of IG(a; b)

hyperpriors.

priors. However, in situations where data are sparse IG(a; b) priors with a and b close to zero might lead to

poor mixing and are therefore not recommended.

4. PROOFS OF PROPRIETY RESULTS

The proofs of Theorem 1 and Corollary 1 on propriety of posteriors for geoadditive survival models in the

Appendix of Hennerfeind et al. (2005) are based on lemmata extending propriety results for (generalized)

mixed models in Sun et al. (1999).

We first consider Gaussian linear mixed models

y = V γ + Z1β1 + ... + Zmβm + ε (7)

for observations y = (y1, ..., yn)′, with a Gaussian error vector ε = (ε1, ..., εn) ∼ N(0, τ2
0 I). For identifiability

reasons, the predictor must not contain individual–specific uncorrelated random effects in addition to ε. The

prior assumptions for the parameters γ and βj , j = 1, ..., m, are the same as in Section 2, i.e., a flat prior

p(γ) ≡ 1 (8)

for the vector γ of ’fixed’ effects, and prior (5) for βj . Priors for hyperparameters τ 2 = (τ2
0 , ..., τ2

m)′

are p(τ 2) =
∏m

j=0 p(τ2
j ). An important special case are inverse Gamma priors (6), which are proper for

aj > 0, bj > 0.

Defining Z = (Z1, ..., Zm) and β = (β′1, ..., β
′
m)′, the model (7) is

y = V γ + Zβ + ε.

Further, with X = (V, Z), let (γ̂′, β̂
′
)′ = (X′X)−X′y be the least squares estimator, and

SSE = y′(I − X(X′X)−X′)y

13



be the sum of squared errors, which is invariant for any choice of the generalized inverse (X′X)−.

Lemma A1

Consider the Gaussian mixed model defined by (7), (8) and (5), and assume that the following conditions

hold:

(i) rank(V )=p, rank(Z′RZ + K)=d

where p = dim(γ), d = d1 + ... + dm = dim(β), K = diag(K1, ..., Km), R = I − V (V ′V )−1V ′.

(ii) the priors p(τ2
j ), j = 1, ..., m are proper, and

∫
p(τ2

0 )τ−(n−p−(d−r))
0 exp

(
−SSE

2τ2
0

)
dτ2

0 < ∞,

where r = r1 + ... + rm.

Then the posterior distribution p(γ, β, τ2 | y) is proper.

Corollary A1

For a linear mixed model (7) with prior (8) and (6), the posterior p(γ, β, τ2 | y) is proper if condition (i) of

Lemma A1 and

aj > 0, bj > 0, j = 1, ..., m,

n− p− (d− r) + 2a0 > 0, SSE + 2b0 > 0

hold.

Remark: Condition (i) of Lemma A1 is equivalent to

rank
(

V ′V V ′Z
Z′V Z′Z + K

)
= p + d.

Proof of Lemma A1 and Corollary A1

The proof extends arguments in Sun, Tsutakawa and Speckman (1999), see also Speckman and Sun (2003),

using a theorem on eigenvalues in Magnus and Neudecker (1991). From the model assumptions we have

p(γ, β, τ2 | y) ∝ τ−n
0 τ−r1

1 · ... · τ−rm
m · exp



−

(y − V γ − Zβ)′(y − V γ − Zβ)
2τ2

0

−
m∑

j=1

β′
jKjβj

2τ2
j



 p(τ2)

Following Sun et al. (1999), we rewrite

(y − V γ − Zβ)′(y − V γ − Zβ) = SSE + (γ − γ̂ − c1)′V ′V (γ − γ̂ − c1) + (β − β̂)′Z′RZ(β − β̂),

where c1 = (V ′V )−1V ′Z(β̂ − β).

Integrating the right hand side with respect to γ, we get

∫
p(γ, β, τ2 | y)dγ ∝ (2π)p/2 | V ′V |−1/2

τn−p
0

∏m
j=1 τ

rj

j

· exp

(
−SSE

2τ2
0

− (β − β̂)′Z′RZ(β − β̂)
2τ2

0

− 1
2
β′Kτ2β

)
p(τ2),

where Kτ2 = diag
(
K1/τ2

1 , ..., Km/τ2
m

)
.
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Define R1= τ−2
0 Z′RZ + Kτ2 . Then for any τ2

j > 0, j = 0, ..., m, R−1
1 exists by assumption (i) of Lemma

A1. Set

c2 = τ−2
0 R−1

1 Z′RZβ̂

R2 = Z′RZ − τ−2
0 Z′RZR−1

1 Z′RZ.

Then
(β − β̂)Z′RZ(β − β̂)

τ2
0

+ β′Kτ2β = (β − c2)′R1(β − c2) +
β̂′R2β̂

τ2
0

.

Integrating out β, we get

∫
p(γ, β, τ2 | y)dγdβ ∝ (2π)(p+r)/2 | V ′V |− 1

2 | R1 |− 1
2

τn−p
0

∏m
j=1 τ

rj

j

· exp

{
−SSE + β̂′R2β̂

2τ2
0

}
p(τ2). (9)

Since R2 is nonnegative definite, the second factor is bounded by exp
{−SSE/(2τ2

0 )
}
.

For an upper bound of the first factor, we first derive a lower bound for | R1 |, applying Theorem 9 in

Magnus and Neudecker (1991, ch. 11, p. 208) to the eigenvalues of

R1 = τ−2
0 Z′RZ + Kτ2 .

Note that the d− r smallest eigenvalues of K and Kτ2 are zero, while the eigenvalues λl(Kτ2), l = d− r +

1, ..., r, are positive. Application of the theorem to the positive eigenvalues of R1 gives

λl(τ−2
0 Z′RZ + Kτ2) ≥ λl(Kτ2) = λ(Kj)τ−2

j ≥ λjτ
−2
j ,

where λ(Kj) is a positive eigenvalue of one of the precision matrices Kj and λj > 0 is the smallest positive

eigenvalue of Kj .

Application of the theorem to the eigenvalues λl(Kτ2) = 0, l = 1, ..., d− r, of Kτ2 gives

λl(τ−2
0 Z′RZ + Kτ2) ≥ λl(τ−2

0 Z′RZ) ≥ τ−2
0 λ0,

where λ0 > 0 is the smallest eigenvalue of Z′RZ.

Taken together, we get

| R1 |=
∏

l

λl(R1) ≥ τ
−2(d−r)
0

m∏

j=1

τ
−2rj

j · L

where L = λd−r
∏m

j=1 λ
rj

j > 0, and

| R1 |−1/2≤ 1
L1/2

τd−r
0

m∏

j=1

τ
rj

j .

Inserting in (9), we obtain

∫
p(γ, β, δ | y)dγdβ ≤ C

1

τ
n−p−(d−r)
0

· exp
{
−SSE

2τ2
0

} m∏

j=0

p(τ2
j ).
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Thus, if condition (ii) in Lemma A1 holds, the posterior p(γ, β, τ2 | y) is proper.

Corollary A1 follows immediately, because then

1

τ
n−p−(d−r)
0

exp
{
−SSE

2τ2
0

}
1

(τ2
0 )a0+1

exp
{
− b0

τ2
0

}
=

1

τ
n−p−(d−r)+2(a0+1)
0

exp
{
−SSE/2 + b0

τ2
0

}
.

We recognize a proper inverse Gamma density for (n− p− (d− r))/2 + a0 > 0 and SSE/2 + b0 > 0.

Propriety of the posterior for generalized (geo–) additive models

The following Lemma A2 gives sufficient conditions for the propriety of the posterior in generalized linear

and additive mixed models. The lemma and its proof rest heavily on Theorem 4 in Sun et al. (1999),

who considered models with densities fi(yi | ηi) for the observations yi given a predictor ηi and predictors

η= (η1, ..., ηi, ..., ηn) given by

η = V γ + Z1β1 + ε,

with partially improper prior for β1, and individual–specific random effects ε= (ε1, ..., εi, ..., εn)′ ∼
N(0, τ2

0 I). We extend their theorem in two directions: First, we allow for several random effects with

different degree and type of smoothness priors, and, second, we do not necessarily assume that individual–

specific random effects εi are included in the predictor.

We consider models with predictor

η = V γ + Z1β1 + ... + Zmβm + Z0β0, (10)

where γ, β1, ..., βm have priors as in (8) and (5). The term Z0β0 represents a random effect with a n× d0

design matrix Z0, with rank(Z0) = d0 = dim(β0), and a (possibly partially improper) prior

p(β0) ∝ τ−r0
0 exp

(
− 1

2τ2
0

β′0K0β0

)
, (11)

with r0 = rank(K0), such that

d0 ≥ dj , r0 ≥ rj , j = 1, ..., m.

Setting Z0 = I, β0 = ε ∼ N(0, τ2
0 I), the predictor (10) also covers the case of individual–specific random

effects Z0β0 = ε. In geoadditive models Z0β0 will usually represent a spatial effect with a MRF or kriging

prior, or an unstructured spatial effect.

Lemma A2

Consider a generalized linear mixed model with observation densities fi(yi | ηi), predictor (10), and priors

(8), (5), (11). Suppose that (after a reordering of observations)

(∗)
∫

fi(yi | ηi)dηi < ∞

holds for observations i = 1, ..., n∗, and

(∗∗) fi(yi | ηi) ≤ M, i = n∗ + 1, ..., n

holds for the remaining observations.

Denote the corresponding submatrices of V, Z and Z0 by V ∗, Z∗ = (Z∗
1, ..., Z

∗
m), Z∗

0, and assume:
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(iii) rank(Z∗
0) = d0,

the rank conditions (i) in Lemma A1 hold for V ∗, Z∗,

condition (ii) in Lemma A1 holds with r0 replacing n and SSE replaced by SSE∗.

Then the posterior p(γ, β0, β1, ..., βm, τ2
0 , ..., τ2

m | y) is proper.

The following corollary is easier to check.

Corollary A2

Assume that conditions (∗), (∗∗) and the rank conditions for V ∗, Z∗, Z0
∗ in Lemma A2 hold, and that

r0 − p− (d− r) > 0

with d = d0 + ... + dm, r = r0 + ... + rm, and

aj > 0, bj > 0, j = 0, ...,m

hold for the inverse Gamma priors (11).

Then the posterior p(γ, β0, β1, ..., βm, τ2
0 , ..., τ2

m | y) is proper.

Proofs: We consider first the simpler case of individual–specific random effects β0≡ε∼ N(0, τ2
0 I). Using

the one–to–one relation η= V γ + Zβ + ε between η and ε, we consider propriety of p(η, γ, β, τ2
0 , τ 2 | y)

instead of p(ε, γ, β, τ2
0 , τ 2 | y). Proceeding as in Sun et al. (1998), one starts from

p(η, γ, β, τ2
0 , τ 2 | y) ∝ p(y | η)p(η | γ, β)p(β)p(τ2

0 )p(τ 2).

Using (∗∗) and integrating out η∗∗ = (ηn∗+1, ..., ηn), one arrives at

p(η∗, γ, β, τ2
0 , τ 2 | y) ∝

n∗∏

i=1

fi(yi | ηi){p(η∗ | γ, β)p(β)p(τ2
0 )p(τ 2)}

∝
n∗∏

i=1

fi(yi | ηi){p(γ, β, τ2
0 , τ 2 | η∗)}.

Applying Lemma A1 (or Corollary A1) to

η∗ = V ∗γ + Z∗β + ε∗, ε∗ ∼ N(0, τ2
0 I),

gives

p(η∗ | y) ∝
n∗∏

i=1

fi(yi | ηi),

and propriety follows from (∗) .

For the general case η = V γ + Zβ + Z0β0, with prior (11) for β0, we first decompose β0 into a

(d0 − r0)–dimensional subvector βfl
0 with flat prior p(βfl

0 ) ≡ 1 and a r0–dimensional subvector βpr
0 with a

proper prior βpr
0 ∼ N(0, τ2

0 I):

β0 = Zfl
0 βfl

0 + Zpr
0 βpr

0 ,
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where the d0 × (d0 − r0) matrix Zfl
0 contains a basis of the nullspace of K0. The matrix Zfl

0 is the identity

vector 1l for P–splines with first–order random walk prior, Markov–random fields and 2d–P–splines with

MRF prior for the coefficients. For P–splines with second–order random walk prior it is a two column

matrix whose first column is the identity vector and the second column is composed of the (equidistant)

knots of the spline.

The d0 × r0 matrix Zpr
0 is given by

Zpr
0 = L(L′L)−1

,

where L = S′Λ1/2 is obtained from the spectral decomposition K0 = SΛS′ of K0. It follows that

βpr
0 ∼ N(0, τ2

0 I).

Defining Ṽ = (V, Z0Z
fl
0 ), γ̃′ = (γ, βfl

0 )′, Z̃0 = Z0Z
pr
0 , we can rewrite the predictor as

η = Ṽ γ̃ + Zβ + Z̃0β
pr
0 .

For identifiability reasons, the columns of Z0Z
fl
0 are not contained in the (d0 − r0) column space of V , so

that rank(Ṽ ) = p + (d0 − r0). Defining ε0 = Z̃0β
pr
0 , we have an additive mixed model

η = Ṽ γ̃ + Zβ + ε0 (12)

for the predictor η, with singular covariance matrix cov(ε0) = Z̃0Z̃
′
0τ

2
0 of the ’error term’ ε0. Let

S̃Λ̃S̃
′
= Z̃0Z̃

′
0

be the spectral decomposition of Z̃0Z̃
′
0, with Λ̃ = diag(λ1, ..., λr0) containing the r0 positive eigenvalues,

and set

T = Λ̃
−1/2

S̃′.

Multiplying equation (12) by T , we obtain the reduced model

η̃ = T Ṽ γ̃ + TZβ + ε, ε ∼ N(0, τ2
0 I),

where η̃ = Tη and ε = Tε0 have dimension r0.

Altogether, we obtain a (linear) one–to–one transformation between βpr
0 and η̃, and proving propriety of

p(γ, β, β0, τ
2, τ2

0 | y) is equivalent to proving propriety of p(η̃, γ̃,β, τ2, τ2
0 | y).

Thus, we can repeat the arguments of the first part of the proof, replacing η by η̃, V by T Ṽ , Z by TZ,

and n by r0.

From Magnus, Neudecker (1991, p. 273) it follows that

rank(T Ṽ ) = rank(Ṽ ) = p + d0 − r0,

rank(TZj) = rank(Zj) = rj .

Applying now Lemma A1 (or Corollary A1) to the model for η̃, we obtain Lemma A2 and Corollary A2.
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Proofs of Theorem 1 and Corollary 1: We first show that the conditions (∗) , (∗∗) of Lemma A2 are

fulfilled for right–censored survival data (ti =min(Ti, Ui), δi), i = 1, ..., n. The density of observation i is

given by

fi(ti | ηi(ti)) = λi(ti)δiSi(ti),

where

λi(ti) = exp(ηi(ti)), Si(ti) = exp
(
−

∫ ti

0

λi(s)ds

)

For censored observations (δi = 0), we have fi(ti | ηi(ti)) = Si(ti) ≤ 1, so that condition (∗∗) of Lemma A2

holds.

For uncensored observations (δi = 1)

fi(ti | ηi(ti)) = λi(ti)Si(ti).

Setting ηi := ηi(ti), λi := λi(ti), we obtain
∫ ∞

0

fi(ti | ηi)dηi =
∫ ∞

0

λiSi(ti)λ−1
i dλi =

∫ ∞

0

Si(ti)dλi,

so that assumption (∗) is equivalent to
∫ ∞

0

Si(ti)dλi < ∞. (13)

We factorize the multiplicative hazard rate λi(t) into

λi(t) = cili(t),

where ci > 0 is the time–constant part. Then
∫ ∞

0

Si(ti)dλi =
∫ ∞

0

exp
{
−ci

∫ ti

0

li(s)ds

}
dλi.

Consider first the case where ηi(t) is piecewise constant (on the intervals Ik, k = 1, 2, ... defined by the knots

of B–splines of degree 0). Then

λi(t) = ciλik for t ∈ Ik, k = 1, 2, ...

For ti ∈ Ik, say, we have λi = λi(ti) = ciλik, and

∫ ∞

0

Si(ti)dλi ∝
∫ ∞

0

exp


−


ci

k−1∑

j=1

∆jλij


− ci

∫ ti

ξk−1

λikdλik


 dλik

∝ Ci

∫ ∞

0

exp(−ci(ti − ξk−1)λik)dλik < ∞,

for ti − ξk−1 > 0, which is valid a.s. for continuous Ti.

Consider now the case, where the time–varying part of ηi(t) is defined by B–splines of higher degree. Let

λik = mint∈Ik
li(t) > 0, k = 1, 2, ...
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be the minimum of the time–varying part of λi(t) on Ik.

Then
∫ ∞

0

exp
{
−ci

∫ ti

0

li(s)ds

}
dλi ≤ Ci

∫ ∞

0

exp

{
−ci

∫ ti

ξk−1

λikdλik

}
dλik

= Ci

∫ ∞

0

exp(−ci(ti − ξk−1)λik)dλik < ∞,

so that assumption (13) is fulfilled. Corollary 1 immediately follows from Corollary 2.

Remark: We have tacitly made the assumption that λi(t) > 0 for any choice of covariates and parameters.

This is valid because of our parametrization

λi(t) = exp(ηi(t)).

References

Gelman, A. (2004), ”Prior distributions for variance parameters in hierarchical models,” provided by Eco-
nomics Working Paper Archive at WUSTL in its series Econometrics with number 0404001.

Hennerfeind, A., Brezger, A., and Fahrmeir, L. (2005), ”Geoadditive Survival Models,” Revised for JASA.

Magnus, J.R. and Neudecker, H. (1991), Matrix Differential Calculus with Applications in Statistics and
Econometrics. Wiley Series in Probability and Statistics.

Speckman, P.L. and Sun, D. (2003), ”Fully Bayesian spline smoothing and intrinsic autoregressive priors,”
Biometrika, 90, 2, 289–302.

Sun, D., Tsutakawa, R.K. and Speckman, P.L. (1999), ”Posterior distribution of hierarchical models using
CAR(1) distributions,” Biometrika, 86, 341–350.

20


