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Measurement Error Models and

Methods
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Abstract

A measurement error model is a regression model with (substan-
tial) measurement errors in the variables. Disregarding these measure-
ment errors in estimating the regression parameters results in asymp-
totically biased estimators. Several methods have been proposed to
eliminate, or at least to reduce, this bias, and the relative efficiency
and robustness of these methods have been compared. The paper
gives an account of these endeavors. In another context, when data
are of a categorical nature, classification errors play a similar role as
measurement errors in continuous data. The paper also reviews some
recent advances in this field.
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1 Introduction

A measurement error model is a, linear or non-linear, regression model with
(substantial) measurement error in the variables, above all in the regressor
variable. Disregarding these measurement errors in estimating the regression
parameters (naive estimation) results in asymptotically biased, i.e. inconsis-
tent, estimators. This is the motivation for investigating measurement error
models. Measurement errors are found in almost all fields of application. A
classical example in econometrics is Friedman’s (1957) ”permanent income
hypothesis”. Another example is the measurement of schooling as a predictor
of wage earnings (Card, 2001). In epidemiology, various studies may be cited
where the impact of an exposure to noxious substances on the health status
of people is studied (e.g., Heid et al., 2002). In engineering, the calibration of
measuring instruments deals with measurement errors by definition (Brown,
1982). Many more examples can be found in the literature, in particular in
the monographs by Schneeweiss and Mittag (1986), Fuller (1987), Carroll et
al. (1995), Cheng and Van Ness (1999), Wansbeek and Meijer (2000). Re-
cently measurement error methods have been applied in the masking of data
to assure their anonymity (Brand, 2002). The data are artificially distorted
in various ways including through the addition of random errors.
Several estimation methods have been proposed to eliminate, or at least to
reduce, the bias of the naive estimation method. The present paper reviews
some of these methods and compares their efficiencies.
Section 2 introduces the measurement error model. In Section 3 we discus
briefly the identification problem. Section 4 to 6 deal with various estimation
procedures, and Section 7 compares their efficiencies. Section 8 addresses
survival models. A special type of measurement errors, viz., misclassification
errors is dealt with in Section 9. Section 10 has some concluding remarks.

2 Measurement error models

A measurement error model consists of three parts:

1. A regression model relating an unobservable (generally vector-valued, but
here for simplicity scalar) regressor variable ξ to a response variable y given
by a conditional distribution f(y|ξ; θ), where θ is an unknown parameter vec-
tor. Quite often only the conditional mean function E(y|ξ) = m∗(ξ, β), the
regression in the narrower sense, is given, supplemented by a conditional vari-
ance function V(y|ξ) = v∗(ξ, β, ϕ), where θ comprises β and ϕ plus possibly
other parameters describing the distribution of y.
Two major examples, that we will often refer to, are the polynomial model
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(for a survey see Cheng and Schneeweiss, 2002),

y = β0 + β1ξ + · · ·+ βkξ
k + ε

with m∗(ξ, β) = β0 +β1ξ + · · ·+βkξ
k and v∗ = σ2

ε , and the log-linear Poisson
model

y|ξ ∼ Po(λ), λ = exp(β0 + β1ξ)

with m∗(ξ, β) = v∗(ξ, β) = λ. Survival models are considered separately in
Section 8.

2. A measurement model that relates the unobservable ξ to an observable sur-
rogate variable x, given by a conditional distribution g(x|ξ; α). The so-called
non-differentiality property requires that f(y|ξ, x) = f(y|ξ). The classical
measurement model assumes an additive random error δ with mean zero,
which is independent of ξ and (by non-differentiality) of y:

x = ξ + δ.

An alternative is the so-called Berkson model, where δ is independent of x
instead of being independent of ξ (e.g., Küchenhoff et al., 2003). Here we
shall only consider the classical model. Typically δ is assumed to be normally
distributed: δ ∼ N(0, σ2

δ ).

3. A distribution of the latent regressor variable ξ. The distribution may be
specified by a density h(ξ; γ) with an unknown parameter vector γ. We then
have the structural variant of the model. Another possibility is that ξ is not
considered a random variable but rather an unknown parameter pertaining
to the observation x. In this case, which is called the functional variant, the
number of parameters ξ grows with the sample size. We do not deal with
this case here (but see Cheng and Van Ness, 1999). Instead, following Caroll
et al. (1995), we distinguish between structural and functional estimation
methods. The former use the distribution of ξ, the latter do not, even if such
a distribution exists. Estimation of β is based on an i.i.d. sample of data
(xi, yi), i = 1, · · · , n. For an example of estimation in the context of time
series see Nowak (1993).

3 Identifiability

Since ξ is latent, the parameters of the model may not be identified. This
is the case in the linear model and in the probit model both with normally
distributed regressor and error variables. In such cases additional pieces of
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information are necessary in order to be able to construct consistent esti-
mators for β, for more details see Cheng and Van Ness (1999). But even
if the model is identified (as is often the case in non-linear models - for the
logistic model see Küchenhoff, 1995; for the quadratic regression model, see
Huang and Huwang, 2001), additional information may be of great help to
enhance the efficiency of estimation. The most prominent pieces of extra in-
formation are knowledge of the error process, in particular the measurement
error variance σ2

δ , and knowledge of instrumental variables. Here we will only
deal with the first type of information (for the second see, e.g., Schneeweiss
and Mittag, 1986, and Wansbeek and Meijer, 2000). Knowledge of σ2

δ may
come from repeated measurements or from a validation subsample. For an
example where knowledge of h(ξ) is used see Hu and Ridder (2005).

4 Naive estimation and bias correction

Suppose a consistent estimator β̂ for the original, error-free model is available.
Simply replacing ξ with x in this estimator gives rise to the so-called naive
estimator β̂N . Simple as it is, this estimator is almost always not consistent.
As an example consider the linear model y = α + βξ + ε. The naive esti-

mator of β is the LS estimator β̂N = sxy

s2
x

, which has the bias −σ2
δ

σ2
x
β. Note

that |β| is systematically underestimated by |β̂N | (attenuation effect). This
has the undesirable consequence that a strong effect of the covariate ξ on
y may not be detectable anymore once the covariate has been corrupted by
measurement errors. In the multiple linear model, measurement errors have
a more complicated effect (see, e.g., Schneeweiss and Mittag, 1986). In the
quadratic model the attenuation effect is expressed as a flattening of the cur-
vature at the peak of the parabola (Kuha and Temple, 2003). A segmented
linear regression shows a smooth curve connecting the two segments instead
of the sharp kink of the error-free model (Küchenhoff and Caroll, 1997).
When the (asymptotic) bias B = plimβ̂N − β can be evaluated (typically
as a function of β and possibly other parameters), it is sometimes possible
to correct the naive estimator such that a consistent estimator results. For
instance, the bias of β̂N in the linear model can be easily corrected if σ2

δ is
known:

β̂C =
s2

x

s2
x − σ2

δ

β̂N =
sxy

s2
x − σ2

δ

is a consistent estimator of β. Another example is the bias correction of the
naive ML estimator in a logistic model (Küchenhoff, 1992).
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5 Functional estimation methods

Functional estimators do not use the distribution of ξ. They are therefore
immune against possible misspecifications of h(ξ) and they are also valid
when ξ is nonstochastic. In this latter case the problem of estimating the in-
cidental parameters ξi arises (Cheng and Van Ness, 1999). However, one can
circumvent this problem and can directly find estimators for the parameter
of interest β. We present two such estimators: CS and SIMEX.

5.1 Corrected score (CS) estimator

Suppose we have a (vector-valued) unbiased estimating (or simply: score)
function ψ(y, ξ; b) such that b = β is the only solution to the equation
E [ψ(y, ξ; b)|ξ] = 0. Then the solution β̂ of

∑n
i=1 ψ(yi, ξi; β̂) = 0, assum-

ing it exists uniquely, is (under general regularity conditions) a consistent
estimator of β. However, as ξ is unobservable, this estimator is not feasible.
Therefore, one may try to find a so-called corrected score function ψ

CS
(y, x; b)

such that

E [ψ
CS

(y, x; b)|y, ξ] = ψ(y, ξ; b)

(Nakamura, 1990). With the help of the iterative expectation principle ψ
CS

can be seen to be an unbiased estimating function, and so, under mild regu-
larity conditions, β̂

CS
solving

n∑
i=1

ψ
CS

(yi, xi; β̂CS
) = 0

is a consistent and asymptotically normal estimator (the CS estimator). Its
asymptotic covariance matrix is given by the sandwich formula

Σ
CS

=
1

n
A−1

CS
B

CS
A−>

CS
, with A

CS
= −E

(
∂ψ

CS

∂β

)
, B

CS
= E(ψ

CS
ψ

T

CS
),

where ψ
CS

= ψ
CS

(y, x; β). A common score function of the error-free model
is

ψ(y, ξ; b) = [y −m∗(ξ, b)] v∗−1∂m∗(ξ, b)
∂b

.

We then need to find functions f1 and f2 such that

E [f1(x, b)|ξ] = v∗−1m∗
b , E [f2(x, b)|ξ] = m∗v∗−1m∗

b ,
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where m∗
b is short for ∂m∗(ξ, b)/∂b. Stefanski (1989) gives conditions for the

existence of such functions. If they exist, then ψ
CS

= yf1 − f2.
In the polynomial model one can construct polynomials tr(x) of degree r such
that E [tr(x)|ξ] = ξr (Cheng and Schneeweiss, 1998, and Cheng et al., 2000).
The corrected score function is then given by

ψ
CS

(y, x; b) = H(x)b− yt(x),

where t(x) = (t0(x), · · · , tk(x))> and H(x) is a (k + 1)× (k + 1) matrix with
Hrs(x) = tr+s(x), r, s = 0, · · · , k, from which the CS estimator is found as
β̂

CS
= H̄−1yt, where the bar denotes averaging over the sample values (xi, yi).

In the Poisson model (see Shklyar and Schneeweiss, 2005), the corrected score
function is given by

ψ
CS

(y, x; b0, b1) =
(
y − λe−

1
2
b21σ2

δ

)
(1, x)> + b1σ

2
δe
− 1

2
b21σ2

δ (0, 1)> .

5.2 Simulation-extrapolation (SIMEX) estimator

One cannot subtract the measurement error, but one can add a random error
to the xi and thereby study the effect of measurement errors on the estimate
of β. This idea gives rise to the following method (Cook and Stefanski, 1994):

1. Compute the naive estimate β̂N =: β̂(0).

2. Add random noise to the xi: x′i(a) = xi + δ′i(a), δ′i ∼ N(0, aσ2
δ )

and compute the naive estimate with these artificial data (yi, x
′
i).

3. Repeat this step m times with a fixed a and average the m naive esti-
mates to get an estimate β̂(a).

4. Do this for a series of a’s, e.g. a = 0.1, 0.2, · · · , 2. One may plot the
resulting points (a, β̂(a)).

5. Fit a curve through these points by least squares using some convenient
function, e.g., a quadratic one.

6. Extrapolate this curve to a = −1, which corresponds to the situation
of no measurement error. Then β̂SIMEX = β̂(−1).

This procedure is easy to apply, as it uses only the naive estimation method
given from the original error-free model. It is, however, very computer in-
tensive and it only gives a consistent estimator if the correct extrapolation
curve has been used (see Carroll et al., 1996). The quadratic curve may be
convenient, but it is rarely the correct curve. SIMEX estimators are there-
fore often biased, but the bias is typically greatly reduced as compared to
the bias of the naive estimator (Wolf, 2004).
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6 Structural estimation methods

Structural estimation methods use the information given in the distribu-
tion of the regressor variable. Note, however, that this distribution h(ξ; γ)
contains the unknown (nuisance) parameter vector γ. Typically γ can be
estimated from the data xi alone without recourse to the regression model.
For instance, if ξ ∼ N(µξ, σ

2
ξ ) the nuisance parameters µξ and σ2

ξ can be
estimated by x̄ and s2

x−σ2
δ , respectively. For how to estimate γ in a distribu-

tion which is a mixture of normals see Thamerus (2003). Replacing γ with
a consistent estimate γ̂ does not alter the consistency property of β̂, though
it does have an effect on the asymptotic variance (cf. Caroll et al., 1995).
For simplicity, let us assume in the sequel that γ is known. We will consider
three estimators: ML, QS, and RC.

6.1 Maximum likelihood (ML) estimator

The joint density of x and y is given by

q(x, y; θ, α, γ) =

∫
f(y|ξ; θ) · g(x|ξ; α) · h(ξ; γ) dξ

Maximizing it with respect to θ, α, γ gives the ML estimator. Though being
the most efficient estimator, it has two drawbacks: it relies on the complete
joint distribution of x and y and is therefore sensitive to any kind of mis-
specification and, due to the integral, it is in most cases extremely difficult
to compute, not the least because all the parameters have to be estimated si-
multaneously. Although the computational burden can be greatly alleviated
by using simulation methods (simulated ML, simulated LS, see, e.g., Wans-
beek and Meijer, 2000, Li, 2000, or Hsiao and Wang, 2000), there is still
demand for simpler, and more robust, estimation methods. Two of these,
QS and RC, will now be discussed.

6.2 The quasi score (QS) estimator

The (structural) quasi score (QS) estimator is constructed by means of the
conditional mean and variance function of y given x:

E(y|x) = m(x; β), V(y|x) = v(x; β, ϕ).

These are computed starting from the original mean and variance functions
given ξ:

m(x; β) = E [m∗(ξ; β)|x] , v(x; β, ϕ) = V [m∗(ξ; β)|x] + E [v∗(ξ; β, ϕ)|x] .
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For these computations we need the conditional distribution of ξ given x.
In some cases this distribution may be found directly from validation data.
In most other cases it is computed from g(x|ξ; α) and h(ξ; γ). Therefore
m and v do not only depend on β (and ϕ) but also on α and γ. Here we
assume that α and γ are given. In the classical measurement error model
with δ ∼ N(0, σ2

δ ) and ξ ∼ N(µξ, σ
2
ξ ) the conditional distribution of ξ given

x is simply given by

ξ|x ∼ N(µ(x), τ 2) with µ(x) = µx +

(
1− σ2

δ

σ2
x

)
(x− µx) , τ 2 = σ2

δ

(
1− σ2

δ

σ2
x

)
.

The quasi score function for β then is

ψ
QS

(y, x; b, ϕ) = [y −m(x; b)] v−1(x; b, ϕ)mb(x, b).

This should be supplemented by a quasi score function for ϕ, which we have
suppressed for ease of presentation. Given ϕ, the QS estimator is found as
the solution to

n∑
1=1

ψ
QS

(yi, xi; β̂QS
, ϕ) = 0.

As ψ
QS

is an unbiased estimating function, β̂
QS

is, under appropriate regular-
ity conditions, a consistent, asymptotically normal estimator with an asymp-
totic covariance matrix that is again given by a sandwich formula (Kukush
and Schneeweiß, 2005).
For the polynomial model first construct E(ξr|x) = µr(x), which is a polyno-
mial of degree r. The QS estimator is then found from the heteroscedastic
regression equation

y = β0 + β1µ1(x) + · · ·+ βkµk(x) + u

σ2
u = σ2

ε +
k∑

i=0

k∑
i=0

(µrs(x)− µr(x)µs(x)) βrβs

by applying an iteratively reweighted least squares procedures (Kukush et
al., 2001).
For the Poisson model (see Shklyar and Schneeweiss, 2005),

m(x; β) = exp(β0 + β1µ(x) +
1

2
β2

1τ
2)

v(x; β) = m(x; β) +
[
exp(β2

1τ
2)− 1

]
m2(x; β).
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6.3 The regression calibration (RC) estimator

The regression calibration estimator is even simpler to compute than the QS
estimator (see Carroll et al., 1995). One replaces the variable x in the naive
estimator by µ(x), which is the best linear predictor of ξ given x (Gleser,
1990).
Thus in the polynomial model, the RC estimator is the LS estimator of the
regression

y = β0 + β1µ(x) + · · ·+ βkµ(x)k + ε.

In the Poisson model, the RC estimator is the ML estimator of a Poisson
model with λ = exp{β0 + β1µ(x)}.
Unfortunately, the RC estimator is inconsistent in general, an exception being
the linear model, where RC=QS=CS. But in most cases the bias is greatly
reduced as compared to the naive estimator and often negligible (Wolf, 2004).

7 Efficiency comparison

In this section we compare CS and QS with respect to their relative efficien-
cies. Various results that have been found in the last years will be summarized
(Kukush and Schneeweiß 2005, Shklyar and Schneeweiss, 2005, Schneeweiss
and Cheng, 2005, Shyklar et al., 2005).
We assume that δ ∼ N(0, σ2

δ ) and ξ ∼ N(µξ, σ
2
ξ ). Thus we are in the struc-

tural case. In addition, a very general regression model of the exponential
family is assumed:

f(y|ξ) = exp

(
yλ− c(λ)

ϕ
+ a(y, ϕ)

)
, with λ = λ(ξ, β).

This model comprises the polynomial and the Poisson model as well as other
generalized linear models. Note that in this model m∗ = c′(λ) and v∗ =
ϕc′′(λ), which will be the basis for constructing the CS estimator, see Sec-
tion 5.1. Clearly, the ML estimator is the most efficient one. One might
speculate that QS is more efficient than CS, as the latter ignores the infor-
mation inherent in the distribution of ξ. However, this is not at all clear, as
QS is not ML. Nevertheless one can, indeed, prove that the presumption is
correct, i.e.: ΣML ≤ ΣQS ≤ ΣCS, at least as long as the nuisance parame-
ters µξ and σ2

ξ are given and need not be estimated. Thus if ML is avoided
because of its complexity, QS seems to be the estimator of ones choice.
But QS depends on the distribution f(ξ) of the latent regressor. If this dis-
tribution is misspecified, then β̂

QS
will typically be biased. Suppose the true
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distribution is a finite mixture of normals which cluster around the single
normal, erroneously assumed to be the true distribution, and suppose the
average distance ϑ of the modes (and the variances) of the mixture compo-
nents is small and tends to zero, then the misspecification bias of β̂

QS
is of the

order ϑ2. Therefore, in most cases, the bias is practically negligible. There
are, however, other forms of misspecification which are not that benign. In
any case, misspecification of the regressor distribution is a serious problem
with QS.
¿From that point of view, one might prefer CS as the more robust estimator.
Even more so, as for small measurement errors, QS and CS and also ML
become almost equally efficient anyway. More precisely:

ΣCS = ΣML + O(σ4
δ ), ΣQS = ΣML + O(σ4

δ ).

One can also compare CS and QS to the naive method (N). Of course, N is
biased. But according to a general rule of thumb one might surmise that the
bias of N is compensated by a smaller covariance matrix. Most often this is
true, but there are cases where Σ

CS
− Σ

N
is indefinite or where Σ

QS
< Σ

N
.

8 Survival Analysis

In survival analysis the time until a certain event occurs (‘survival time’) is
considered. The characteristic issue making survival analysis a separate area
of research is the problem of censoring: Typically not all survival times Ti,
i = 1, · · · , n, can be observed completely; for a subset of the units it is only
known that unit i is still alive at some censoring time Ci.

8.1 Measurement Error in Cox-type Models

Mainly two classes of regression models have been studied. The first one,
which is to due Cox (1972), relates the individual hazard rate λ(t|ξ) to the
covariates ξ and the regression parameter β according to the relationship
λ(t|ξ) = λ0(t) · exp(βξ). The so-called baseline hazard rate λ0(t) char-
acterizes the dynamic development of risk over time, and is assumed not
to depend on i, i.e., the hazards are proportional to each other. Most
often λ0(t) is seen as an unspecified nuisance function making the model
semiparametric. In particular in econometrics, also parametric versions are
of interest (e.g., Flinn and Heckman, 1982).

There are two classical papers on measurement errors in Cox-type models,
namely the work by Prentice (1982) and Nakamura (1992), both providing -
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to some extent - negative results. Prentice (1982), who relies on the structural
case, has shown that a simple likelihood-based correction along the lines
of Section 6.1 is not possible (see also Augustin and Schwarz, 2002): The
resulting induced relative risk has the form

λ(t|x) = λ0(t) · E(exp(βξ)|x, {T ≥ t}) . (1)

Via the event {T ≥ t} appearing in the conditional expectation, the second
factor depends on the previous history of the process, and so the character-
istic multiplicative form of the Cox model is lost. As a consequence partial
likelihood maximization, i.e., the usual estimation method for the Cox model,
can not be directly applied anymore.
However, as Prentice also argued, the effect of this time dependence can be
expected to be small if the failure intensity is very low. Under this so-called
rare disease assumption the condition {T ≥ t} is almost always satisfied,
and so (1) can be solved analytically for normal measurement errors. Then
the resulting estimator for β coincides with that obtained from regression
calibration, which moreover turns out to be the same as the naive estimator
multiplied by the simple deattanuation factor known from linear regression
(cf. Section 4). Pepe et al. (1989) discuss the accuracy of this approximation
(see also Hughes, 1993) and derive further results on handling (1) directly.
Further structural approaches are provided by Hu et al. (1998). In gen-
eral, structural approaches appear promising for dealing with Berkson er-
rors, which, for instance, occurs in cohort studies on exposure to risk factors
(Bender et al., 2005; Küchenhoff, et al., 2003).
The classical paper from the functional point of view is Nakamura (1992),
who tries to apply his general method of corrected score function (Nakamura,
1990; see also Section 5.1) to partial likelihood estimation. However, the par-
tial likelihood has a singularity in the complex plain, and so - according to
a general result from Stefanski (1989) - a corrected score function can not
exist. Nakumara (1992) therefore proposes to correct first and second order
approximations, instead. The resulting estimators behave not only well in
simulation studies, but, surprisingly, the estimator based on first order cor-
rection even turned out to be consistent (Kong and Gu, 1999). Moreover,
Kong et al. (1998) derive a corresponding correction of the cumulative base-
line hazard rate Λ0(t) :=

∫ t

0
λ0(u)du. Both results are extended in Kong and

Gu (1999) to the case of non-normal measurement error. Huang and Wang
(2000) suggest a nonparametric variant based on replication data.
A different justification of Nakamura’s method for the Cox model and related
work is provided by Augustin (2004). He shows that these seemingly approx-
imate corrections are exact corrections, indeed, arising in a straightforward
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manner when Nakamura’s original concept of corrected score function is ap-
plied to the so-called Breslow likelihood instead of partial likelihood. This
approach immediately extends to those proportional hazards models where
the baseline hazard rate is parameterized and to almost arbitrary measure-
ment error distributions.
Alternative functional correction methods include Buzas’ (1998) approach
and applications of the so-called conditional score principle in longitudinal
Cox models (see, in particular, Tsiatis and Davidian, 2004).

8.2 Accelerated failure time models

The second class of survival models assumes a linear relationship between the
log-survival time and the linear predictor: ln T = β0 + βξ + σε. This model
provides a superstructure upon the common parametric duration models like
the Weibull, log-logistic, log-normal and gamma model, which are obtained
by appropriate specification of ε. Recently, also the non-parametric variant,
where the distribution of ε is left unspecified, has experienced a renaissance.
Correction methods for the Weibull model under covariate measurement error
have been presented and compared by Gimenez, Bolfarine and Colosimo
(1999). Skinner and Humphreys (1999), Wolff and Augustin (2003) and
Augustin and Wolff (2004) discuss Weibull regression under error-prone or
heaped lifetimes.
The simple linear structure in the logarithm of T also suggests to use mean
and variance function models. Augustin (2002, (Chapter 5f.)) derives the
corresponding corrected estimating equations to adjust for measurement er-
rors, both from the structural as well as from the functional point of view.
The methods obtained allow for a unified treatment of all the commonly used
parametric duration models and are the first to handle measurement errors
in the covariates and lifetimes simultaneously. Censoring, however, needs ad-
ditional attention (cf. Augustin, 2002, Theorem 6.2.2), since the estimation
equations do not rely on the likelihood anymore.

9 Misclassification

Misclassification of categorical variables is another type of measurement er-
ror. As an example, consider a generalized linear model (GLM) for a di-
chotomous response variable y taking values 0 and 1 with

P(y = 1|x) = G(κ), κ = xβ
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and suppose the response y is occasionally misclassified as y∗. Then using y∗

instead of the unknown y in estimating β will produce a bias.
Define the misclassification probabilities

πij := P(y∗ = i|y = j, x) = P(y∗ = i|y = j),

where the second equality is a consequence of the nondifferentiality postulate.
If the πij are known (as, e.g., when misclassification is used as a masquing de-
vice to anonymize data, see Ronning, 2005), or if they can be estimated, (e.g.,
through a validation study, see Schuster, 1998), then consistent estimators
can be constructed. Just observe that

P(y∗ = 1|x) = π11G(κ) + π10(1−G(κ)) =: H(κ)

is again a GLM and can be estimated by conventional methods. For further
details see Hausman et al. (1998).
Recently Küchenhoff et al. (2005) developed a variant of the SIMEX method
(see Section 5.2) to be applied to models of the above kind and to more
complicated ones. By artificially contorting the data y∗ through further
misclassification and estimating the resulting models in a naive way, i.e.,
as if the data were not misclassified, one gets an idea of the amount of
bias due to misclassification. One can then extrapolate to the state of no
misclassification.

10 Concluding remarks

In this survey we restricted our presentation to parametric regression models
in explicit form. We should like to mention a few other approaches.
Functional relations between variables ξ1 and ξ2, say, can also be given in the
implicit form f(ξ1, ξ2; β) = 0. If instead of ξ1 and ξ2 we observe surrogates
x1 and x2 with additive measurement errors: xi = ξi + δi, i = 1, 2, and if the
error variances are known to be equal, then orthogonal, or total, least squares
(TLS) is the method of choice. TLS works nicely in linear models (Cheng
and Van Ness, 1999), but leads to biased estimation in nonlinear models. But
there is an asymptotic small-σδ theory (Fuller, 1987; Amemiya and Fuller,
1988). For the quadratic model, consistent estimators exist (Kukush et al.,
2004).
We mentioned that masquing of data can be seen as a method of adding
artificial measurement errors to the data. However these measurement errors
are often of a quite different type than those considered in this paper. In
particular, microaggregation is such a method, which may lead to biased
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regression estimators. In order to deal with this bias new methods have
been developed (Schmid et al., 2005a,b). A related field, deserving further
attention, is the analysis of rounding and heaping errors (e.g., Wolff and
Augustin, 2003).
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