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Abstract

We compare two consistent estimators of the parameter vector β of a general

exponential family measurement error model with respect to their relative

efficiency. The quasi score (QS) estimator uses the distribution of the re-

gressor, the corrected score (CS) estimator does not make use of this distri-

bution and is therefore more robust. However, if the regressor distribution

is known, QS is asymptotically more efficient than CS. In some cases it is,

in fact, even strictly more efficient, in the sense that the difference of the

asymptotic covariance matrices of CS and QS is positive definite.

Key words: Measurement errors, nonlinear regression, exponential family,

corrected score, quasi score, asymptotic efficiency.
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1 Introduction

We consider the following nonlinear measurement-error model. Let Y be a

random variable which has a p.d.f. (with respect to a σ-finite Borel measure)

belonging to the exponential family:

log f(y|ξ) =
yξ − C(ξ)

ϕ
+ c(y, ϕ), (1)

where ξ ∈ R is the canonical parameter and ϕ > 0 a dispersion parameter,

which may be known or unknown. The function C : R → R is supposed

to be sufficiently smooth. The parameter ξ is a function of some random

vector X and an unknown parameter vector β:

ξ = ξ(X,β).

The density of Y , as given above, is therefore a conditional density given X.

Note that the conditional mean of Y given X (i.e., the regression function)

is given by

E(Y |X) = C ′ [ξ (X,β)] . (2)

and the conditional variance (i.e., the residual variance of the regression) by

Var(Y |X) = ϕC ′′[ξ(X,β)]. (3)

We assume C ′′(ξ) > 0. It is the regression function which we want to

estimate, β being the parameter of interest. However, in a measurement

error model, X is unobservable. Instead we observe the surrogate vector

variable W , which is related to X via

W = X + U,

U being the (unobservable) measurement error. The random vector U is

supposed to be independent of (X, Y ).

The problem is to estimate β from a sample (Yi,Wi), i = 1, · · · , n, of ob-

servable data. We assume that the triples (Yi, Xi, Ui), i = 1, · · · , n, are

independent. We also assume that β lies in the interior of a compact sub-

space Θβ of Euclidian space.
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For this model there exist several consistent estimators of β if additional in-

formation on the distribution of X and U is available. Functional methods

only rest on the knowledge of the distribution of U . E.g., if U ∼ N(0, σ2
u),

σ2
u must be known. Among these methods the Corrected Score (SC) esti-

mation method is most prominent, cf. Stefanski (1989), Nakamura (1990),

Buonaccorsi (1996).

Structural methods use in addition knowledge of the distribution of X. E.g.,

if X ∼ N(µx, σ2
x), µx and σ2

x must be known. In principle, given the distri-

bution of U , the distribution of X can be estimated from the observation

Wi, i = 1, · · · , n, without resort to the model. Here however we assume

the distribution of X to be known. Among the structural methods the most

prominent one is the Quasi Score (QS) estimation method, cf. Gleser (1990),

Carroll et al. (1995).

It might be surmised that QS is more efficient that CS as it uses more

information. But this is by no means obvious, as QS, unlike ML, does not

use this information in a most efficient way. Nevertheless QS is quite popular

because it is often much simpler to compute than ML. It is therefore of great

interest to know whether QS is indeed more efficient than CS.

For the log-linear Poisson model this has been proved by Shklyar and

Schneeweiss (2005) and for the polynomial model by Shklyar et al. (2005).

Here we give a general proof.

In Section 2 and 3 we introduce the QS and CS procedures, respectively. A

new, so-called Simple Score (SS), estimator is introduced in Section 4. It

serves as an intermediate estimator in comparing the efficiency of QS and

CS. This comparison is elaborated in Section 5. Section 6 has some examples

of exponential family models. Section 7 studies a number of cases, where the

efficiency comparison can be strengthened to a strict efficiency comparison.

Section 8 contains some concluding remarks.
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2 The quasi score (QS) estimator

Let

m := m(W,β) := E (Y |W )

v := v(W,β, ϕ) := E
[
(Y −m)2 |W

]

We assume m and v to be sufficiently smooth. We can compute m and v from

the error-free regression function E (Y |X) and residual variance Var (Y |X),

see (2) and (3):

m = E
[
C ′(ξ)|W ]

(4)

v = Var[C ′(ξ)|W ] + ϕE[C ′′(ξ)|W ]. (5)

Estimation of β is performed with the help of an unbiased vector-valued

estimating (or: score) function. The QS score function is given by

SQ := (Y −m)v−1mβ. (6)

Here and hereafter, the subscript β stands for the derivative with respect to

β, i.e., mβ := ∂m
∂β . For any scalar function of β, its derivative is a column

vector of the same dimension as β. Obviously,

ESQ = E[E (SQ|W )] = E[E (Y −m|W ) v−1mβ] = 0,

and so SQ is indeed an unbiased estimating function. This score function

must be supplemented by another unbiased estimating function for ϕ. But,

for simplicity, we here assume that ϕ is known. The following results remain

true even if ϕ is unknown and has to be estimated, see below.

The QS estimator β̂Q is then found as the solution to the equation

n∑

i=1

SQ

(
Yi,Wi, β̂Q

)
= 0, β̂Q ∈ Θβ.

Under natural assumptions, cf. Kukush and Schneeweiss (2005), β̂Q exists

uniquely, is strongly consistent, and asymptotically normal with asymptotic
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covariance matrix (ACM) ΣQ given by the sandwich formula

ΣQ = A−1
Q BQA−>Q

AQ := −ESQβ := −E∂SQ

∂β>

BQ := VarSQ = ESQS>Q .

Note that, by convention, the derivative of a column vector valued function

k(β) with respect to β is always meant to be a matrix k
β

= ∂k
∂β> with

(i, j)-element ∂ki
∂βj

.

An easy computation shows that AQ = BQ = Ev−1mβm>
β and thus

ΣQ = (Ev−1mβm>
β )−1.

If ϕ is unknown and has to be estimated with the help of some score function

like, e.g., Sϕ = Y 2 −m2 − v or Sϕ = (Y −m)2 − v. Then β and ϕ have to

be estimated simultaneously. Nevertheless, the ACM of β does not change.

The proof of this assertion is essentially the same as given in Shklyar et al.

(2005).

3 The corrected score (CS) estimator

We start from the likelihood score function of the error-free model (1):

SML := Y ξβ − C ′ξβ.

The corrected score function is then given by

SC := Y g − h, (7)

where g = g(W,β), h = h(W,β) are (vector-valued) functions which are the

solutions to the deconvolution problems

E(g|X) = ξβ (8)

E(h|X) = C ′ξβ. (9)

Obviously,

ESC = E[E (Y g − h|Y, X)] = E
(
Y ξβ − C ′ξβ

)
= 0,
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and so SC is indeed an unbiased estimating function.

Similar to QS, the ACM of the CS estimator of β is given by

ΣC = A−1
C BCA−>C

AC := −ESCβ := −E∂SC

∂β>

BC := VarSC = ESCS>C .

AC turns out to be symmetric as will become clear during the course of

proving Lemma 1.

4 The simple score (SS) estimator

The SS score function is a simplified version of the QS score function. By

replacing in the latter the term v−1mβ with the function of the preceding

section, g, we get

SS := (Y −m)g.

The unbiasedness of SS is shown in the same way as for SQ. Under general

conditions, the SS estimator is consistent and asymptotically normal with

an ACM ΣS which again is given by a sandwich formula similar to those of

QS and CS.

According to the theory of score functions, cf. Heyde (1997), QS is optimal

within the class of all estimators with score functions of the form S =

(Y −m)a, where a := a(W,β, ϕ) is an arbitrary function. As SS is of this

form, we see that

ΣQ ≤ ΣS

in the sense of the Loewner order.

5 Efficiency comparison of SS and CS

We compare the A and B terms of the sandwich formulas for SS and CS.
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Lemma 1

AC = AS .

Proof. First start with CS. We have, by (7),

AC = −ESCβ = −E (
Y g

β
− hβ

)

= EE (hβ − Y gβ|W )

= Ehβ − Emgβ =: AC1 −AC2.

But, by (8) and (9),

E (hβ|X) =
∂E(h|X)

∂β>
= (C ′ξβ)β

= C ′′ξβξ>β + C ′ξββ ,

E (gβ|X) =
∂E (g|X)

∂β>
= ξββ .

(Here ξββ is short for ∂ξβ

∂β> = ∂2ξ
∂β∂β> ). Therefore,

AC1 = Ehβ = EE(hβ|X)

= E
(
C ′′ξβξ>β + C ′ξββ

)

and

AC2 = Emg
β

= E[E(C ′|W )gβ]

= EE
(
C ′gβ|W

)
= EC ′gβ

= EE
(
C ′gβ|X

)
= E[C ′E (gβ|X)]

= EC ′ξββ .

Thus

AC = EC ′′ξβξ>β .

As to SS,

AS = −ESSβ = Egm>
β

= E[gE
(
C ′

β|W
)>] = EgC ′′ξ>β

= EE
[
gC ′′ξ>β |X

]
= EE (g|X) C ′′ξ>β

= EξβC ′′ξ>β = EC ′′ξβξ>β

= AC ,

which proves the lemma.¦
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Lemma 2

BS ≤ BC .

Proof. For CS we have

BC = ESCS>C

= EE
[
{(Y −m)g + (mg − h)}{(Y −m)g + (mg − h)}>|W

]

= Evgg> + E (mg − h) (mg − h)> . (10)

For SS we have

BS = ESSS>S = E (y −m)2 gg>

= EE
[
(Y −m)2gg>|W

]

= Evgg>.

Obviously BS ≤ BC , which proves the lemma.¦

Lemma 1 and Lemma 2 imply that ΣS ≤ ΣC . Together with the result of

Section 4 we can now maintain

Theorem

ΣQ ≤ ΣS ≤ ΣC .

The theorem states that QS is more efficient than CS, and SS is intermediate

between the two.

6 Examples

In this section we present a few examples of exponential-family models with

measurement errors and show how CS and QS estimators can be constructed,

see also Carrol et al. (1995). Explicit solutions can often be found under

the following normality assumption:

(N) X and U are independent random variables and X ∼ N(µx, σ2
x),

U ∼ N(0, σ2
u).

8



6.1 Gaussian regression model

Consider Y ∼ N(µ, σ2) with µ = q(X, β), q being the regression function.

Then ξ = µ and ϕ = σ2. We have C(ξ) = 1
2ξ2, C ′(ξ) = ξ.

For QS we need to construct, according to (4) and (5),

m(W,β) = E[q(X,β)|W ]

v(W,β, σ2
ε ) = V[q(X, β|W ] + σ2

ε ,

and for CS we need to find functions g and h, see (8) and (9), such that

E[g(X,β)|X] =
∂q(X,β)

∂β

E[h(X,β)|X] = q(X,β)
∂q(X,β)

∂β
.

For a polynomial model (which includes the linear model as a special case),

all these functions are easy to compute under (N), cf. Kukush et al. (2005).

An efficiency comparison for polynomial models has been carried out by

Shklyar et al. (2005).

6.2 Loglinear Poisson model

Consider Y ∼ Po(λ) with λ = exp(β0 + β1X).

Then ξ = log λ and ϕ = 1. We have C(ξ) = C ′(ξ) = eξ.

For QS we have, under (N),

m(W,β) = exp{β0 + β1µ(W ) +
1
2
β2

1τ2}
v(W,β) = m2(W,β){exp(β2

1τ2)− 1}+ m(W,β),

where

µ(W ) := E(X|W ) = W − σ2
u

σ2
w

(W − µw), (11)

τ2 := V(X|W ) = σ2
u −

σ4
u

σ2
w

. (12)
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For CS we find, when U ∼ N(0, σ2
u),

g = (1,W )>

h = −ed(1,W − σ2
uβ1)>,

where d = β0 + β1W − 1
2β2

1σ2
u.

For details see Kukush et al. (2004), and for an efficiency comparison see

Shklyar and Schneeweiss (2005). In the latter paper a different SS estimator

was used than in the present paper, which led to a much more complicated

proof of the superiority of SS over QS; the present proof is simpler.

6.3 Loglinear Gamma model

Consider Y ∼ G(µ, ν), i.e.,

f(y) =
1

Γ(ν)
(
ν

µ
)νyν−1 exp(−ν

µ
y), y > 0,

with µ = exp(β0 + β1X). (In the special case ν = 1, we have the loglinear

exponential model.)

Here ξ = − 1
µ and ϕ = 1

ν . We have C(ξ) = − log(−ξ), C ′(ξ) = −1
ξ .

For QS we need to compute

m(W,β) = E[exp(β0 + β1X)|W ]

v(W,β, ν) = (1 +
1
ν

)E[exp(2β0 + 2β1X)|W ]

−{E[exp(β0 + β1X)|W ]}2.

Under (N) these become (in a similar way as in Section 6.2)

m(W,β) = exp{β0 + β1µ(W ) +
1
2
β2

1τ2}

v(W,β, ν) = (1 +
1
ν

) exp{2β0 + 2β1µ(W ) + 2β2
1τ2}

− exp{2β0 + 2β1µ(W ) + β2
1τ2}.

10



For CS we need to find functions g and h such that

E[g(W,β)|X] = exp(−β0 − β1X)(1, X)>

E[h(W )|X] = (1, X)>.

Under (N) these become

g(W,β) = exp(−β0 − β1W − 1
2
β2

1σ2
u)(1, W + β1σ

2
u)>

h(W ) = (1,W )>.

6.4 Logit model

Consider Y ∼ B(1, π), i.e.,

f(y) = πy(1− π)1−y , y ∈ {0, 1},

with π = {1 + exp(−β0 − β1X)}−1.

Here ξ = log( π
1−π ) and ϕ = 1. We have C(ξ) = log(1 + eξ) and C ′(ξ) =

(1 + e−ξ)−1.

For QS we need to construct

m(W,β) = E[{1 + exp(−β0 − β1X)}−1|W ]

v(W,β) = m(W,β){1−m(W,β)}.

There is no closed form expression for m(W,β), even under (N). The ex-

pected value has to be computed by numerical integration, Crouch and

Spiegelman (1990), Monahan and Stefanski (1992). However, a possible

way out is to use a probit model as an approximation to the logit model.

Indeed, it is well-known that the logistic function (1 + e−x)−1 is closely ap-

proximated by Φ(x/c), where Φ is the standard normal distribution function

and c = 1.70, cf. Johnson and Kotz (1970, Chapter 22). Thus assume that

π = Φ{1
c (β0 + β1X)}. Then, under (N),

m(W,β) = Φ




1
c (β0 + β1µ(W )√

1 + 1
c2

β2
1τ2


 .
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So the conditional model, given W , is again a probit model and can be

estimated by standard methods, one possibility being that it is again ap-

proximated by a logit model.

For CS, again with π following the logit model, we need to find functions g

and h such that

E[g(W )|X] = (1, X)>

E[h(W,β)|X] = {1 + exp(−β0 − β1X}−1(1, X)>

Obviously g(W ) = (1,W )>. But, according to Stefanski (1989), h(W,β)

does not exist in general. However, if (β0, β1, X) can be restricted such

that β0 +β1X > 0 (sometimes known as “rare event” restriction, Buzas and

Stefanski (1996)), then a corrected score function exists. It can be evaluated

with the help of a Taylor series expansion of the logistic function.

Indeed, with z = β0 + β1x,

(1 + e−z)−1 =
∞∑

k=0

(−1)ke−kz,

which is absolutely convergent if, and only if, z > 0. The function h is then

given by

h =
∞∑

k=0

(−1)k exp{−k(β0 + β1W )− k2

2
β2

1σ2
u}

(
1

W + kβ1σ
2
u

)
.

This is a consequence of the identities

E[eaW |X] = exp(aX +
1
2
a2σ2

u)

E[WeaW |X] = (X + aσ2
u) exp(aX +

1
2
a2σ2

u),

see also Buzas and Stefanski (1996).

We cannot compare CS and QS for the logit model because these two meth-

ods cannot be considered under the same assumptions. It should be men-

tioned that a method different from CS exists, which does not need any

restrictions on (β0, β1, X); this is the method of conditional scores, cf. Ste-

fanski and Caroll (1987, Section 6.4).
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7 Strict inequalities

In this section we study conditions under which the order relation ≤ in our

theorem can be supplemented by an inequality 6= or replaced by a strict

ordering <, in the sense that the difference of the ACMs is positive definite

and not only positive semi-definite. We focus on a comparison of ΣS and

ΣC . The relations ΣS 6= ΣC and ΣS < ΣC imply the corresponding relations

ΣQ 6= ΣC and ΣQ < ΣC , respectively. We investigate some special cases,

where such relations can be derived. Except for Corollary 1, we adopt

assumption (N) of Section 6 throughout.

7.1 Inequality under the generalized polynomial model

From the proof of Lemma 2 (cf. (10)) it is clear that ΣS = ΣC if, and only

if, mg − h = 0 as a (vector-valued) function of W .

The generalized polynomial model is a special case of our exponential family

model with

ξ = β0 + β1X + . . . + βkX
k = β>ρ(X),

where β := (β0, β1, . . . , βk)> and ρ(X) := (1, X, . . . ,Xk)>.

The functions g and h of (8) and (9) are given by

E(g|X) = ρ(X) (13)

E(h|X) = C ′(ξ)ρ(X). (14)

Let β−0 = (β1, . . . , βk)T . We have the following corollaries to our theorem.

Corollary 1

In the generalized polynomial model, β−0 = 0 implies ΣS = ΣC .

Proof. β−0 = 0 implies ξ = β0 and therefore m = C ′(β0) and h = C ′(β0)g.

Hence mg − h = 0 and ΣS = ΣC .¦

13



Corollary 2

In the generalized polynomial model under (N), the condition β−0 6= 0 im-

plies ΣS 6= ΣC under the additional condition that |C ′(t)| ≤ c0(1 + |t|)q for

some constant c0 and some q > 0.

Proof. Suppose ΣS = ΣC . Then mg−h = 0, which implies E(mg−h)|X) ≡
0. Consider the first component, α0 = α0(X), of E(mg − h|X), which then

must also be zero. The first components of g and E(h|X) are, respectively,

1 and C ′(ξ), see (13) and (14). Therefore, by the definition of m, see (4),

α0 = E
[
E{C ′(ξ)|W}|X]− C ′(ξ).

To evaluate E[C ′(ξ)|W ] = E[C ′(βT ρ(X))|W ], recall that under (N)

X|W ∼ N(µ(W ), τ2)

with µ(W ) and τ2 from (11) and (12). For simplicity write µ(W ) = a+ bW ,

where 0 < b < 1. Then

X = a + bW + τV0,

where V0 ∼ N(0, 1) and V0 is independent of W . Thus

E[C ′(ξ)|W ] = E[C ′{β>ρ(a + bW + τV0)}|W ].

Clearly, we can replace V0 in this expression by a variable V1 with the same

distribution as V0 but being independent not only of W but also of (W,X).

We can then write

E[C ′(ξ)|W ] = E[C ′{β>ρ(a + bW + τV1)}|W,X]

and consequently

E[E{C ′(ξ)|W}|X] = E[C ′{β>ρ(a + bW + τV1)}|X].

With W = X + U , we finally get

α0 = E[C ′{β>ρ(a + bX + V )}|X]− C ′(β>ρ(X)), (15)

where V := bU + τV1 ∼ N(0, b2σ2
u + τ2). Now by Lemma A of the appendix

α0 ≡ 0 implies, under the condition of the corollary, that C ′(ξ) is a constant.

But, because of β−0 6= 0, ξ varies on an interval and therefore C ′′(ξ) = 0,

which contradicts the model assumption C ′′(ξ) > 0. Therefore ΣS = ΣC

cannot be true.¦
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7.2 Strict inequality in the generalized linear model

From the proof of Lemma 2 it follows that ΣS < ΣC if, and only if, the

components of mg − h are linearly independent functions of W .

We note that for a Gaussian polynomial model, see Section 6.1, the function

m and the components of g and h are polynomials in W . By comparing

their degrees one can show that if β−0 6= 0, the components of mg − h are

linearly independent, proving that ΣS < ΣC , see Shklyar et al. (2005).

We now specialize to the case of a generalized linear model (GLM), which

is characterized by ρ(X) = (1, X)> and ξ = β0 + β1X.

Corollary 3

In a GLM under (N) with C(ξ) being a polynomial in ξ of degree p ≥ 2,

β1 6= 0 is necessary and sufficient for ΣS < ΣC .

Proof. Necessity follows from Corollary 1.

In general, a sufficient condition for ΣS < ΣC is that the components of

E[(mg − h)|X] are linearly independent functions of X.

In the GLM, we have, by (13) and (14), g = (1,W )T and E(h|X) =

C ′(ξ)(1, X)> and hence, by (4),

E[mg − h|X] = E[E{C ′(β0 + β1X)|W}(1, W )>|X]

−C ′(β0 + β1X)(1, X)>.

The first component of this vector is just α0 of (15), which here becomes

α0 = E[C ′{β0 + β1(a + bX + V )}|X]− C ′(β0 + β1X). (16)

Similarly, the second component can be evaluated as

α1 = E[(X + U)C ′{β0 + β1(a + b(X + U) + τV1)}|X]−XC ′(β0 + β1X).(17)

The first term on the r.h.s can be further reduced with the help of what is

sometimes called Stein’s Lemma, Stein (1981):
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If U ∼ N(0, σ2
u) and f is any function and f ′ its derivative, then E[Uf(U)] =

σ2
uEf ′(U), provided the expectations exist.

Applying this lemma to (17), we get

α1 = X{E[C ′(β0 + β1(a + bX + V ))|X]− C ′(β0 + β1X)}
+σ2

uβ1bE[C ′′{β0 + β1(a + bX + V )}|X], (18)

where we used V = bU + τV1. Now suppose C is a polynomial in ξ of degree

p ≥ 2 and β1 6= 0. Then α0 is a nonvanishing polynomial in X (see the

proof of Corollary 2) of degree r, say, and α1 is a polynomial of degree r+1.

Therefore α0 and α1 are linearly independent as functions of X.¦

Another GLM is the log-linear Poisson model, see Section 6.2, which is

characterized by C(ξ) = eξ and ξ = exp(β0 + β1X). For this model we can

state the following corollary, see also Shklyar and Schneeweiss (2002).

Corollary 4

In the log-linear Poisson model under (N), ΣS < ΣC if β1 6= 0.

Proof. With C(ξ) = eξ and V ∼ N(0, σ2
v) we have

E[C ′{β0 + β1(a + bX + V )}|X] = eβ0+β1(a+bX)e
β2
1σ2

v
2

and the same for C ′′ in place of C ′. We therefore find for the two components

of E(mg − h|X), see (16) and (18):

α0 = D1e
β1bX −D2e

β1X

α1 = XD1e
β1bX −XD2e

β1X + D3e
β1bX

with some constants D1, D2, D3 6= 0. As the functions eβ1bx, eβ1x, xeβ1bx, xeβ1x

are linearly independent it follows that α0 and α1, are also linearly indepen-

dent. This implies ΣS < ΣC .¦
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7.3 Strict inequality in an exponential polynomial model

In this subsection we investigate an exponential polynomial model of the

following kind:

Y =
k∑

j=0

βje
λjX + ε, (19)

ε ∼ N(0, σ2
ε ), λ0 = 0 < λ1 < . . . < λk.

The λi are real numbers. (Imaginary numbers λi lead to a trigonometric

polynomial and can be treated in a similar way.) Here C(ξ) = 1
2ξ2, and

ξ = βT ρ(X), where now ρ(X) := (eλ0X , . . . , eλkX)> and β = (β0, . . . , βk)>

as before.

By an extension of Corollary 1 to the present model, β−0 = 0 implies ΣS =

ΣC . The converse is stated in the following corollary.

Corollary 5

In the exponential polynomial model (19) under (N), ΣS < ΣC if β−0 6= 0.

Proof. We have to show that the components of E[mg − h|X] are lin-

early independent if β−0 6= 0. Let us find g, which has to satisfy (13) with

the new ρ. Due to the identity

E[exp(λiW − 1
2
λ2

i σ
2
u)|X] = exp(λiX), i = 0, . . . , k, (20)

we can satisfy (13) if we take

g(W ) = Kρ(W ),

where K = diag(k0, k1, . . . , kk), ki := e−
1
2
λ2

i σ2
u . Therefore, by (2),

E[mg|X] = KE[ρ(W )E(
k∑

0

βje
λjX |W )|X].

By similar arguments as in the derivation of (15), we can write

E[mg|X] = KE[ρ(X + U)
k∑

0

βj exp{λj(a + bX + bU + τV1)}|X],
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where V1 ∼ N(0, 1) is independent of (X, U). As in Section 7.1, let V :=

bU + τV1. Then, owing to the joint normality of (U, V ),

U = γ0V + γ1U1,

where U1 ∼ N(0, 1) is independent of V . We thus can write

E(mg|X) = KE[ρ(X + γ0V + γ1U1)
k∑

0

βj exp{λj(a + bX + V )}|X].

Taking expectations with respect to U1, keeping V and X fixed, we get for

the i-th component ai of E[mg|X]

ai = kie
1
2
λ2

i γ2
1eλiXE[eλiγ0V

k∑

0

βj exp{λj(a + bX + V )}|X].

Taking expectation with respect to V , we get

ai = kie
1
2
λ2

i γ2
1eλiX

k∑

0

βj exp{λj(a + bX) + (λiγ0 + λj)2
σ2

v

2
}

=
k∑

0

βjrije
(λi+bλj)X , (21)

where

rij = ki exp{λ2
i

2
γ2

1 + λja +
σ2

v

2
(λiγ0 + λj)2}.

The vector E(h|X) satisfying (14) is given by

E[h[X] = {β>ρ(X)}ρ(X)

and its i-th component by

bi :=
k∑

j=0

βje
(λi+λj)X , i = 0, . . . , k. (22)

The components of E(mg− h|X) are ai− bi, i = 0, . . . , k. Consider a linear

combination of these components

l =
k∑

i=1

zi(ai − bi)

with at least one zi 6= 0. Let m be the maximum index such that zm 6= 0,

0 ≤ m ≤ k. As β−0 6= 0, there is a maximum index p such that βp 6= 0,

18



1 ≤ p ≤ k. By (21) and (22), l is a linear combination of terms of the form

e(λi+λj)X and e(λi+bλj)X . The term with the largest exponent is

zmβpe
(λm+λp)X , λp > 0,

which cannot be cancelled by any of the other terms of l because all of them

have smaller exponents. Therefore l 6≡ 0 for any vector (z0, z1, . . . , zk) 6= 0,

and the ai − bi are linearly independent. This proves the corollary.¦

8 Conclusion

We proved for a general nonlinear measurement-error model of the expo-

nential family type that the quasi score estimator is more efficient than the

corrected score estimator in the sense that ΣC−ΣQ is positive semi-definite.

In a number of important cases we can even say that this difference is posi-

tive definite.

This does not mean that QS is to be preferred under all circumstances. QS

uses the distribution of X, which should be known, whereas CS does not

need the knowledge of this distribution. The simplicity of the QS procedure

is only guaranteed if the distribution of X is in some sense simple, e.g., if

it is a Gaussian distribution as assumed in parts of this paper or a mixture

of Gaussians. But more importantly, QS is a biased method if the wrong

distribution for X has been used, cf. Schneeweiss and Cheng (2003). CS

does not have that kind of bias. In this sense CS is more robust than QS and

might therefore be preferred to QS when it is uncertain what distribution

for X can be reasonably assumed.

Another drawback of QS is that even if the type of distribution of X is

known, there are still a number of unknown parameters of this distribution,

which have to be estimated before QS can be applied. Here we assumed

these nuisance parameters known. But in case they have to be estimated,

the ACM of QS will be larger than given in this paper, thus reducing its

relative efficiency.

Furthermore, let us note that for small error variance σ2
u, CS and QS (and
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also SS) have approximately the same ACM even if nuisance parameters

have to be estimated. More precisely, ΣQ − ΣC = O(σ4
u), cf. Kukush and

Schneeweiss (2005).

Finally let us refer to an unsolved problem. We know (and we used this

fact) that QS is optimal within a special linear class of score functions, cf.

Heyde (1997). It seems plausible that a similar result might hold for CS.

Appendix

Lemma A

Suppose f : R→ R is a continuous function such that |f(x)| ≤ C1(1 + x2)q

with some constant C1 and some positive q. Let V ∼ N(0, α2) and let

a, b ∈ R, 0 < b < 1. Then the equation

Ef(a + bx + V ) ≡ f(x) (23)

implies that f(x) is independent of x.

The condition on f implies that f ∈ S′(R), the space of slowly growing

generalized functions, cf. Vladimirov (1979).

Proof. Equation (23) can be written in the form

f(x) ∗ ϕ(x) = f(
x− a

b
) =: fab(x),

where ϕ(x) is the density of N(0, α2) and ∗ is the convolution sign. (Note

that ϕ ∈ S(R), the space of quickly decreasing basic functions). Taking

Fourier transforms, this translates into

f∗(y)ϕ∗(y) = f∗ab(y),

where the Fourier transforms f∗ and f∗ab are generalized functions from

S′(R), cf. Vladimirov (1979). Owing to the identities

ϕ∗(y) = e−
α2y2

2

f∗ab(y) = bf∗(by)eiay,
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we have

f∗(y)e−
α2y2

2 = bf∗(by)eiay

or, using the substitution t = by,

f∗(t) =
1
b
f∗(

t

b
)e−

α2t2

2b2 e−i at
b .

Repeated substitution of the l.h.s. in the r.h.s. yields for m = 1, 2, . . .,

f∗(t) =
1
bm

f∗(
t

bm
) · e−α2t2

2
( 1

b2
+···+ 1

b2m ) · e−iat( 1
b
+···+ 1

bm )

=
1
bm

f∗(
t

bm
) exp{c1

t2

b2m
(1− b2m) + c2

t

bm
(1− bm)},

where c1 := − α2

2(1−b2)
and c2 := − ia

1−b are constants. Let g ∈ S(R) and let

f∗ act on g:

〈f∗(t), g(t)〉
= 〈 1

bm
f∗(

t

bm
) exp{c1

t2

b2m
(1− b2m) + c2

t

bm
(1− bm)}, g(t)〉

= 〈f∗(z) exp{c1z
2(1− b2m) + c2z(1− bm)}, g(bmz)〉,

where we used the transformation t = bmz. Letting m tend to infinity, the

last expression becomes

〈f∗(z) exp{c1z
2 + c2z}, g(0)〉 = C2g(0)

with some constant C2. Thus f∗(t) = C2δ(t), δ being the Dirac (general-

ized) function.

But this means that f(x) is a constant, cf. Vladimirov (1979).
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