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Abstract

The asymptotic covariance matrices of the corrected score, the quasi score,
and the simple score estimators of a polynomial measurement error model
have been derived in the literature. Here some alternative formulas are pre-
sented, which might lead to an easier computation of these matrices. In
particular, new properties of the variables ¢, and u, that constitute the esti-
mators are derived. In addition, the term in the formula for the covariance
matrix of the quasi score estimator stemming from the estimation of nui-
sance parameters is evaluated. The same is done for the log-linear Poisson
measurement error model.

1 Introduction

Despite the many results that have been found in recent years on the esti-
mation of regression coefficients of a polynomial model with measurement
errors in the covariable, cf., e.g., Cheng and Schneeweiss (1998), Cheng and
Schneeweiss (2002), Kukush et al. (2005b), Kukush and Schneeweiss (2005),
Shklyar et al. (2005), some issues concerning the computation of estimators
and their asymptotic covariance matrices (ACM) are still open to investiga-
tion. Although the polynomial model is the main subject of this paper, the
log-linear Poisson model with measurement errors is dealt with, too. Again,
despite the work of Kukush et al. (2004) and Shklyar and Schneeweiss (2005),
there are still a few properties of the estimators of this model, which have
not yet been sufficiently investigated.



The plynomial measurement error model is given by the regression equation
y=C"B+e,

with ¢T = (1,&,---,€5), 8= (60,61, . B) ", Be = 0, Ve = 02, ¢ and ¢

independent, and the measurement equation
r=E+0,

§ ~ N(0,0%) being the measurement error, which is independent of £ and €. It
is assumed that 0§ is known. In addition, we here assume that & ~ N (pe, 02).
The problem is to estimate § from an i.i.d. sample (z;,v;),i=1,--- ,n.

In addition to the naive(N) estimator, we consider two consistent estimators:
the (structural) quasi score (QS) and the (functional) corrected score (CS)
estimator. The first one utilizes the distribution of £, the latter one does not.
Both methods are based on a transformation of the powers z] of the data x;
into new (artificial) data, p,.(z;) for QS and t,(x;) for CS.

The first issue of this paper is to explore some, up to now unknown, properties
of the variables u, and ¢, and to reveal a peculiar duality between them.
Another issue is to transform the formulas for the ACMs and their small-o
approximations so that they become easier to compute, possibly with the
help of a matrix oriented programming language. In particular, they should
be written in terms of the observable variable z instead of the unobservable
&. An important point in this respect is the evaluation of the terms in the
ACM of QS that stem from the estimation of the nuisance parameters j and
ag. Contrary to what one might conclude from the original form of the ACM
in Kukush et al. (2005b), it turns out that these additional terms can be
computed without any integration (although integration remains necessary
to compute the main term of the ACM formula).

Shklyar et al. (2005) have studied a simplified version of the QS estimator,
the so-called simple score (SS) estimator. Two equivalent formulas for its
ACM are presented. The ACM formula has the same term originating from
the estimation of the nuisance parameters as the ACM of QS.

If this term is ignored (i.e., if the nuisance parameters are taken to be known),
the difference of the ACMs of the CS and SS estimators is p.s.d., c¢f. Shklyar
et al. (2005). It is an open question whether this is still true if the nuisance
parameters have to be estimated.

As to the log-linear Poisson measurement error model, there is no need to

repeat the ACM formula for the CS estimator, which is well documented in
Shklyar and Schneeweiss (2005). The ACM of the QS estimator can only be
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given in an implicit form (i.e., as an integral). The SS estimator of Shklyar
and Schneeweiss (2005) has been derived via an ad hoc approach. There is,
however a more general model from which an SS estimator can be developed.
This has been done by Kukush et al. (2005a). Therefore the SS estimator for
the Poisson model is now constructed on the basis of this last paper, and its
ACM is derived. Finally, the contribution of the estimation of the nuisance
parameters to the ACM of QS and SS is found. It is shown that it is the
same for QS and SS and, indeed, for a general class of structural estimators,
just as in the case of the polynomial measurement error model.

In Section 2, the variables u, and ¢, are investigated. More results on deriva-
tives of the p, are found in Section 3. Section 4 deals with the ACM of the QS
estimator in the polynomial model and in particular with the terms resulting
from estimating the nuisance parameters. Section 5 has a reformulation of
the ACM of the CS estimator, and Section 6 deals with the SS estimator.
Section 7 discusses efficiency problems. Some new results for the Poisson
model are found in Section 8. Section 9 has some concluding remarks.

2 QS and CS: The variables yu, and ¢,

The QS estimator BQ of the polynomial measurement error model is based
on the quasi score function

vy, z,8) = (y—p' B u,

where p := E((|x) =: (uo, g1, -+, x) " and v := V(y|z). The elements of
the conditional mean vector pu, u, = E({"|z), are polynomials in x of degree
r. o =1 and pu; = py(z) = E({|x) is given by

2 2
_ 05 05
e (230 .

The other p, are polynomials of p; of degree r, c.f. Thamerus (1998):

= Z ( ;) i (2)

with

0 if j isodd

Fi= Y (=1 if j is even (3)



= Vi) = of (1-2). (1)

where (j — 1)!! is short for 1-3-5---(j — 1) and (—1)!! = 1. The conditional
variance v is given by

v=0. 43" (M —pu") B, (5)

where M = M(z) is a (k4 1) x (k + 1)-matrix with elements M,s = fi,4s,
r,s = 0,---,k. Note that the u,(x;) can be computed from the data z; if

the nuisance parameters j, and o2 are given. Typically they are unknown

and must be estimated from the data x; in the usual way.

The CS estimator BC is based on the corrected score function

¢C(y7xuﬁ) - yt_Tﬁ?

where t = t(z) is such that E(¢|¢) = (. Thus t = (to,t1,...,t;) and
E(t.|§) =& T =T(x)isa (k+1) x (k+1)-matrix with elements T,; = ¢, .
The t, are polynomials in x of degree r. They can be computed via the
recursion formula, cf. Stefanski (1989) and Cheng and Schneeweiss (1998),

tr =tx —rt,_j05; to=1, t,=0. (6)

Note the duality in the definitions of x and ¢:

p=E(Clr), E(f¢)=¢

and also in the matrices M and T

M =E((" ), E(Tlg) =¢¢'

This duality reaches farther. It turns out that, although the defining formulas
(2) and (6) for p and t, respectively, are quite different, there are other ways
of computing p and ¢, which very much resemble (2) and (6), but with the
role of p and t interchanged.

Proposition 1
The variables u, can be computed via the recursion formula

Hrg1 = frfl1 + 7“/~6r—1T2, po=1, p-1=0. (7)



Proof: According t

O
r41
Hr+1 = Z

(2)
7“+1 r .
< ) +1— J,uj
rH1—j % - r rHl-j %
+ .
1(,] )/"Ll /“’L] '_0(‘])#’1 H’]

- (j)”u;+1+z ")

Jj=0

I
S .
M+ I
=)

.
= |l

In the second equation we used the identity

(le) <3i1)+(§-)7 1<j<r

Now again by (2), the r.h.s. of the recursion formula (7) is

r r—1
r r N r—1 r N
Z<j)N1+IJ“3+TZ( ; )Mlljlu]z

=0 =0
r+l=j x r—1—j7 x
= Z<]) pi +Z(J+1)M1 jﬂj+2
=0
= Z(]) r+1—j *+Z< ) j,u;-i-l:,urﬂrl'
=0

In the second equation the identity,

(j + 1)”5;7—2 = /’I’;+27
see (3), was used and in the third equation the fact that ui = 0.4

Remark: The proof is similar to the proof of (6) as given in Cheng and
Schneeweiss (1996).

Proposition 2
t, can be computed via the closed form formula

- B ()

Jj=0

0 if j isodd

i = Y G—D(=1)kel it j iseven.



Proof: If we replace u,, jt1, and 77 with ¢.,  and (—1)%0§, respectively,
(7) changes to (6) and (2) changes to (8). By Proposition 1, (7) follows from
(2), and so (6) follows from (8). But as (6) defines the ¢, uniquely, the ¢,
defined by (6) must be the same as those defined by (8).4

The great similarity in the construction of the variables p, and ¢, can also
be seen by looking at its values, e.g.:

o=, =T s =g 37, e = g+ 677 + 37
and

th=x, ty=2x>—03 t3=2a°—302x, t,=2a"— 602"+ 30}

3 Derivatives of y,

By (2) and (3) u, is a function of y; and 72. We can derive formulas for the
derivatives of u, with respect to p; and 72, which will be usefull later on.

Proposition 3

Oty

= r—1; > 1 9
o Ppy—1, T (9)
oy r
92 = ( 5 ) fr—gy T > 2. (10)

Proof: Instead of (9), we will prove the stronger proposition

M1
fr = 7“/ fr—1dpin + p.
0

Indeed, by (2) the r.h.s of this equation equals

r—1

" r—1 x r—1—j *
' /0 Z( j )“jul”dmwr
=0



which is equal to u, by (2).
To prove (10), first note that by (3) for j even, j > 2,

oT? 1!
(D ()

Now from (2) and the previous equation, for r > 2,

a:ur - r j * r—j
87-2 = Z ( j ) ( 92 ):uj—Zl’Ll !
j=

2
r—2
T r—2 . T2 T
B (2) ( j )“ﬂ"“ L(?)“’"“

By stacking the formulas (9) and (10), respectively, for r = 0, ...,

k, we

can now give corresponding expressions for the vector u. We introduce the

(k+1) x (k+ 1) triangular band matrices

0
10
D, = 2 0
k0
0
0 0

and note that

(11)

(12)



Proposition 3 then, translates immediately into.

Proposition 4

0]

a—:l = Dip (13)

o

92 Dy (14)
Finally we also have
Proposition 5

0
g, = (D=7Dhu (15)

with D := diag(0,1,2,...,k).

Proof: First note that by Proposition 1

M1 0
M2 Ho
Uit = M3 — 72 211
k41 K pur—1

The last vector equals D;u, and the first vector on the r.h.s multiplied by
Dy equals Dy. Therefore

0
Mla_:l = Dypupp = D — 72 D3 1. 4

4 The ACM of QS

According to Kukush et al. (2005b), the ACM of BQ is given by

2
Yo = EBo pp" )+ (Bo ) THoZ P + S FFy ) (Bv )™ (16)
O-.CE
where
o’ 1
F,=Ev! =1,2 = iy = —.
p = v ua%ﬁ, p=L12 m=ia m=—5

T




The F-terms stem from the estimation of the nuisance parameters. The
purpose of this section is to evaluate these terms so that they become com-
putationally more accessible. It turns out that it is not necessary to compute
the expected value as prescribed in the definition of F},.

Proposition 6
The ACM of 3¢ equals

Y = (Bo ' pu") M+ F, (17)
where

F = 03(G{B8"G1+2G, 33" Gy)

1
Gl - _Dl
Oy
1 2
G2 = 0'320—0'(% (MXDl—D+T Dg)

Proof: As yu is a function of y; and 72, we have

o Op O N op or?
Oy, Oy Oy, 01207,

p=1,2.

For p =1 and p = 2, we find because of (1) and (4)

o _ Ona;
oM B Oy o
op | 9p o 5|
872 - |:8,u1(:u’$ .ﬁ(}') 87_20-5 Os-
With
0.2
Mm_xzag_U(%(,ux_Ml)a

which follows from (1), the latter becomes

O _ 00 or Ok
372_ ’ 3#103—0(? fr =i or2 |’

Finally, by (13) to (15),

0 o? o2
a_,u = —ZDW = 2Gip
71 Oz Oz
o a3 U—g(/lxDl —D+7°D})p — 05 Dopu | -
02 02 — o3



Because of (12) and (4), the latter becomes

o 2 0% 2 2 2
9, — % 2 2 (HoD1 = D + 7" Do) = 050,Gop.

We thus have

o2

P o= 2Eo'up' Gl

Oz
Fy = o3o?Bv'uu' Gy 3.

By substituting F; and Fy in (16) we finally obtain (17).4

For k = 2 the two matrices G; and G5 are, respectively,

L (000
G = —|l 100 (18)
92\ 0 2 0
. 0 0 0
Gy = —— | m -1 0 . (19)
9o 795 \ 12 2u, —2

For small o} an approximation to ¥g can be derived. The general formula
in Kukush and Schneeweiss (2005) can be specialized to the polynomial case
and yields

Y = 0AEZ)™

927 \? 10°Z 02027
2 —1 et 2 - = i —1
+05(EZ) E{(ax 6) Z +o; (28m2+8x 81)}(182)
+0(0y),

where z := (1,z,...,2%)" and Z := z2". By noting that

9z 0*Z 2 T T2
%:Dlz, w:DIZ—i_QDlZDl +ZD1 s

this can be written as

o = 0l(EZ)
2 -1 T T 2 T T -1
+ o3(EZ)'E{(B8' D1ZD, B)Z + 02(D2Z + ZD, + 2D, ZD] )} (EZ)
+ O(o}). (20)
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It may be noted that, contrary to (17), the expectations involved simply yield
moments of x and are therefore easy to compute.

From Kukush et al. (2005b) a similar formula can be derived, which however
is stated in terms of ¢ rather than x. Both formulas differ in value but the
difference is of the order o7}.

5 The ACM of CS

In Kukush et al. (2005b) a formula for the ACM of 3¢ has been derived:
So = (B¢CT) HolBttT + E(T —t¢)BBT(T = ¢tHEKC) ™. (21)

This is a hybrid formula in so far as t and T" are functions of x, whereas ( is
a function of £&. With (5) and with the help of the identity

E[(T —t¢")B8" (T — ¢t")|x]
TAB'T —tu' B8TT —THB " + 8T Mpt"
= (T—tp")BBT(T — pt") +t3T (M — pp")Bt",

(21) can be written as
Yo = (ET)E{(T — tn" )8 (T — ut") +vtt ' }ET) ™. (22)

Again only moments of z are needed in order to compute the ACM of Bc.
We have several options to evaluate ET" because, cf. Shklyar et al. (2005),

ET =EM = Etu' =E¢C".

In passing, it might be worthwile to mention the ACM of the naive (N)
estimator By = (37 2z2] )71 327 zw;. A hybrid formula for its ACM is given
in Kukush et al. (2005b). It can be "improved” to a formula that is based
on the observed variables x; solely:

Yy = (EZ) 'EvZ(EZ)~ "

6 SS and its ACM

Another structural estimator can be constructed as a simplified version of
QS. It is called simple score (SS) estimator and is based on the simplified

11



score function

77Z)S(y7xaﬁ) - (y - MTﬁ)t

An equivalent score function for SS is

Uiy, =, 08) = (y — u' B)u,

cf. Shklyar et al. (2005), which differs from ¢ just by the omission of the

factor vt

The merit of the SS estimator is that it is much simpler to compute than
the QS estimator. It is, however, (slightly) less efficient than the latter,
but it is still more efficient than the CS estimator as long as j and ag are
known and need not be estimated, see Section 7. It serves as an intermediate
estimator between QS and CS and is useful if one wants to compare the
relative efficiencies of the latter two.

The ACM of the SS estimator is given by two equivalent formulas depending
on whether it is derived from g or ¥§:
Ys = (ET) 'Evtt"(ET) '+ F
= (Bpp") ' Eopp” (Bup") ™' + F, (23)

where F is the same as in (17).

The first formula (23) is implicitly given in Shklyar et al. (2005), the second
one follows in a similar way from ¢. Their equivalence can be directly
seen by noting that ¢ = Kpu with some nonsingular matrix K and that

E(ut") = ECC" = ET, cf. Shklyar et al. (2005).

7 Efficiency comparison

One can show that ¥y < Xg, cf. Shklyar et al.(2005). Indeed, since the
term F in (17) and (23) is the same, one needs only to compare the first
terms in (17) and (23), respectively, and for this comparison one can use the
Cauchy-Schwartz inequality.

These arguments do not hold for an efficiency comparison of CS and SS. The
difference of their ACMs is

Yo —Yg = (ET)'E(T — tpu" )38 (T — ut ") (ET)™ — F. (24)

12



It is not clear at the outset whether this difference is always > 0. (It is, of
course, > 0 and, indeed, even > 0 if the last term vanishes, which occurs
when the nuisance parameters need not be estimated: ¥ > g if p1e and 0?
are both known, cf. Shklyar et al. (2005)).

There are cases where Y. — X g is singular if nuisance parameters are present.
Consider a quadratic model with ; = 0 and pe = 0 (fy plays no role). Then
a detailed algebraic calculation shows that det(Xc — Xg) = 0. On the other
hand, all the diagonal elements of ¥ — g have positive leading terms and
thus tend to oo for 07 — co.

8 The Poisson model

8.1 CS, QS and SS

The log-linear Poisson model with measurement errors is given by a response
variable y which is Poisson distributed with a parameter A that is a log-linear
function of a random vector £ (cf. Shklyar and Schneeweiss, 2005).

yl& ~ Po(})
A= eXp(ﬁO+ﬁ;—€)a

&= (&,...,&)". The compound vector 8 := (fy, 3 )" is the parameter
of interest. In addition, there are nuisance parameters v characterizing the
dirstribution of £. Here it is assumed that £ ~ N(ug, X¢). Finally, as in the
polynomial model, £ is latent. Instead x = (z1,...,2,)" is observed with a
measurement error vector o:

r=E&+0,

where 6 ~ N(0,%;), 6 independent of £ and y, and X; is assumed to be
known.

The likelihood score function for 3 in the error free model is given by
V(y.68) = (y = N(1,E) "

The corrected score function ¥¢(y, z, ), which is the basis for the corrected
score (CS) estimator, is constructed such that E(¢¢cly, &) = ¢* and is given
by

_(Y—¢€
wC(y7$75) - ( yx_e(l,_z(sﬂl) )7

13



where ¢ = exp(fy + 3]  — 38/ £501). The CS estimator constructed from
an i.i.d. sample (y;,z;), @=1,...,n, is the solution to

Z Yoy, i, Be) = 0.
i—1

The ACM of Bc can be found in Shklyar and Schneeweiss (2005), equation
(22),albeit with a different notation.

For the quasi score (QS) estimator EQ we need to know the conditional
expectation and variance of y given & The conditional distribution of z
given £ is

z|¢ ~ N(p(z), T)
with
pa) = TS — o) +a (25)
T = S5—N0' = N — N3l (26)

cf. Shklyar and Schneeweiss (2005). (Note that the T of this section is
different from the T of the preceding sections and is not to be mixed up with
the transposition sign; T = 72 if p = 1. Similarly the vector u(z) should
not be confused with the vector p of the preceding sections; it is equal to
w1 = pp(x) if p =1, see(1)). Therefore,

E(ylr) = m(r,5) = exp{fo + 5 ulx) + 56/ TH1} 1)
Vigke) =5 o(e,8) = mle, 5) + {exp(5] T5) = (e, 9)

The quasi score function then is

0
Yaly, @ 0) = (y = mp 5.
where
om 1
8_ﬁ:m<,u(x)+—rﬁl>::mg’ (28)

and the QS estimator is the solution to

Z Va(yi, i, B\Q) = 0.

i=1

14



The ACM of BQ is given by
Yo = (Ev'm?gg") " (29)

Here it is assumed that the nuisance parameters p, and X, are given and
known to the statistician. The case of unknown nuisance parameters is
treated in the next subsection.

One can also construct a simplified score (SS) estimator B\S which is based
on the simplified quasi score function.

ws(y,x,ﬁ) = (y - m>(17'r>—r'

This score function is derived from Kukush et al. (2005a). It differs from (but
is actually equivalent to) another simplified score function, which is given
in Shklyar and Schneeweiss (2005, equation (27)). Under known nuisance
parameters, the ACM of Bg can be computed from the sandwich formula

Yg = Ag'BsAg ", (30)
where
oY
Ag = _Ea?ﬁ =Em(1,2")7¢"

Bs = Eys¢l =Ev(l,2")"(1,2").
By arguments similar to those of Shklyar and Schneeweiss (2005)! one can

evaluate Ag and Bg and thus Xg.

Proposition 7
If p, and ¥, are known, the ACM of the SS estimator is given by (30) with

As = [ L0 (31)
ST b b+
1 6" L1 b7
Bs = q(b bbT+zx>+q (b* b*b*TJer)’ (32)
where
1

g = exp(Bo+ B pa+ iﬁfzﬁﬁl)
¢ = [1—exp(—3 TB)]exp[2(Bo + B piz + B Te)]

b = p,+ Z{ﬁl

!There is a mistake in Corollary 3 of that paper: In (38), the term (X, + 2%,%13,)
must be replaced with (X, + 2,3 1%,).

15



It can be shown, cf. Shklyar and Schneeweiss (2005) and Kukush et al.
(2005a), that

Yo < Ts < e

Note, however, that the equations for Xy and ¥4 are only valid under the
assumption of known nuisance parameters.

8.2 Nuisance parameters

The ”structural” estimators EQ and B\S of the previous section have been
constructed assuming the (nuisance) parameters 7 characterizing the distri-
bution of £ to be known. We now drop this assumption. Instead we assume
that v can be estimated from the observed data x;, 1,...,n, solely, without
the necessity to resort to the model and to the data y;. Under our assump-
tion that £ ~ N(ue, X¢) and consequently x ~ N(pg,2,), pe and ¢ or,
equivalently, u, and 3, can be easily estimated by the corresponding sample
moments. We take as v the vector composed of p, and w := vech(X;1), i.e.,
v = (g, w") ", which is just a reparameterization of (pi,, X,).

The regression parameter vector (3 is then estimated by using a (structural)
score function like ¢ or 1g, where the nuisance parameter vector v has been
substituted by its estimate 7. The resulting estimator is still consistent. But
the formula for its ACM has to be augmented by a term stemming from the
estimation of ~.

From a general point of view, assume that ( is estimated on the basis of some
general estimating function ¢ := ¢ (y, x, 3,7), where the nuisance parameter
7 has been estimated in advance from the data x;, ¢ = 1,...,n. Then the
ACM of f3 is given by, cf. Shklyar et al. (2005),

S=ATBATT+ATASATTATT = S+ F, (33)

where A = —E%, B=Eyy', A, = —E% and ¥, is the ACM of 7.
¥°:= A1 BA~T is the ACM of 3 if v is known, just as in the previous section.
The matrix F', which is due to the estimation of the nuisance parameters,
corresponds to the matrix F of the polynomial model, see (17) and (23), but

is different from this F'.

To be more specific, let the estimating function ¢ be of the form

Yy, z,B,7) = (y —m)a, (34)

16



where a := a(x,3,7) is a known vector-valued function that specifies the
estimation procedure. For QS, a = 1}71%_%1’ and for SS, a = (1,27)". Note
that m is now also a function of v, i.e., m := m(y, z, 3,7).

Proposition 8
For the Poisson model, F' is independent of a and thus independent of the
estimation procedure chosen. In particular, F' is the same for QS and SS.

This property has been proved for the polynomial measurement error model
in Shklyar et al. (2005) — see also (17) and (23) — but not for the Poisson
model, where F takes a different form.

Proof: To evaluate F' for the Poisson model, first note that with the esti-
mation function (34)

0
A=Ea T — Emag ',

opT
where g comes from (28). Similarly,
om
A'Y = EG&Y—T
Now, by (27) and (25),
Om _ 51558, = my-ld (35)
a[j% - x M1 — €T bl
where d := X5/, and by (25) to (27),
om dvec (L71) T 1 T
e ma—w[vec{d(uz —z) }— §vec(dd )],

see Dhyrmes (1984, Prop. 100) for the differentiation rule employed. With
the abbreviation D,, := dvec' (X;1)/0w and using the rule vec(ab") = b®a,
the last expression can also be written as

am_

1

D, is a matrix of ones and zeros such that D]vech(A) = vec(A) for any
symmetric matrix A.

Now from (25),
Mo — T = Zzzgl{pﬂr - M(m)}

17



and thus

om -1 1 -1

Together with (35) we thus have

8m_

SALLQR
0 m

with

. ( St )

Obviously, g and h are linearly related:
h=Gg

with a non-stochastic matrix G. With the help of the identity EIZngﬁl =d,
see (26), one can verify that G is given by

O < ¥ td » 1 0 » > _
Dy(8:35¢ e + 5d) @ d] —Dy[(2.5¢1) @ d]
It follows that
A, = Emah’ =Emag'G' = AG"
and, by (33),
F=G"%,G.
As G is independent of the estimation procedure a, the proposition is proved.4

As a consequence of Proposition 8, ¥ < Xg also holds true when nuisance
parameters are present.

In the univariate case, where [3; is a scalar — a case, which has been dealt
with in Kukush et al. (2004) — the matrix G has a rather simple form. Note
that in this case w = 0,2 and thus D,, = 1. We have

1
G 26 g 0
— 0’5 1 2 1 2 .
cr?cofa? (,be + §T2ﬁ1) _o'g%gjco'2

é

With
%, = diag(o7, 20,"),

we finally obtain

1 T 9 13 2 1a.2\T
()8 v (0 ()]
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9 Conclusion

The ACMs of three estimators (CS, QS, and SS) have been studied for the
polynomial as well as for the Poisson measurement error model. Some alter-
native formulas that are based solely on the observable variables have been
presented. The ACMs of QS and SS (and also of other structural estima-
tors) have a term that stems from the estimation of the nuisance parameters.
This term has been evaluated for both models. In particular for the Poisson
model, this term is the same for a large class of structural estimators, a result
which has been found previously for the polynomial model, too.

The presence of this term in the ACMs of the QS and SS estimators dimin-
ishes the efficiency of QS and SS, which would be greater if the nuisance
parameters were known. In particular for a polynomial model, the efficiency
of SS is so much reduced that, in some cases and for some parameter com-
binations, it is not strongly higher than the efficiency of CS anymore (as it
would be if the nuisance parameters were known).

In the polynomial model, the CS and QS estimators are constructed with the
help of transformed variables ¢,.(z;) and p,.(x;), respectively. New formulas
for the computation of these variables have been derived.
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