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Shalabh * H. Toutenburg
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Abstract

This paper considers the classical and inverse calibration estimators and discusses
the consequences of departure from normality of errors on their bias and mean squared
error properties when the errors in calibration process are small.

1 Introduction

The problem of calibration in the linear regression analysis deals with the problem of deter-
mination of value of an independent variable corresponding to a given value of dependent
variable. Generally, the direct or classical regression and inverse regression techniques are
employed to obtain the calibration estimators. This has received attention in the literature
from various aspects, e.g., Krutchkoff (1967, 1969) considered the classical and inverse cali-
bration estimators and concluded through Monte-Carlo simulation that inverse calibration
approach is better than classical calibration from a mean squared error point of view in the
range of calibration and has larger mean squared error in extrapolation. Later, Halperin
(1970) (see also, Williams (1969)) concluded that classical calibration estimator is superior
even inside the range of calibration. Krutchkoff (1971) again addressed the issue under Pit-
man closeness criterion and concluded through simulation for inverse calibration estimator
to be still superior or equivalent to classical calibration estimator. The range where classical
calibration estimator is superior, it is only mildly superior. Beside these debates over the
superiority of classical and inverse calibration estimators, Tallis (1969) discussed about the
aspect of theory of identifiability of mixtures of distribution whereas Pepper (1973) consid-
ered the problem of calibration in the light of random walk. The calibration problem in
the bayesian framework was considered by Dunsmore (1968), Williford, Carter and Field
(1979), and, Hunter and Lamboy (1981). Later, Scheffe (1973) published a detailed work
on calibration. The multivariate variant of calibration problem was considered by Friedland
(1977), Brown (1982) with discussion and Brown and Sundberg (1987, 1989). Some other
aspects of calibration problem are dealt in Berkson (1969), Minder and Whitney (1975),
Aitchison (1977), Lwin and Maritz( 1980), Lwin and Spiegelmann (1986), and Misquitta
and Ruymgaart (200%).

The performance properties of the classical and inverse calibration estimators along with
their modified and extended forms have been extensively investigated under the normality
of errors; see, e.g., Osborne (1991) for an interesting review. Also, Brown (1993, Chap.
2) discusses the aspect of controlled calibration with classical and inverse calibration es-
timators but under the assumption of normal distribution of errors. What happens when
the distribution of errors depart from normality has been treated neglectfully in the litera-
ture. This communication reports a modest effort in this direction. For example, Lwin and
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Spiegelmann (1986) considered a carbon dating example under the assumption of normally
distributed errors. If disturbances do not necessarily follow a normal distribution, then it
is not clear from this example that how the efficiency properties are changed.

If a functional form of the distribution of errors is assumed, it may not be difficult to
analyze the performance of calibration estimators but then the inferences drawn will be
valid for that specific distribution and consequently no general prescription can be given
to practitioners. Such is, however, not the case if we deal with the asymptotic properties
of the calibration estimators. For this purpose, following Srivastava and Singh (1989),
we employ the small error asymptotic theory. A distinguishing feature of the small error
asymptotic theory is that it rests upon the assumption that errors in the calibration process
are small which is reasonable as well as tenable because calibration experiments are usually
conducted in a controlled environment and every precaution is exercised to reduce the errors
as far as possible in a bid to accomplish a high quality level of the instrument. Clearly, an
instrument giving imprecise and inaccurate results has little utility and many people will be
unwilling to use it. Further, the small error asymptotic theory does not require the number
of observations in the calibration process to be sufficiently large as is the case with the large
sample asymptotic theory.

The organization of our presentation is as follows. In Section 2, we describe the frame-
work and present the classical and inverse calibration estimators. Their bias properties are
analyzed in Section 3 and the effect of departure from the normality of errors is studied.
Similarly, their mean squared error properties are discussed in Section 4. An illustrative
example is provided in Section 5 and some concluding remarks are offered in Section 6.
Lastly, the Appendix provides proofs of Theorems.

2 The Calibration Estimators

Let us consider a simple calibration experiment in which y1,ys, ..., y, refer to the responses
or readings on the instrument corresponding to n known values x1, o, ..., x,. Further, let
Y be the response or reading on the instrument corresponding to an unknown value X.

Assuming the response relationship to be linear, we can write

yi = a+pPri+u; (i=1,2,...,n) (2.1)
Y = a+6X+U
where « is the intercept term, 3 is the slope parameter and uq,us, ..., u,, U are the errors.
Let us define
1 1
j:gz% si = n (371_3?)27
1 ) 1 .
g==> v s = ) wi—0) (2.3)
1 _
Szy = n (s — 2)(y: — 9)

For the statistical estimation of unknown X, there are two approaches. One is the classical
approach in which the regression line of y; on z; is used to formulate an estimator of X:

s2

Xe=7+2(Y -9 (2.4)
Say
which is the classical calibration estimator (CCE).
The other approach is based on inverse regression in which the regression line of z; on y; is
utilized to formulate the following estimator of X:

s Sy _
Xr=2+ s—j(Y—y) (2.5)

Y



which is known as the inverse calibration estimator (ICE).

For analyzing the performance properties of the calibration estimators (2.4) and (2.5), we
do not assume any specific distribution like the normality of errors in the regression model.
All that is supposed is the finiteness of moments up to order four. Accordingly, let the first
four moments of the independently and identically distributed errors uy,us, ..., u,,U be
0,02, 03y, and o*(v2 + 3) so that the quantities 7; and 7, are the Pearson’s measures of
skewness and kurtosis respectively.

3 Comparison under Bias Criterion

Utilizing the small errors asymptotic theory, it is easy to see that both the calibration es-
timators X and X are consistent but generally biased. The asymptotic approximations
for the biases of X¢ and X; are obtained by Srivastava and Singh (1989) under the as-
sumption that the errors follow a normal distribution. Their expressions, however, remain
unaltered even when the distribution is not normal. We reproduce them for the sake of
ready reference:

B(Xo) = E(Xo-X) (3.1)
o%d
T s
B(X;) = B(X;-X) (3.2)
~ o%d(n—3)
nB3%s,
to order O(0?) where
() o

As n = 2 is the trivial case in which the two regression lines coincide, we restrict our
attention to n > 2. If n = 3, we observe from (3.2) that the ICE is almost or nearly
unbiased in the sense that bias to the order of our approximation vanishes. If n > 3,
both CCE and ICE are biased but in opposite directions. However, the CCE has smaller
magnitude of bias in comparison to the ICE when n is greater than 4.

In order to study the effect of non—normal error distributions, we need to consider the higher
order approximations.

Theorem 3.1:

If the error distribution is asymmetric, i.e., 71 # 0, the asymptotic approximations for the
biases to order O(c?) are given by

. o?d o3y
B(Xc) = _n/@2sx + n2538% [d')/lm - 1] (34)
- o?d(n — 3) o3y

BIX) = S5 e+ (1= 3) (3.5)

where

Proof:

See Appendix.



The expressions (3.4) and (3.5) may furnish an idea about the change in bias when the
distribution of errors is skewed. For instance, suppose that 7; and 3 have same signs,
i.e., the slope parameter ( is positive for positively skewed distribution and is negative
for negatively skewed distribution. Now if d > 0 (i.e., the unknown value X is below the
average T of the chosen values in the calibration process) and v > (é), the contribution of
the term of order O(c0?) will tend to lower the magnitude of bias of the CCE while it will
lead to an increase in the bias of the ICE. The opposite is true when v, and 3 have opposite

signs.

When the distribution of errors is symmetric, the contribution of the term of order O(c?)
vanishes. In order to further examine the effect of the departure from normality on the
bias, let us consider the bias expressions to a higher order of approximation.

Theorem 3.2:

If the error distribution is symmetric, the asymptotic approximations for the biases to order
O(c*) are given by

A o?d ot
B(X¢) = “oPs, s [3nd 4+ v2T¢] (3.7)

o%d(n — 3) ot

B(X;) = - - —5)nd + 7T 3.
( I) nB32s, n3ﬂ4s§ [(n 3)(” )n + Y2 I] ( 8)
where
Te = (B+72)d— 71 (3.9)
Tr = (n® =101+ 33 + y2,)d — 471, (3.10)
with
1 4
Proof:

See Appendix.

It is interesting to observe from (3.7) and (3.8) that the contribution of the term of order
O(o?) increases the magnitude of the bias of the CCE when the distribution of errors is
mesokurtic or normal. In case of the ICE, this term decreases the bias provided that n > 5.
These results may not be necessarily true when distribution is different from normal. Besides
the peakedness of the error distribution, the contribution now additionally depends upon
the skewness and kurtosis of the chosen values x1,xa, ..., x,; see the expressions (3.9) and
(3.10).

4 Comparison under Mean Squared Error Criterion

If we compare the calibration estimators under the criterion of mean squared error to order
O(c?), both the CCE and ICE are found to have same mean squared error o2$) where

P4+n+1
on (Fne1) an

We therefore need to consider higher order approximations of the mean squared errors in
order to discriminate the calibration estimators.



4.1 Asymmetric Error Distribution Case

Let us first assume that the distribution of errors is not symmetric.
Theorem 4.1:

The asymptotic approximations for the mean squared errors of the calibration estimators
to order O(c?) are given by

M(Xo) = E(Xc¢-—X)? (4.2)
203y1d
2
M(X;) = E(X;-X)? (4.3)
203~1d
= 0’2Q — n2ﬂ,;;2 (2d'71:v — 4+ TL)
Proof:
See Appendix.
From (4.2) and (4.3), we observe that
A A 203q
where
d
q= %(d%m —2+4mn). (4.5)

It is interesting to note that both the CCE and ICE have identical performance with respect
to the criterion of mean squared error to order O(o?) when the distribution of error is
symmetric with normal as a particular case. This result does not remain true in general
when the distribution of error is skewed or is different from normal. Further, we observe that
the CCE is superior (inferior) to the ICE according as the quantity ¢ is negative (positive).

We thus find that the superiority of one calibration estimator over the other hinges upon the
sign of ¢ which depends upon (3 (the slope parameter), v, (the skewness coefficient of the er-
ror distribution), 1, (the skewness coefficient of the chosen standard values x1, zo, ..., 2,),
d (the difference between the unknown value X and the mean of standard values x1, xo, . . ., x,)
and n (the number of observations in the calibration experiment).

Let us first assume that v, and 8 have same signs. Then the quantity ¢ is positive when
one of the following conditions holds:

dye>—(n—2)  ifd>0 (4.6)
dy1z < —(n—2) ifd<0. (4.7)

When the unknown value X is below Z, the condition (4.6) always holds so long as vi, or
the third central moment of z1, 2, ..., , is positive. If v, is negative, the condition (4.6)
is satisfied provided that the magnitude of v, is less than (n — 2). Similarly, when the
unknown value X is above the average Z, the condition (4.7) holds only for positive values
of v1, exceeding the ratio of (n — 2) to the absolute value of d.

If 1 and B have opposite signs, the quantity ¢ is positive under either of the following two
conditions
dy1e < —(n—2) ifd>0 (4.8)
dy1y > —(n—2) ifd<0. (4.9)



When the unknown value X is below Z, the condition (4.8) is satisfied provided that 71,
is negative and its magnitude is larger than the ratio (";2). On the other hand, when X
is above the average Z, the condition (4.9) is always true for all the negative values of 71,.
This condition (4.9) is also satisfied for some positive values of v, provided that the value
of 71, does not exceed the ratio of (n — 2) to the magnitude of d.

Likewise, we can identify the situations where the quantity ¢ is negative.

4.2 Symmetric Error Distribution Case

Let us now consider the mean squared errors to order O(c*) when the distribution of errors
is symmetric.

Theorem 4.2:

The asymptotic approximations for the mean squared errors of the calibration estimators
to order O(c*) are given by

M(Xe) = E(Xo-—X)? (4.10)
= 20— nz‘;sipd? +3(n+1) + 120
M(X;) = E(X;-X)? (4.11)
= 20— nzagisg[(n —5)2d% — (2n — T)(n+ 1) + 1 A/]
where
Ap = %[1 = 2dmiz + (3 + 720)d) (4.12)
A = %[7 —2n — 16dy1, + (n? — 120 4 47 + 1275, )d?] (4.13)
Proof:

See Appendix.
From (4.10) and (4.11), we observe that

M(Xc) = M(Xp) [(n —2)(8 = n)d?

0.4
+2(n —2)(n+ 1) +72(A; — A, (4.14)

from which it follows that the ICE is superior to the CCE when

(8 —n)d® +2(n+1)] > ( 7”2 2) (A7 —A). (4.15)

n —

When the distribution of errors is mesokurtic (2 = 0) or normal, the condition (4.15) holds
so long as n < 8. This condition also holds for n > 8 provided that

1
2<2(” 41
< (n_8> (4.16)

which is satisfied as long as d? is less than 2.

On the other hand, the CCE has better performance than the ICE in case of 75 = 0 when
the inequality (4.16) holds with reversed sign.

The superiority of one calibration estimator over the other under mesokurtic or normal
errors, it may be appreciated from (4.15) may not necessarily carry over to the cases of
non—normal errors.



5 An Illustrative Example

Let us consider the data related to the pressure in a hydrodynamic system presented in
Dunsmore (1968). The pressure is measured at two points yielding the following observa-

tions:
x: 238, 3.89, 4.60, 5.36, 6.50, 7.45,

y: 270, 4.01, 4.41, 6.00, 6.05, 7.41,

z: 7.81, 838, 9.09, 9.89, 10.58, 10.98
y: 858, 849, 9.99, 9.80, 10.33, 11.20

As the instrument yielding the x values were not available later on, only the y values could
be recorded in future. Thus, given a value Y, we are to estimate the corresponding X.

From the available twelve pairs of observations, we have

T = 72425, 2 = 6.9292,

Yz —0.2845, 2, —1.0411.

Using these values in (3.4) and (3.5), we find the bias expressions to order O(o03) are

B o?d a3y
B(Xs) = -0.0317 (52> — (0.0003d + 0.0010) < 531> (5.1)
N o2d 03'71
B(X;) = 0.2849 F — (0.0011d + 0.0090) 7 (5.2)
where
d=2.7514 — 0.3799X . (5.3)

Similarly, from (3.7) and (3.8), we have

4
B(Xc) = —0.0317 <0ﬁ22d> — [(0.0011 + 1.9589v5)d + 0.284575] (;) (5.4)
4
B(X;) = —0.2849 (?2(1) —[(0.0320 + 55.9589)d + 1.1380] (;) . (5.5)

The expressions (5.1), (5.2), (5.4) and (5.5) clearly bring out that the bias properties of the
calibration estimators under the specification of normality of errors may be quite different
when the distribution departs from normality.

Next, let us examine the mean squared error properties of the calibration estimators.

When the distribution of errors is asymmetric, the asymptotic approximations of the mean
squared errors from (4.1), (4.2) and (4.3) are

2
M(Xc) = (0.833d+1.0833) (;) +(0.0006d + 0.0040) (obgld)
(5.6)
2
M(X;) = (0.833d% +1.0833) (;) + (0.0011d — 0.0160) <03ﬂ’y;d> .
(5.7)

If we look at the twelve observations in the calibration experiment, it can be easily ascer-
tained that [ is positive. Suppose for a moment that the distribution of errors is positively
skewed (v > 0). Now, for all positive values of d, the asymptotic approximations are given



2
by the term involving (%) on the right hand side of (5.6) gives an under-reporting of the
mean squared error of the CCE. Such an approximation in case of the ICE, however, gives
over—reporting for all negative values of d and positive values of d less than 14.54. In a
similar way, we can identify situations where the leading term in the mean squared error
expression provides an under-reporting or over-reporting.

Comparing (5.6) and (5.7), we observe that the CCE has smaller mean squared error than
the ICE when

yd(d — 40) > 0 (5.8)

as [ is positive.

The condition (5.8) is satisfied for all positively skewed distributions when the unknown
value X is larger than 7.24. For negatively skewed distributions, the condition (5.8) holds
when X is smaller than 7.24. The opposite is true, i.e., the ICE is better than the CCE
when X < 7.24 for positively skewed distributions or X > 7.24 for negatively skewed
distributions.

When the distribution of errors is symmetric, it follows from (4.10) and (4.11) that the
mean squared errors to orders O(c?) are

2
M(Xc) = (0.833d° +1.0833) (;)

+[(0.0090 + 0.00055)d? + 0.0001yd + (0.0391 + 0.0000275)]
(5.9)

2
M(X;) = (0.833d2 +1.0833) (;)
+[(0.0491 — 0.002972)d? + 0.000472d

4
—(0.2215 + 0.001472)] <;) .

It is obvious from the above expressions that the mean squared error under the normality
specification may be quite different when the distribution is not normal.

6 Some Remarks

Employing the small error asymptotic theory and assuming the distribution of errors to
be not necessarily normal, we have worked out the asymptotic approximations for the
biases and mean squared errors of the classical and inverse calibration errors. Interestingly
enough, the third and fourth central moment apart from the mean and variance of the chosen
standard values x1,xs,...,x, in the process of calibration are found to play an important
role in the efficiency properties of the calibration estimators if the distribution of errors is
not normal. Their effect disappears totally as soon as normality is assumed. Further, the
asymmetry and peakedness of the error distribution are seen to influence the performance
of calibration estimators. As compared to the peakedness of the error distribution, the
effect of the lack of symmetry is more pronounced. A general conclusion emerging from our
investigations is that the relative performance of one calibration estimator over the other
under the specification of normality of errors may not necessarily carry over to non—normal
distributions and may often be quite jeopardized.



A Appendix

For the application of the small error asymptotic theory, we may notice, that ¢ is small and
tends to zero when errors are small. Accordingly, we replace u; in (2.1) and U in (2.2) by ov;
and oV respectively so that vy, vs,...,v,, V are independently and identically distributed
with first four moments as 0,1, and (y2 + 3). Further, we write

1
o= = v;
n =
3
2= N — B — )
1 - Nﬁsi i [

1
Z = nBs3 Z(% o’

so that, from (2.1) and (2.2), we have

Y -gy) = —pds; +a(V-0)
Spy = ﬂsi(l +o0Zy)
812] = 6282(1 + 207, + 0% Zy)
where
a=T=%
Sy

Using these results and following Srivastava and Singh (1989), we can express

Xe-X) = o _dstl —&-%(V—E) (1+02y)7! (A1)

- ) :
= o dsg;Zl—&—E(V—T)) (M—0Zy+0%*Z —03Z} +..)

[ 1 1
= o |dsy 7y + E(V —0)| —o? [dstf + B(V - v)Zl]

+0° [dstf’ + %(v - 17)212] — ot {dstf + %(v - @)Zf’}

+0,(c%).

Similarly, it is easy to find that
. 1
(X] — X) = O |:d8z21 + B(V - 1_)):| (A2)

—0? |ds,(2Z% — Z5) + =(V — E)Zl]

1
L B
403 |ds, Z,(4Z% — 375) + %(V —0)(22% - Z2)}

1
—o* |ds, (82} —87%Zy + Z2) + B(V —0)(427 — 322)21]

+0,(c%).



Proof of Theorem 3.1:

When the distribution of errors is not symmetric, we observe that

E(Z) = 0,
1
E(Z}) = —
( 1) nﬁ%%’
3 - Y1V1z
E(Zl) - nzﬁgsg )
n—1
E(ZQ) - WQS%7
E(V-9) = 0,
EV-9)Z, = 0,
- 71
E(V-’U)Z? = —m,
_ Y(n —1)
BV-0% = —“ama
E(Z1Zy) = 0.

Now the bias expressions to order O(c?) from (A.1) and (A.2) are

B(Xc) = E(Xo-X)

— o |asB(z) +

—o? [ds»LE(Zf) +

%E(V - @)}
E(V - v)Zl]

= @

+0° [dswE(Zf) + =BV - U)Zf]

B(Xy)

E(X; - X)

- [dst(Zl) +lpw - @)}

B

1
—0? [dswE(QZf —Zy)+ =E(V — ’U)21:|

+0° [dswE(zLZf —3217,) + %E(V —0)(2Z% - Z2)] :

B

Substituting (A.3), we obtain the results stated in Theorem 3.1.

Proof of Theorem 3.2:

When the distribution of errors is symmetric so that v; = 0, the expectations of the terms
of order O(0?) in the expressions (A.1) and (A.2) are zero. We therefore need to consider

the terms of order O(a?).

Now it can be easily seen that
B(Z})

E(Z3Zy)

1

1
= W[”(” +1) +72(n—1)],
-1
= O 1)+ (- 1),
Y2 V1z
7n3ﬁ3s§ ’

= 0

10

(A.6)



Utilizing the results (A.3) and (A.6), the expressions mentioned in Theorem 3.2 can be
straightforwardly obtained from (A.1) and (A.2).

Proof of Theorem 4.1:

Flrs‘ Of all, we Il()(lce lllal
32 ( - IU) 3(!S$E( U)Zl

- ;2 (d®+n+1) (A7)

= Q.

l(V—@)]2 = d*s2E(Z}) +

E[dsle + ﬁ

Now, from (A.1) and (A.2), the mean squared errors to order O(o?) are

M(Xc) = E(Xo-X) (A.8)
= 020 —203FE [dQSQZl 52( —0)%*Z + %dsmE(V —0)7Z3
M(Xp) = BE(X;-X)° (A.9)

= 0’0 -20°F [d%i(QZl leg)+?(v v)%Z,

1 = 2
+Bd87«(v — ’U)(-?)Zl — Z2):| .

Using the results (A.3) along with
E(V -9)*Z; =0

under the specification of asymmetric error distribution, we find the expressions given in
Theorem 4.1.

Proof of Theorem 4.2: As the distribution of errors is now assumed to be symmetric, the
terms of order O(c?) in the expressions for the mean squared errors vanish. Consequently,
if we retain the terms of order O(c%), we have

2

M(Xc) = o*Q+30%F |d*s2Z) + 7 (v —0)2Z% + Bdsl.(v — v)zf}

(A.10)
M(X;) = o*Q+d'E[d*s2(122) — 10232, + Z3) (A.11)

1 ) 2 _
+@(V —0)2(52% —275) + Bdsm(v —0)(87% — 52122)} .
Substituting
1
—\2 r72
n—1

and (A.6) in (A.10) and (A.11), we obtain the results stated in Theorem 4.2.
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