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Abstract

We characterize convergence of a sequence of d-dimensional random vectors by
convergence of the one-dimensional margins and of the copula. The result is ap-
plied to the approximation of portfolios modelled by t-copulas with large degrees
of freedom, and to the convergence of certain dependence measures of bivariate
distributions.
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1 Introduction

Copula functions are widely applied in statistics and econometrics, especially in finance.

For example, Bluhm et al [2] and Li [9] apply copula functions for credit risk modelling,

and Rosenberg [11] studies the pricing of exchange rate derivatives using copulas. Besides

this, copulas in the context of risk management are emphasised by Embrechts et al [7]. In

many applications, the asymptotic behaviour of copulas is of interest for approximation

and convergence issues. For example, in order to characterize the limiting behaviour of

multivariate extremes, Deheuvels [3, Théorème 2.3, Lemma 4.1] has shown that if X =

(X(1), . . . , X(d)) is a random vector with continuous margins, then a sequence of random

vectors converges weakly to X if and only if the one-dimensional margins of the sequence

converge weakly to the margins X(j), and if additionally the copulas converge pointwise

(and hence uniformly) to the copula of X on [0, 1]d. See also Deheuvels [5, p. 261], [6,

Lemma 2]. In the present paper, we shall generalize Deheuvel’s result to the case where

X is not assumed to have continuous margins. Since in that case the copula of X does

not need to be unique, convergence of the copulas on [0, 1]d cannot be expected. However,

we shall show that the copulas converge uniformly on the product of the ranges of the

one-dimensional distribution functions of X. As we recently found out, such a result was

already anticipated by Deheuvels in [4, Théorème 4]. However, a proof was given only

for the case when X has continuous margins. Also, due to the increasing importance of

copulas in applications and the fact that some of the literature [3] – [6] may be difficult

to access it seems justified to give a full proof of this result in the general case.

2 Main result

An axiomatic definition of copulas is to be found in Joe [8] and Nelsen [10]. According

to this a function C : [0, 1]d → [0, 1] is a (d-dimensional) copula if C is a d-dimensional

distribution function on [0, 1]d having uniform margins, i.e. C(1, . . . , 1, u(j), 1, . . . , 1) = u(j)

for u(j) ∈ [0, 1].

Let X = (X(1), . . . , X(d)) be a d–dimensional random vector with distribution func-

tion F and marginal distribution functions F (1), . . . , F (d). Then a copula C is associated

with X if it satisfies

F (x(1), . . . , x(d)) = C(F (1)(x(1)), . . . , F (d)(x(d))) ∀ x = (x(1), . . . , x(d)) ∈ Rd.

By Sklar’s Theorem, an associated copula always exists and is unique on RanF (1)× . . .×
RanF (d). On RanF (1) × . . .× RanF (d) it is given by

C(u(1), . . . , u(d)) = F ((F (1))←(u(1)), . . . , (F (d))←(u(d))),
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where (F (j))←(u(j)) := inf{y ∈ R : F (j)(y) ≥ u(j)} denotes the left inverse of the increasing

function F (j), j ∈ {1, . . . , d}.
Now we can proof the limit result for copulas:

Theorem 2.1. Let N be an ordered index set with limit point n∞. Let (Xn)n∈N and X

be d-dimensional random vectors, where Xn = (X
(1)
n , . . . , X

(d)
n ) and X = (X(1), . . . , X(d)).

Then Xn converges weakly to X as n→ n∞, if and only if the margins X
(j)
n converge weakly

to X(j) as n→ n∞, for j = 1, . . . , d, and if the copulas Cn of Xn converge pointwise to the

copula C of X on RanF (1)×. . .×RanF (d) as n→ n∞, where F (j) denotes the distribution

function of X(j). In that case, the convergence is uniform on RanF (1) × . . .× RanF (d).

Proof. Denote the distribution function of X and Xn by F and Fn, respectively, and the

distribution function of X(j) and X
(j)
n by F (j) and F

(j)
n , respectively. Note that any copula

D is Lipschitz continuous, more precisely it holds

|D(u)−D(v)| ≤
d∑
j=1

|u(j) − v(j)| ∀ u = (u(1), . . . , u(d)), v = (v(1), . . . , v(d)) ∈ [0, 1]d, (1)

see Nelsen [10, Theorem 2.10.7]. Suppose that Xn
w→ X as n → n∞, where

w→ denotes

weak convergence. Then X
(j)
n

w→ X(j) as n → n∞ by the continuous mapping theorem.

For the convergence of the copulas, define M(j) to be the set of all u(j) ∈ [0, 1] such that

there exist xu,j ∈ R such that u(j) = F (j)(xu,j) and such that F (j) is continuous in xu,j. Let

(u(1), . . . , u(d)) ∈ M(1) × . . .×M(d), and let xu,j be points as appearing in the definition

of M(j). Then (1) gives

|Cn(u(1), . . . , u(d))− C(u(1), . . . , u(d))|
= |Cn(F (1)(xu,1), . . . , F (d)(xu,d))− C(F (1)(xu,1), . . . , F (d)(xu,d))|
≤ |Cn(F (1)(xu,1), . . . , F (d)(xu,d))− Cn(F (1)

n (xu,1), . . . , F (d)
n (xu,d))|

+ |Cn(F (1)
n (xu,1), . . . , F (d)

n (xu,d))− C(F (1)(xu,1), . . . , F (d)(xu,d))|
≤ |F (1)(xu,1)− F (1)

n (xu,1)|+ . . .+ |F (d)(xu,d)− F (d)
n (xu,d))|

+ |Fn(xu,1, . . . , xu,d)− F (xu,1, . . . , xu,d)|.

Since the xu,j are continuity points of F (j), it follows that F
(j)
n (xu,j) converges to F (j)(xu,j)

as n → n∞, and that P (X ∈ ∂{(y(1), . . . , y(d)) ∈ Rd : y(j) ≤ xu,j, j = 1, . . . , d}) = 0. By

assumption, this implies convergence of Fn(xu,1, . . . , xu,d) to F (xu,1, . . . , xu,d). Thus, Cn

converges pointwise to C onM(1)× . . .×M(d), as n→ n∞. To show uniform convergence,

let ε > 0, choose an integer m ≥ 3d/ε, and for k = (k(1), . . . , k(d)) ∈ {0, . . . ,m− 1}d set

Ak :=

{
u = (u(1), . . . , u(d)) ∈ [0, 1]d :

k(j)

m
≤ u(j) ≤ k(j) + 1

m
, j = 1, . . . , d

}
.
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Denote by K the set of all k ∈ {0, . . . ,m − 1}d such that Ak ∩ (M(1) × . . . ×M(d)) is

nonempty. Choose uk ∈ Ak ∩ (M(1) × . . . ×M(d)) for each k ∈ K. Then there exists

n0 ∈ N , such that

|Cn(uk)− C(uk)| ≤
ε

3
∀ k ∈ K, n ≥ n0.

Then for any k ∈ K and u ∈ Ak, (1) gives for n ≥ n0,

|Cn(u)− C(u)| ≤ |Cn(u)− Cn(uk)|+ |Cn(uk)− C(uk)|+ |C(uk)− C(u)|

≤ d

m
+
ε

3
+
d

m
≤ ε.

Since M(1) × . . .×M(d) is dense in RanF (1) × . . .× RanF (d), this implies uniform con-

vergence of Cn to C on RanF (1) × . . .× RanF (d), as n→ n∞.

For the converse, suppose that X
(j)
n

w→ X(j) for all j = 1, . . . , d, and that Cn con-

verges pointwise to C on M(1) × . . . × M(d), as n → n∞. Let Q be the set of all

x = (x(1), . . . , x(d)) ∈ Rd such that F (j) is continuous in x(j) for all j = 1, . . . , d. Then (1)

gives for any x ∈ Q,

|Fn(x(1), . . . , x(d))− F (x(1), . . . , x(d))|
= |Cn(F (1)

n (x(1)), . . . , F (d)
n (x(d)))− C(F (1)(x(1)), . . . , F (d)(x(d)))|

≤ |Cn(F (1)
n (x(1)), . . . , F (d)

n (x(d)))− Cn(F (1)(x(1)), . . . , F (d)(x(d)))|
+ |Cn(F (1)(x(1)), . . . , F (d)(x(d)))− C(F (1)(x(1)), . . . , F (d)(x(d)))|

≤ |F (1)
n (x(1))− F (1)(x(1))|+ . . .+ |F (d)

n (x(d))− F (d)(x(d))|
+ |Cn(F (1)(x(1)), . . . , F (d)(x(d)))− C(F (1)(x(1)), . . . , F (d)(x(d)))|,

and the latter converges to 0 as n → n∞. Thus Fn converges to F in any x ∈ Q, which

then implies weak convergence of Xn to X (e.g. by an obvious modification of the proof

of Theorem 29.1 in Billingsley [1]).

It should be noted that in the case where margins of the limiting vector are supposed

to be continuous and strictly increasing, a simpler proof can be given. In fact, then weak

convergence of Xn to X implies uniform convergence of (F
(j)
n )← to (F (j))← and of Fn to

F , so that the copulas converge uniformly, too. In the general case, however, more care

has to be taken. Also, convergence of the copulas on the whole unit cube [0, 1]d cannot be

expected, as is shown by the following example:

Example 2.2. Let X and Y be two random vectors in Rd with different copulas. Set

Xn := X/n if n is odd and Xn := Y/n if n is even. Then Xn converges weakly to 0 as

n→∞, while the copula Cn of Xn is equal to the copula of X or Y , depending whether X

is odd or even. Thus Cn cannot converge on [0, 1]d. However, it converges on ×dj=1{0, 1},
which is the product of the ranges of the marginal distribution functions.
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3 Applications

In this section we give two applications of Theorem 2.1. The first application is concerned

with t-copulas with increasing degrees of freedom.

3.1 Credit Risk and t-Copula

In credit risk theory, modelling portfolios by t-copulas presents a common approach away

from multivariate normal models, see e.g. Bluhm et. al. [2], Chapter 2.6. Let Σ be a

positive definite (d × d)-matrix with entries 1 on the diagonal and let n ∈ N. Then

the Gaussian Copula CGa
Σ is defined to be the copula of an N(0,Σ) distributed vector

Y , and the t-Copula Ct
n,Σ is the copula of a multivariate t-distributed vector Xn,Σ =√

n/S Y , where S is χ2
n-distributed and independent of Y . Since Xn,Σ converges weakly

to Y as n → ∞, Theorem 2.1 implies that the t-copulas Ct
n,Σ converge uniformly to

the Gaussian copula CGa
Σ as the degree of freedom n tends to ∞. Then if (Zn)n∈N is

a sequence of random vectors with t-copula Ct
n,Σ and if the margins of (Zn) converge to

some random variables with distribution function F (j), j = 1, . . . , d, then (Zn) converges as

n→∞ to a random variable Z with distribution function CGa
Σ (F (1)(x(1)), . . . , F (d)(x(d))).

In particular, a portfolio which is modelled by a t-Copula with large degrees of freedom

can be approximated by a model using a Gaussian copula and the same margins.

3.2 Kendall’s Tau, Spearman’s Rho, and Tail Dependence

The next application discusses the convergence of three dependence measures of bivariate

distributions, namely Kendall’s tau, Spearman’s rho and tail dependence.

Let (X(1), X(2)), (Y (1), Y (2)) and (Z(1), Z(2)) be three independent and identically dis-

tributed random vectors with continuous margins and copula C. Then Kendall’s tau, τ ,

and Spearman’s rho, ρ, are given by

τ := P ((X(1) − Y (1))(X(2) − Y (2)) > 0)− P ((X(1) − Y (1))(X(2) − Y (2)) < 0),

ρ := 3(P ((X(1) − Y (1))(X(2) − Z(2)) > 0)− P ((X(1) − Y (1))(X(2) − Z(2)) < 0).

From this follows readily that bivariate weak convergence implies convergence of Kendall’s

tau and Spearman’s rho. Another proof of this follows immediately from Theorem 2.1,

since τ and ρ can be expressed in terms of the copula C via

τ = 4

∫ 1

0

∫ 1

0

C(u(1), u(2)) dC(u(1), u(2))− 1, ρ = 12

∫ 1

0

∫ 1

0

C(u(1), u(2)) du(1)du(2) − 3,

see e.g. Nelsen [10], Theorems 5.1.3 and 5.1.6. Convergence of the lower and upper tail

dependence parameter, λL and λU , however does not follow from bivariate convergence.
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For example, the lower tail dependence parameter is given (if it exists) by

λL = lim
u→0

C(u, u)

u
= lim

u→0
P (X(2) ≤ (F (2))←(u)|X(1) ≤ (F (1))←(u)),

see Joe [8], p. 33. Then if the vector (X
(1)
n , X

(2)
n ) has the copula

Cn(u(1), u(2)) :=

min{u(1), u(2)}, for max{u(1), u(2)} ≥ 1/n,

n u(1) u(2), for max{u(1), u(2)} < 1/n,

then Cn converges uniformly to the copula C(u(1), u(2)) = min(u(1), u(2)). However, the

lower tail dependence parameter of Cn is 0, while that of C is 1. So uniform convergence of

Cn is not enough to ensure convergence of λL. A sufficient condition ensuring convergence

of λL would be that there is some ε > 0 such that (Cn(u, u) − C(u, u))/u converges

uniformly in u ∈ (0, ε] to 0 as n → ∞, provided the lower tail dependence parameter of

Cn and C exist.
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