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Supplement to

”Structured additive regression for categorical

space-time data: A mixed model approach”

Thomas Kneib and Ludwig Fahrmeir

Department of Statistics, University of Munich.

1 Introduction

This technical report acts as a supplement to the paper ”Structured additive regression

for categorical space-time data: A mixed model approach” (Kneib and Fahrmeir, Bio-

metrics, 2005, to appear). Details on several specific models for categorical responses are

given as well as a description on how to construct design matrices in structured additive

regression models. Furthermore some technical information on inferential issues and ad-

ditional results from the simulation studies are provided. To ease orientation, sections in

the supplement are named in analogy to the sections in the original paper. Also, formulas

are presented with the same numbers.

2 Categorical response models

A general regression model for categorical responses Y ∈ {1, . . . , k} can be defined in the

context of multivariate generalized linear models via

π(r) = P (Y = r) = h(r)(η(1), . . . , η(q)), r = 1, . . . , q,

where q = k − 1 is the reference category, η(r) = v′rγ is a predictor with appropri-

ately defined design vector vr, and γ is a vector of regression parameters. Defining

π = (π(1), . . . , π(q)), η = (η(1), . . . , η(q)), h = (h(1), . . . , h(q)) and the design matrix

V = (v1, . . . , vq)
′, the general model is

π = h(η), η = V γ (3)

with appropriately chosen multivariate response function h : Rq → [0, 1]q. In the follow-

ing we describe three specific models for categorial responses with unordered or ordered

categories.
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2.1 Models for nominal responses

The most common way to model categorical responses with unordered categories is the

multinomial logit model, where, in analogy to the binary logit model, the response function

is given by

P (Y = r) = π(r) = h(r)
(
η(1), . . . , η(q)

)
=

exp(η(r))

1 +
∑q

s=1 exp(η(s))

with linear predictor

η(r) = u′α(r),

where u is a suitable vector of covariates and α(r) is a category-specific vector of regression

coefficients. Instead of defining a response function h(r), we can equivalently define the

link function g(r)

η(r) = g(r)(π(1), . . . , π(q)) = log

(
π(r)

1−∑q
s=1 π(s)

)
,

which is the inverse response function.

For a multinomial logit model, the general multinomial model (3) is obtained by defining

the overall vector of regression coefficients

γ = (α(1)′, . . . , α(q)′)′

and the design matrix

V =




v′1
...

v′q


 =




u′ 0
. . .

0 u′


 .

In this classical multinomial logit model all covariates are assumed to be independent of

the category while effects are category-specific. Extensions of the classic model allow for

the inclusion of category-specific covariates wq leading to the predictor

η(r) = u′α(r) + w′
rζ.

Note that in this case, the regression coefficients ζ of category-specific effects are global,

i.e. they are the same for all categories. Extensions with category-specific covariates can

also be easily cast into the general form by modifying the design matrix to

V =




u′ 0 w′
1 − w′

k

. . .

0 u′ w′
q − w′

k


 ,

where k is the reference category, and extending the vector of regression coefficients to

γ = (α(1)′, . . . , α(q)′, ζ ′)′.

Such extensions can also be defined for structured additive regression models and will be

added to our implementation in a future version of BayesX.
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2.2 Cumulative (threshold) models for ordinal responses

If the categorical responses can be ordered, specific models for this situation have to be

employed. Such models for ordinal responses are commonly defined via a cumulative

distribution function F and

P (Y ≤ r) = F (η(r)).

Therefore the response function is given by

P (Y = r) = π(r) = h(r)
(
η(1), . . . , η(q)

)
= F (η(r))− F (η(r−1)), r > 1

P (Y = 1) = π(1) = h(1)
(
η(1), . . . , η(q)

)
= F (η(1))

with linear predictor

η(r) = θ(r) − u′α.

Again, u and α denote covariates and regression coefficients, respectively and θ(1) < . . . <

θ(q) are ordered thresholds. In contrast to the multinomial logit model, both the covariates

and the regression coefficients other than the thresholds are assumed to be fixed for all

categories.

Here, the overall vector of regression coefficients in (3) is given by

γ = (θ(1), . . . , θ(q), α′)′

and the corresponding design matrix is

V =




v′1
...

v′q


 =




1 −u′

. . .
...

1 −u′




Extensions of the basic predictor θ(r) − u′α allow for thresholds depending on covariates

w or in other words, allow for category-specific effects, i.e.

η(r) = θ(r) − wζ(r) − u′α,

where θ(r) − wζ(r) can be interpreted as a covariate-dependent threshold. Though being

easily defined, these extensions lead to models of considerably increased complexity, since

the order restrictions θ(1) < . . . < θ(q) have now to be fulfilled for the covariate-dependent

thresholds, i.e.

θ(1) − wζ(1) < . . . < θ(q) − wζ(q)

for all possible values of the covariates w.

Covariate-dependent thresholds can be cast in the general model (3) by defining

V =




1 −w′ −u′

. . .
...

1 −w′ −u′
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and

γ = (θ(1), ζ(1), . . . , θ(q), ζ(q), α′)′.

2.3 Sequential models for ordinal responses

A second possibility to model ordered responses are sequential models. In contrast to

cumulative models, sequential models assume that the categories r can only be achieved

successively. This leads to a model for the conditional probabilities:

P (Y = r|Y ≥ r) = F (θ(r) − u′α), r = 1, . . . , q

with cumulative distribution function F , covariates u, regression coefficients α and thresh-

olds θ(1), . . . , θ(q). Note that, in contrast to cumulative models, no ordering restriction is

needed for the thresholds in sequential models. The response function is obtained as

P (Y = r) = π(r) = h(r)
(
η(1), . . . , η(q)

)
= F (η(r))

r−1∏
s=1

(1− F (η(s)))

with linear predictor

η(r) = θ(r) − u′α.

In this case, the overall vector of regression coefficients and the design matrix are equal

to those obtained for cumulative responses:

γ = (θ(1), . . . , θ(q), α′)′

and

V =




v′1
...

v′q


 =




1 −u′

. . .
...

1 −u′


 .

Extensions with covariate-dependent thresholds can be defined in complete analogy to

the cumulative case.

2.4 Categorical STAR models

Categorical structured additive regression models extend the models presented in subsec-

tions 2.1 to 2.3 through the inclusion of nonparametric effects, spatial effects and further

extensions. For example, a space-time main effects model for nominal responses can be

defined by

η
(r)
it = u′itα

(r) + f
(r)
1 (xit1) + . . . + f

(r)
l (xitl) + f

(r)
time(t) + f

(r)
spat(si). (4)
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Here, f
(r)
time and f

(r)
spat represent possibly nonlinear effects of time and space, f

(r)
1 , . . . , f

(r)
l

are smooth functions of the continuous covariates x1, . . . , xl, and u′α(r) corresponds to the

usual parametric linear part of the predictor. It turns out that all unknown functions as

well as extensions can be expressed as the product of appropriately defined design vectors

and regression coefficients. Thus, we can always rewrite predictor (4) and extended forms

as

η
(r)
it = u′itα

(r) +

p∑
j=1

z′itjβ
(r)
j . (5)

In complete analogy, we can extend the linear predictor in the general multivariate model

and in any of its subclasses such as cumulative or sequential models to a structured

additive predictor. The general form (3) extends to

ηit = Vitγ +

p∑
j=1

Zitjδj (6)

The matrices in (6) are constructed in a similar way as in the purely parametric models

in subsections 2.1 to 2.3. The vector γ comprises fixed effects for nominal models and

fixed effects and thresholds for cumulative and sequential models. Therefore Vit can be

defined in analogy to V above. For models with nominal response we have

Vit =




u′it 0
. . .

0 u′it


 and Zitj =




z′itj 0
. . .

0 z′itj


 ,

with regression coefficients

γ = (α(1)′, . . . , α(q)′)′

and

δj = (β
(1)
j

′, . . . , β(q)
j
′)′.

In cumulative and sequential models the design matrices are defined by

Vit =




1 −u′it
. . .

...

1 −u′it


 and Zitj =



−z′itj

...

−z′itj


 ,

and the regression coefficients are given by

γ = (θ(1), . . . , θ(q), α′)′

and δj = βj.

Note that the presented structured additive regression models do not include extensions

with category-specific covariates for the multinomial logit model or covariate-dependent

thresholds for ordinal response models. However, such extensions could easily be included

in a similar way as in the basic parametric models presented in sections 2.1 to 2.3.
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3 Inference

3.1 Mixed model representation

To estimate structured additive regression models based on mixed model methodology,

the original model is reparameterised based on the decomposition

βj = Zunp
j βunp

j + Zpen
j βpen

j , (13)

where the index r is omitted for notational simplicity. Choosing special matrices Zunp
j

and Zpen
j in this decomposition leads to a variance components model. In general, these

matrices (which have to fulfil requirements (i) to (iv) formulated in Kneib and Fahrmeir

(2005)) can be obtained as follows: Zunp
j contains a dj − kj dimensional basis of the null

space of Kj. Therefore requirement (iii) is automatically fulfilled. Zpen
j can be obtained

by Zpen
j = Lj(L

′
jLj)

−1 where the full column rank dj × kj matrix Lj is determined by

the decomposition of the penalty matrix Kj into Kj = LjL
′
j. This ensures requirements

(i) and (iv). If we choose Lj such that L′jZ
unp
j = 0 and Zunp

j L′j = 0 hold, we finally

obtain requirement (ii). The decomposition Kj = LjL
′
j of the penalty matrix can be

based on the spectral decomposition Kj = ΓjΩjΓ
′
j. The (kj × kj) diagonal matrix Ωj

contains the positive eigenvalues ωjm, m = 1, . . . , kj, of Kj in descending order, i.e. Ωj =

diag(ωj1, . . . , ωj,kj
). Γj is a (dj × kj) orthogonal matrix of the corresponding eigenvectors.

From the spectral decomposition we can choose Lj = ΓjΩ
1/2
j . Note, that the factor Lj is

not unique and in many cases numerical superior factorizations exist.

Decomposition (13) leads to the following predictor for categorical STAR models:

η = V γ +

p∑
j=1

Z̃unp
j δunp

j +

p∑
j=1

Z̃pen
j δpen

j . (15)

To obtain the design matrices in this predictor, we proceed in a similar way as in subsection

2.4. For nominal responses we have

Vit =




u′it 0
. . .

0 u′it


 , Z̃unp

itj =




zunp
itj

′ 0
. . .

0 zunp
itj

′


 and Zpen

itj =




zpen
itj

′ 0
. . .

0 zpen
itj

′




with regression coefficients

γ = (α(1)′, . . . , α(q)′)′, δunp
j = (β

unp(1)
j

′, . . . , βunp(q)
j

′)′ and δpen
j = (β

pen(1)
j

′, . . . , βpen(q)
j

′)′.

Similarly, for cumulative and sequential response models we have

Vit =




1 −u′it
. . .

...

1 −u′it


 , Zunp

itj =



−zunp

itj
′

...

−zunp
itj

′


 , and Zpen

itj =



−zpen

itj
′

...

−zpen
itj

′


 ,
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and

γ = (θ(1), . . . , θ(q), α′)′, δunp
j = βunp

j and δpen
j = βpen

j .

From this expressions equation (15) is yielded by defining the stacked vectors and matrices

η = (ηit), V = (Vit), Z̃unp
j = (Z̃unp

itj ) and Z̃pen
j = (Z̃pen

itj ).

The covariance matrix Λ of the vector of penalized regression coefficients δpen is given by

Λ = blockdiag((τ
(1)
1 )2I, . . . , (τ

(q)
1 )2I, . . . , (τ (1)

p )2I, . . . , (τ (q)
p )2I)

for nominal responses and

Λ = blockdiag(τ 2
1 I, . . . , τ 2

p I)

for cumulative and sequential models.

3.2 Empirical Bayes inference for categorical mixed models

The matrix of working weights W = DS−1D has a block diagonal structure defined by the

block diagonal matrices D = blockdiag(D11 . . . DnT ) and S = blockdiag(S11 . . . SnT ),

the q × q matrices

Dit =
∂h(ηit)

∂η
=




∂h(1)(ηit)

∂η(1) . . . ∂h(q)(ηit)

∂η(1)

...
. . .

...
∂h(1)(ηit)

∂η(q) . . . ∂h(q)(ηit)

∂η(q)




and

Sit = cov(yit) =




π
(1)
it (1− π

(1)
it ) −π

(1)
it π

(2)
it . . . −π

(1)
it π

(q)
it

−π
(1)
it π

(2)
it

. . .
...

...
. . . −π

(q−1)
it π

(q)
it

−π
(1)
it π

(q)
it . . . −π

(q−1)
it π

(q)
it π

(q)
it (1− π

(q)
it )




The working observations ỹ are defined by

ỹ = η̂ + (D−1)′(y − π).

4 Simulation studies

To investigate performance, we conducted several simulation studies based on a multino-

mial logit model and a cumulative probit model with three categories and predictors

defined to be the sum of a nonparametric effect and a spatial effect (see Figures 1 and 2

for a detailed description of the simulation design). Here, we will describe the results of

the simulation studies in more detail than in the original paper.
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-1.7 0 1.4

Category 1

-1.7 0 1.4

Category 2

- Predictor:

η
(r)
i = f

(r)
1 (xi) + f

(r)
2 (si)

- Category 1:

f
(1)
1 (x) = sin[π(2x− 1)]

f
(1)
2 (s) = −0.75|sx|(0.5 + sy)

- Category 2:

f
(2)
1 (x) = sin[2π(2x− 1)]

f
(2)
2 (s) = 0.5(sx + sy)

- x is chosen from an equidistant grid of 100

values between -1 and 1.

- (sx, sy) are the centroids of the 124 districts

s of the two southern states of Germany

(see Figures).

Figure 1: Simulation design for the multinomial logit model.

-1.7 0 1.4

- Predictor:

η
(r)
i = θ(r) − f1(xi)− f2(si)

- Functions:

f1(x) = sin[π(2x− 1)]

f2(s) = 0.5(sx + sy)

- x is chosen from an equidistant grid of 100

values between -1 and 1.

- (sx, sy) are the centroids of the 124 districts

s of the two southern states of Germany

(see Figure).

Figure 2: Simulation design for the cumulative probit model.
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4.1 Comparison of different modelling approaches

The first aim was to compare different parameterisations of the spatial effect and different

approaches to the estimation of categorical STAR models. Therefore 250 simulation runs

with n = 500 observations were generated from the multinomial logit model described in

Figure 1. We used cubic P-splines with second order random walk penalty and 20 knots

to estimate effects of the continuous covariate. The spatial effect was estimated either

by a Markov random field, a (full) Gaussian random field or a two-dimensional P-spline

(based on 10× 10 inner knots). For the competing fully Bayesian approach by Fahrmeir

and Lang (2001b) and Brezger and Lang (2005), where inverse Gamma priors IG(a, b)

with a = b = 0.001 are assigned to the variances, the GRF approach was computationally

to demanding due to the inversion of a full precision matrix for the spatial effect in each

iteration. Therefore we excluded the fully Bayesian GRF approach from the compari-

son. As a further competitor we utilized the R-implementation of the procedure polyclass

described in Kooperberg, Bose and Stone (1997). Here, nonparametric effects and in-

teraction surfaces are modelled by linear splines and their tensor-products. Smoothness

of the estimated curves is not achieved by penalization but via stepwise inclusion and

deletion of model terms corresponding to basis functions based on AIC.

The results of the simulation study can be summarized as follows:

• Generally REML estimates have somewhat smaller median MSE than their fully

Bayesian counterparts, with larger differences for spatial effects (see Figures 3a to

3d).

• Estimates for the effects of the continuous covariate are rather insensitive with

respect to the model choice for the spatial effect (Figures 3a and 3b).

• Two-dimensional P-splines lead to the best fit for the spatial effect although data

is provided with discrete spatial information (Figures 3c and 3d).

• Polyclass is outperformed by both the empirical and the fully Bayesian approach and

therefore results are deferred to Figure 3e together with REML estimates based on

two-dimensional P-splines. Presumably, the poor performance of polyclass is mainly

caused by the special choice of linear splines, resulting in rather peaked estimates.

Smoother basis functions, e.g. truncated cubic polynomials might improve the fit

substantially but are not available in the implementation.

• Empirical and fully Bayesian estimates lead to comparable bias for the nonpara-

metric effects. Results for function f1(x) obtained with polyclass are less biased but

show some peaks caused by the modelling with linear splines. Therefore we can con-

clude that the poor performance of polyclass in terms of MSE is mainly introduced
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by additional variance compared to empirical and fully Bayesian estimates (Figure

4).

• For spatial effects both empirical and fully Bayesian estimates tend to oversmooth

the data, i.e. estimates are too small for high values of the spatial functions and vice

versa. In contrast, polyclass leads to estimates which are too wiggly and therefore

overestimate spatial effects (Figures 5 and 6).

• For some simulation runs with spatial effects modelled by MRFs, no convergence of

the REML algorithm could be achieved. This was also the case if the spatial effect

was modelled by a two-dimensional P-spline but in a much smaller number of cases.

Obviously the same convergence problems as described in Fahrmeir, Kneib and Lang

(2004) appear in a categorical setting. However, the arguments given there still hold

and so we again used estimates obtained from the final (100th) iteration.
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a) f1(x)

-6

-5

-4

-3

-2

-1

1) REML (MRF)
2) MCMC (MRF)

3) REML (2dP)
4) MCMC (2dP)

5) REML (GRF)

b) f2(x)

-5

-4

-3

-2

-1

1) REML (MRF)
2) MCMC (MRF)

3) REML (2dP)
4) MCMC (2dP)

5) REML (GRF)

c) f1(s)

-5

-4

-3

-2

-1

1) REML (MRF)
2) MCMC (MRF)

3) REML (2dP)
4) MCMC (2dP)

5) REML (GRF)

d) f2(s)

-5

-4

-3

-2

-1

1) REML (MRF)
2) MCMC (MRF)

3) REML (2dP)
4) MCMC (2dP)

5) REML (GRF)

e) polyclass

-8

-4

0

4

8

1) REML (f1(x))
2) polyclass (f1(x))

3) REML (f2(x))
4) polyclass (f2(x))

5) REML (f1(s))
6) polyclass (f1(s))

7) REML (f2(s))
8) polyclass (f2(s))

Figure 3: Comparison of different modelling approaches: Boxplots of log(MSE).
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f2(x)
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0 .25 .5 .75 1

-1

-.5
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f1(x)
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-.5

0
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0
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f1(x)
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-.5

0
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Figure 4: Comparison of different modelling approaches: Bias of nonparametric estimates.
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-1.7 0 1.4

f1(s) ,  REML

-0.6 0 0.6

f1(s) ,  REML

-1.7 0 1.4

f1(s) ,  MCMC

-0.6 0 0.6

f1(s) ,  MCMC

-1.7 0 1.4

f1(s) ,  polyclass

-0.6 0 0.6

f1(s) ,  polyclass

Figure 5: Comparison of different modelling approaches: Mean (left panel) and bias (right

panel) of estimates for f1(s).
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-1.7 0 1.4

f2(s) ,  REML

-0.3 0 0.3

f2(s) ,  REML

-1.7 0 1.4

f2(s) ,  MCMC

-0.3 0 0.3

f2(s) ,  MCMC

-1.7 0 1.4

f2(s) ,  polyclass

-0.3 0 0.3

f2(s) ,  polyclass

Figure 6: Comparison of different modelling approaches: Mean (left panel) and bias (right

panel) of estimates for f2(s).
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4.2 Bias of REML estimates

It is frequently argued that results from REML estimation procedures in GLMMs tend to

be biased due to the Laplace approximation involved, especially in sparse data situations

(compare e.g. Lin and Breslow (1996)). Therefore, as a second aim, we investigated

whether this observation holds in a categorical setting in a second simulation study, based

on the models described in Figures 1 and 2 with different sample sizes, namely n = 500,

n = 1000 and n = 2000. Results from the REML estimation procedure were compared to

their fully Bayesian counterparts since these estimates do not use any approximations but

work with the exact posterior. For both approaches, the spatial effect was estimated by

a MRF while nonparametric effects were again modelled by cubic P-splines with second

order random walk penalty and 20 inner knots.

The results of the simulation lead to the following conclusions:

• In general, bias is smaller for MCMC estimates, most noticeably for more wig-

gly functions. For increasing sample sizes, differences almost vanish and both ap-

proaches give nearly unbiased estimates (Figures 7 to 12).

• REML estimates perform superior to MCMC estimates in terms of MSE (Figures

13 and 14).
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n=500
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Figure 7: Multinomial logit model: Bias of nonparametric estimates for f1(x).
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Figure 8: Multinomial logit model: Bias of nonparametric estimates for f2(x).
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-0.6 0 0.6

n 500 ,  REML

-0.6 0 0.6

n 500 ,  MCMC

-0.6 0 0.6

n 1000 ,  REML

-0.6 0 0.6

n 1000 ,  MCMC

-0.6 0 0.6

n 2000 ,  REML

-0.6 0 0.6

n 2000 ,  MCMC

Figure 9: Multinomial logit model: Bias of spatial estimates for f1(s).
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-0.3 0 0.3

n 500 ,  REML

-0.3 0 0.3

n 500 ,  MCMC

-0.3 0 0.3

n 1000 ,  REML

-0.3 0 0.3

n 1000 ,  MCMC

-0.3 0 0.3

n 2000 ,  REML

-0.3 0 0.3

n 2000 ,  MCMC

Figure 10: Multinomial logit model: Bias of spatial estimates for f2(s).
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Figure 11: Cumulative probit model: Bias of nonparametric estimates for f(x).
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Figure 12: Cumulative probit model: Bias of spatial estimates for f(s).
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Figure 13: Multinomial logit model: Boxplots of log(MSE) for different sample sizes.
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Figure 14: Cumulative probit model: Boxplots of log(MSE) for different sample sizes.
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