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1 Introduction

This technical report acts as a supplement to the paper ”Structured additive regression
for categorical space-time data: A mixed model approach” (Kneib and Fahrmeir, Bio-
metrics, 2005, to appear). Details on several specific models for categorical responses are
given as well as a description on how to construct design matrices in structured additive
regression models. Furthermore some technical information on inferential issues and ad-
ditional results from the simulation studies are provided. To ease orientation, sections in
the supplement are named in analogy to the sections in the original paper. Also, formulas

are presented with the same numbers.

2 Categorical response models

A general regression model for categorical responses Y € {1,... k} can be defined in the

context of multivariate generalized linear models via
7 = PY =r)= h(’”)(n(l), . ,77(’1)), r=1,...,q,

where ¢ = k — 1 is the reference category, n™” = v’7 is a predictor with appropri-
ately defined design vector v,, and ~ is a vector of regression parameters. Defining
7= (@0, 71D, n = ... 9@, h = (K ... h@) and the design matrix

V = (v1,...,v,), the general model is

T="h(n), n=Vy (3)

with appropriately chosen multivariate response function i : R? — [0,1]?. In the follow-
ing we describe three specific models for categorial responses with unordered or ordered

categories.



2.1 Models for nominal responses

The most common way to model categorical responses with unordered categories is the
multinomial logit model, where, in analogy to the binary logit model, the response function
is given by

N exp(n™)
p(Y:r)z?T():h()(n(l)"”’n(q)) 14329 exp(n®)
s=1

with linear predictor

™ = /o)

where w is a suitable vector of covariates and o) is a category-specific vector of regression
coefficients. Instead of defining a response function k", we can equivalently define the

link function ¢

(r)
(r) _ () (- (1) @)y — W—
n g (', m ) log(l_ 17())’

which is the inverse response function.
For a multinomial logit model, the general multinomial model (3) is obtained by defining
the overall vector of regression coefficients

= (@D ey

and the design matrix

V=1:1]=
v, 0 u’
In this classical multinomial logit model all covariates are assumed to be independent of
the category while effects are category-specific. Extensions of the classic model allow for

the inclusion of category-specific covariates w, leading to the predictor
" =u'a™ + wi.C.

Note that in this case, the regression coefficients ( of category-specific effects are global,
i.e. they are the same for all categories. Extensions with category-specific covariates can
also be easily cast into the general form by modifying the design matrix to
u 0 w]—w
V= ;
0 u' wy —wy
where k is the reference category, and extending the vector of regression coefficients to

y= (oW, ... a9 Y.
Such extensions can also be defined for structured additive regression models and will be

added to our implementation in a future version of BayesX.



2.2 Cumulative (threshold) models for ordinal responses

If the categorical responses can be ordered, specific models for this situation have to be
employed. Such models for ordinal responses are commonly defined via a cumulative
distribution function F' and

P(Y <r)=Fn").

Therefore the response function is given by

PY=r) = a0 =p0u0 . 99)=Fn") - FH"Y), r>1
PY=1) = 70 =40 (4O, 4@) = )

with linear predictor

n™ =0 — .
Again, u and « denote covariates and regression coefficients, respectively and 0 < ... <
0@ are ordered thresholds. In contrast to the multinomial logit model, both the covariates
and the regression coefficients other than the thresholds are assumed to be fixed for all
categories.

Here, the overall vector of regression coefficients in (3) is given by
y=OW,... 09 Y

and the corresponding design matrix is

v=|:|=

!
v, 1 U

Extensions of the basic predictor 8 — u/av allow for thresholds depending on covariates

w or in other words, allow for category-specific effects, i.e.
" =00 — ¢ —a,

where 6" — w(™ can be interpreted as a covariate-dependent threshold. Though being
easily defined, these extensions lead to models of considerably increased complexity, since
the order restrictions /) < ... < 89 have now to be fulfilled for the covariate-dependent
thresholds, i.e.

o) _ wc(l) <. <D _ wC(Q)

for all possible values of the covariates w.

Covariate-dependent thresholds can be cast in the general model (3) by defining

1 —u —u

V:



and
= ((9(1)7 <(1)7 o ’8(4)7 C(q)7 o/)/.

2.3 Sequential models for ordinal responses

A second possibility to model ordered responses are sequential models. In contrast to
cumulative models, sequential models assume that the categories r can only be achieved

successively. This leads to a model for the conditional probabilities:
PY =r]Y >7r)=F(@" —da), r=1,...,q

with cumulative distribution function F', covariates u, regression coefficients a and thresh-
olds 8, ... 0. Note that, in contrast to cumulative models, no ordering restriction is

needed for the thresholds in sequential models. The response function is obtained as

r—1

P(Y =7) =7 =0 (77(1)’ o 777(q)) = F(n") H(1 — F(n™))

s=1

with linear predictor
7" =60 —a.

In this case, the overall vector of regression coefficients and the design matrix are equal

to those obtained for cumulative responses:
y=OW,... 09 Y
and

V pu— E pum—
v 1 —u
Extensions with covariate-dependent thresholds can be defined in complete analogy to

the cumulative case.

2.4 Categorical STAR models

Categorical structured additive regression models extend the models presented in subsec-
tions 2.1 to 2.3 through the inclusion of nonparametric effects, spatial effects and further

extensions. For example, a space-time main effects model for nominal responses can be

defined by

0 = uha® 4 £ (@) A SO @) + L) + £ (s0). (4)



Here, ft%e and fs(;,)lt represent possibly nonlinear effects of time and space, fl(r), e fl(r)
are smooth functions of the continuous covariates z1, . . ., z;, and «/a™) corresponds to the
usual parametric linear part of the predictor. It turns out that all unknown functions as
well as extensions can be expressed as the product of appropriately defined design vectors
and regression coefficients. Thus, we can always rewrite predictor (4) and extended forms

as

nz(t = uzta Z Zztjﬁ (5)

In complete analogy, we can extend the linear predlctor in the general multivariate model
and in any of its subclasses such as cumulative or sequential models to a structured

additive predictor. The general form (3) extends to

p

nit = Viey + Z Zitj0; (6)

j=1
The matrices in (6) are constructed in a similar way as in the purely parametric models
in subsections 2.1 to 2.3. The vector v comprises fixed effects for nominal models and
fixed effects and thresholds for cumulative and sequential models. Therefore V;; can be
defined in analogy to V above. For models with nominal response we have
iy 0 Zitj 0

Vit = and  Zy; = 5

and
5‘7 pr— (ﬁ;l)/’ P 7/8](q),)/~
In cumulative and sequential models the design matrices are defined by

/
1 — Uy Zzt]
Vie = . : and  Zy; = : )
!/
1 —uy —Zitj

and the regression coefficients are given by
y=(0W, ..., 09 o)
and 5j = 6j'

Note that the presented structured additive regression models do not include extensions
with category-specific covariates for the multinomial logit model or covariate-dependent
thresholds for ordinal response models. However, such extensions could easily be included

in a similar way as in the basic parametric models presented in sections 2.1 to 2.3.



3 Inference

3.1 Mixed model representation

To estimate structured additive regression models based on mixed model methodology,

the original model is reparameterised based on the decomposition

B = 2B+ 2 (13)

where the index r is omitted for notational simplicity. Choosing special matrices Z;"™"

and Zf “* in this decomposition leads to a variance components model. In general, these
matrices (which have to fulfil requirements (i) to (iv) formulated in Kneib and Fahrmeir
(2005)) can be obtained as follows: Z;™ contains a d; — k; dimensional basis of the null
space of K. Therefore requirement (iii) is automatically fulfilled. ZJ*" can be obtained
by ZV" = L;(L;L;)~" where the full column rank d; x k; matrix L; is determined by
the decomposition of the penalty matrix Kj into K; = L;L}. This ensures requirements
(i) and (iv). If we choose L; such that L;Z"™" = 0 and Z{™ L} = 0 hold, we finally
obtain requirement (ii). The decomposition K; = L;L; of the penalty matrix can be
based on the spectral decomposition K; = I';;I". The (k; x k;) diagonal matrix €2;
contains the positive eigenvalues wj,,, m =1, ..., k;, of K; in descending order, i.e. {}; =
diag(wji, . ..,wjk,). I'j is a (d; x k;) orthogonal matrix of the corresponding eigenvectors.
;/2. Note, that the factor L; is
not unique and in many cases numerical superior factorizations exist.

From the spectral decomposition we can choose L; = I';Q

Decomposition (13) leads to the following predictor for categorical STAR models:

p p
n=Vy+ Y ZJP 4y 2, (15)

j=1 j=1
To obtain the design matrices in this predictor, we proceed in a similar way as in subsection

2.4. For nominal responses we have

/ unpy peny
Ugy 0 Zitj 0 Zit 0
- ., Zunp .. pen __
/ unpy peny
0 Ujy 0 Zitj 0 Zit;

with regression coefficients

UuUn; unp(1 un, en en (1 en
= (a(l)', o ’a(q)/)/7 5 P _ (8 p( )/’ B p(q)/)/ and 55) — (6;7 ( )/’ o 75? (q)/)/_

Similarly, for cumulative and sequential response models we have

/ unpy peny
1 — Uy —Zitj —Zitj
_ . . unp __ . pen .
Vie = - : 5 Zitj = : , and Z ity : )
/ unpy peny
1 —uy —Zitj —Zitj



and

v=0W,...,09 ), & =p

pen __ apen
. and 67" =B

From this expressions equation (15) is yielded by defining the stacked vectors and matrices
n=(m), V= (V). 2" = (Z33") and Z}*" = (ZI").

itj itj

The covariance matrix A of the vector of penalized regression coefficients 07" is given by

A = blockdiag((r{")21, ..., (r\)21, ..., (D)1, (

(
P

q) )2 I)
for nominal responses and

A = blockdiag(721, ..., 721)

p

for cumulative and sequential models.

3.2 Empirical Bayes inference for categorical mixed models

The matrix of working weights W = DS~!D has a block diagonal structure defined by the
block diagonal matrices D = blockdiag(Dy; ... D,r) and S = blockdiag(Si1 ... Sur),

the ¢ x ¢ matrices

Oh M) (m;y) R (n;y)
m m
Oh(11:1) o o
D; B = : :
1 OhV (1) OB ()
@ @
and
1 1 1) (2 1
7Ti(t)(1 - 7Tz'(t)) _ﬂ'i(t)ﬂ'z(t) S _Wz(t)ﬂz‘(tq)
1),_(2)
— :
Sit = COV(yz‘t) = o
| L e
1 1
T T

The working observations y are defined by

g="n+ (D" (y—m).

4 Simulation studies

To investigate performance, we conducted several simulation studies based on a multino-
mial logit model and a cumulative probit model with three categories and predictors
defined to be the sum of a nonparametric effect and a spatial effect (see Figures 1 and 2
for a detailed description of the simulation design). Here, we will describe the results of

the simulation studies in more detail than in the original paper.



Category 1

- Predictor:
0" = 1) + 17 (s)

- Category 1:
W(z) = sin[r(2z —1)]
M(s) = —0.75]54](0.5 + s,)
-:- - Category 2:

@) = sin[2r(2z — 1)]
P(s) = 0.5(sy +5y)

- x is chosen from an equidistant grid of 100
values between -1 and 1.

- (84, sy) are the centroids of the 124 districts
s of the two southern states of Germany

(see Figures).

Figure 1: Simulation design for the multinomial logit model.

- Predictor:

" =00 — fi(@:) — fols:)

- Functions:
fi(z) = sin[r(2z —1)]

fa(s) = 0.5(s; + sy)

- x is chosen from an equidistant grid of 100
values between -1 and 1.
- (84, Sy) are the centroids of the 124 districts

s of the two southern states of Germany

(see Figure).

Figure 2: Simulation design for the cumulative probit model.



4.1 Comparison of different modelling approaches

The first aim was to compare different parameterisations of the spatial effect and different
approaches to the estimation of categorical STAR models. Therefore 250 simulation runs
with n = 500 observations were generated from the multinomial logit model described in
Figure 1. We used cubic P-splines with second order random walk penalty and 20 knots
to estimate effects of the continuous covariate. The spatial effect was estimated either
by a Markov random field, a (full) Gaussian random field or a two-dimensional P-spline
(based on 10 x 10 inner knots). For the competing fully Bayesian approach by Fahrmeir
and Lang (2001b) and Brezger and Lang (2005), where inverse Gamma priors IG(a,b)
with a = b = 0.001 are assigned to the variances, the GRF approach was computationally
to demanding due to the inversion of a full precision matrix for the spatial effect in each
iteration. Therefore we excluded the fully Bayesian GRF approach from the compari-
son. As a further competitor we utilized the R-implementation of the procedure polyclass
described in Kooperberg, Bose and Stone (1997). Here, nonparametric effects and in-
teraction surfaces are modelled by linear splines and their tensor-products. Smoothness
of the estimated curves is not achieved by penalization but via stepwise inclusion and

deletion of model terms corresponding to basis functions based on AIC.

The results of the simulation study can be summarized as follows:

e Generally REML estimates have somewhat smaller median MSE than their fully
Bayesian counterparts, with larger differences for spatial effects (see Figures 3a to
3d).

e Estimates for the effects of the continuous covariate are rather insensitive with

respect to the model choice for the spatial effect (Figures 3a and 3b).

e Two-dimensional P-splines lead to the best fit for the spatial effect although data

is provided with discrete spatial information (Figures 3c and 3d).

e Polyclass is outperformed by both the empirical and the fully Bayesian approach and
therefore results are deferred to Figure 3e together with REML estimates based on
two-dimensional P-splines. Presumably, the poor performance of polyclass is mainly
caused by the special choice of linear splines, resulting in rather peaked estimates.
Smoother basis functions, e.g. truncated cubic polynomials might improve the fit

substantially but are not available in the implementation.

e Empirical and fully Bayesian estimates lead to comparable bias for the nonpara-
metric effects. Results for function f;(x) obtained with polyclass are less biased but
show some peaks caused by the modelling with linear splines. Therefore we can con-

clude that the poor performance of polyclass in terms of MSE is mainly introduced



by additional variance compared to empirical and fully Bayesian estimates (Figure
4).

For spatial effects both empirical and fully Bayesian estimates tend to oversmooth
the data, i.e. estimates are too small for high values of the spatial functions and vice
versa. In contrast, polyclass leads to estimates which are too wiggly and therefore

overestimate spatial effects (Figures 5 and 6).

For some simulation runs with spatial effects modelled by MRFs, no convergence of
the REML algorithm could be achieved. This was also the case if the spatial effect
was modelled by a two-dimensional P-spline but in a much smaller number of cases.
Obviously the same convergence problems as described in Fahrmeir, Kneib and Lang
(2004) appear in a categorical setting. However, the arguments given there still hold

and so we again used estimates obtained from the final (100th) iteration.

10
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Figure 3: Comparison of different modelling approaches: Bozplots of log(MSE).
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f1(x) 12(x)
REML REML

f1(x)
MCMC

f1(x) f2(x)
polyclass polyclass

Figure 4: Comparison of different modelling approaches: Bias of nonparametric estimates.
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Figure 5: Comparison of different modelling approaches: Mean (left panel) and bias (right

panel) of estimates for fi(s).
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f2(s), REML f2(s), REML

T .

-0.3 0 03
f2(s), polyclass
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l-_—ﬁ-ov3

-0.3 o

Figure 6: Comparison of different modelling approaches: Mean (left panel) and bias (right
panel) of estimates for fo(s).
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4.2 Bias of REML estimates

It is frequently argued that results from REML estimation procedures in GLMMs tend to
be biased due to the Laplace approximation involved, especially in sparse data situations
(compare e.g. Lin and Breslow (1996)). Therefore, as a second aim, we investigated
whether this observation holds in a categorical setting in a second simulation study, based
on the models described in Figures 1 and 2 with different sample sizes, namely n = 500,
n = 1000 and n = 2000. Results from the REML estimation procedure were compared to
their fully Bayesian counterparts since these estimates do not use any approximations but
work with the exact posterior. For both approaches, the spatial effect was estimated by
a MRF while nonparametric effects were again modelled by cubic P-splines with second

order random walk penalty and 20 inner knots.

The results of the simulation lead to the following conclusions:

e In general, bias is smaller for MCMC estimates, most noticeably for more wig-
gly functions. For increasing sample sizes, differences almost vanish and both ap-

proaches give nearly unbiased estimates (Figures 7 to 12).

e REML estimates perform superior to MCMC estimates in terms of MSE (Figures
13 and 14).

15



n=500 n=500
REML MCMC

n=1000 n=1000
REML MCMC

n=2000 n=2000
REML MCMC

Figure 7: Multinomial logit model: Bias of nonparametric estimates for fi(x).
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n=500 n=500
REML MCMC

n=1000 n=1000
REML MCMC

n=2000 n=2000
REML MCMC

Figure 8: Multinomial logit model: Bias of nonparametric estimates for fa(x).
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n 500, REML n500, MCMC

Figure 9: Multinomial logit model: Bias of spatial estimates for fi(s).
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n 500, REML

Figure 10: Multinomial logit model: Bias of spatial estimates for fa(s).
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n=500 n=500
REML MCMC

n=1000 n=1000
REML MCMC

n=2000 n=2000
REML MCMC

Figure 11: Cumulative probit model: Bias of nonparametric estimates for f(x).

20



n500, MCMC

n 500, REML

-0.3
n 2000, REML

Figure 12: Cumulative probit model: Bias of spatial estimates for f(s).

21



a) f1(x) b) 2(x)
e

14 1T -1
o o
24 - - 2
Eﬂ o
o JE—
-3 | E| >3 |
- = T
1 L 5
-5 8 L )
S - 8 -5 )
1 -]
61 8 o : ° °
o o 67 o
1) =500, REML _ 3) n=1000, REML _ 5) n=2000, REML 1) =500, REML _ 3) n=1000, REML _ 5) n=2000, REML
2) n=500, MCMC  4) n=1000, MCMC  6) n=2000, MCM 2) n=500, MCMC  4) n=1000, MCMC  6) n=2000, MCMC
c) fi(s) d) f2(s)
-1 8
-1 o 8
o o
-2
-2 | %I
| 1 % % 3
-3 ?) i
° o
- o e
-4 4 -4
54 57
-6 -6
1) n=500, REML __ 3) n=1000, REML _ 5) n=2000, REML 1) n=500, REML _ 3) n=1000, REML _ 5) n=2000, REML
2) n=500, MCMC  4) n=1000, MCMC  6) n=2000, MCM 2) n=500, MCMC  4) n=1000, MCMC  6) n=2000, MCMC

Figure 13: Multinomial logit model: Bozplots of log(MSE) for different sample sizes.
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Figure 14: Cumulative probit model: Bozplots of log(MSE) for different sample sizes.
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