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Abstract

A continuous time GARCH model of order (p, q) is introduced, which is driven by
a single Lévy process. It extends many of the features of discrete time GARCH(p,q)
processes to a continuous time setting. When p = q = 1, the process thus defined
reduces to the COGARCH(1,1) process of Klüppelberg, Lindner and Maller (2004).
We give sufficient conditions for the existence of stationary solutions and show that
the volatility process has the same autocorrelation structure as a continuous time
ARMA process. The autocorrelation of the squared increments of the process is also
investigated, and conditions ensuring a positive volatility are discussed.
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1 Introduction

In financial econometrics, GARCH (generalised autoregressive conditionally heteroscedas-

tic) processes are commonly used to model daily returns on stocks, currency investments

and other assets. These models capture many of the so called stylised features of such data

which include tail heaviness, volatility clustering and dependence without significant cor-

relation. For GARCH processes with finite fourth moments, the autocorrelation functions

(ACFs) of both the squared process and of the associated volatility process are those of

ARMA processes. For the GARCH(1,1) process they both decay exponentially, but for

higher-order GARCH processes they can exhibit damped oscillatory behaviour.

Various attempts have been made to capture these features with continuous-time mod-

els. One approach is to use the GARCH diffusion approximation of Nelson [24]. (See

also Duan [14] and Drost and Werker [13].) These diffusion limits have the property of

being driven by two independent Brownian motions W
(1)
t and W

(2)
t . For example, the

GARCH(1,1) diffusion limit satisfies

dGt = σt dW
(1)
t , dσ2

t = θ(γ − σ2
t ) + ρσ2

t dW
(2)
t , t ≥ 0. (1.1)

Another approach is via the stochastic volatility model of Barndorff-Nielsen and Shep-

hard [3, 4]. In this model the volatility process (σ2
t )t≥0 is an Ornstein–Uhlenbeck (O-U)

process driven by a subordinator (or a superposition of such processes), and thus exhibits

jumps. The logarithm of the asset priceGt at time t is assumed to satisfy an equation of the

form dGt = µdt+σt dWt, with Wt being a Brownian motion independent of the Lévy pro-

cess. The autocorrelation function of the Lévy-driven O-U volatility process is restricted

to functions of the form ρ(h) = exp(−c|h|) for some c > 0. By taking either superpositions

of O-U type processes as in Barndorff–Nielsen [2], or by specifying the volatility to be a

Lévy driven CARMA (continuous-time ARMA) process as in Brockwell [8], it is possible

to obtain a much larger class of autocorrelation functions for the volatility process, some

of which exhibit damped oscillatory behaviour. As in Nelson’s diffusion limit, the price

process (Gt)t≥0 is again driven by two independent noise processes.

In Klüppelberg et al. [20], a different approach was taken, leading to the introduction

of a continuous time GARCH(1,1) model, called COGARCH(1,1), which is driven by

a single noise process only. To summarise their approach, recall that the discrete time

GARCH(1,1) process (ξn)n∈N0 is defined by the equations,

ξn = εnσn, σ2
n = α0 + α1ξ

2
n−1 + β1σ

2
n−1, n ∈ N, (1.2)

where α0, α1, β1 > 0 are parameters and (εn)n∈N0 is a sequence of iid (independent and
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identically distributed) random variables. This recursion can be solved to give

σ2
n =

σ2
0 + α0

∫ n

0

exp

− bsc∑
j=0

log(β1 + α1ε
2
j)

 ds

 exp

(
n−1∑
j=0

log(β1 + α1ε
2
j)

)
,

where bsc denotes the integer part of s ∈ R. The COGARCH(1,1) model is then motivated

by replacing εn by the jumps ∆Lt = Lt−Lt− of a Lévy process. More precisely, observing

that
∑n−1

j=0 log(β1 + α1ε
2
j) = n log β1 +

∑n−1
j=0 log(1 + (α1/β1)ε2

j) for β1 > 0, and writing

η for − log β1, ω0 for α0 and ω1 for α1, the COGARCH(1,1) process G = (Gt)t≥0 with

left-continuous volatility process (σ2
t )t≥0, driven by the Lévy process (Lt)t≥0, is defined as

dGt = σt dLt, t > 0, G0 = 0, (1.3)

σ2
t =

(
σ2

0 + ω0

∫ t

0

eXs ds

)
e−Xt− , t ≥ 0, (1.4)

where

Xt := ηt−
∑

0<s≤t

log
(
1 + ω1e

η(∆Ls)
2
)
. (1.5)

Here, ω0 > 0, ω1 ≥ 0, η > 0 and σ2
0 is independent of (Lt)t≥0. The COGARCH(1,1)

process displays many of the features of the discrete time GARCH(1,1) process. As shown

in Klüppelberg et al. [20, 21], the COGARCH(1,1) process has uncorrelated increments,

but the autocorrelation function of the squared volatility (σ2
t )t≥0 as well as of the squared

increments of G decay exponentially. Further, the COGARCH(1,1) process has heavy

tails and its volatility clusters on high levels, see [21] and Fasen et al. [16]. While cluster

behaviour can be also achieved in the aforementioned volatility model of Barndorff-Nielsen

and Shephard if the driving Lévy process has regularly varying tails (see [16] or Fasen [15]),

this is impossible for the GARCH diffusion (1.1). For an overview of extremes of stochastic

volatility models, see [16]. Also, observe that many of the features of the COGARCH(1,1)

process can be obtained in a more general setting, as in Lindner and Maller [22].

It is not clear how the approach outlined above leading to the COGARCH(1,1) process

can be generalised to higher order GARCH processes in continuous time. In particular,

the recursion corresponding to (1.2) cannot be solved easily and generalised to a contin-

uous time setting. In this paper we adopt a different but related approach which allows

us to define a continuous time GARCH process of order (p, q) with 1 ≤ p ≤ q. The

process is driven by a single Lévy process and, when p = q = 1, it reduces to the CO-

GARCH(1,1) process. It will therefore be referred to as a COGARCH(p, q) process. While

the COGARCH(1,1) process is restricted to have decreasing ACF, for higher orders this

is not necessarily the case and we can obtain damped oscillatory behaviour. The paper is

organised as follows:
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In the next section, the COGARCH(p, q) process is defined, in such a way that the

volatility process satisfies a CARMA type stochastic differential equation, which is driven

by the quadratic covariation of the COGARCH process itself. This is directly motivated by

the corresponding structure of the discrete GARCH(p, q) process. We then show that the

process defined in this way reduces to the COGARCH(1,1) process if p = q = 1. Further

definitions and notations used throughout the paper are given at the end of Section 2.

In Section 3, we give sufficient conditions for the existence of a strictly stationary

COGARCH(p, q) volatility process. In the COGARCH(1,1) case, these are exactly the

necessary and sufficient conditions obtained in [20]. The case where the driving Lévy

process is compound Poisson is considered in detail. The proofs will rely on the fact that

the state vector of the COGARCH(p,q) process satisfies a multivariate random recurrence

equation when sampled at discrete times.

In Section 4 we focus on the autocorrelation structure of the volatility process. It turns

out that the stationary COGARCH(p,q) process has the ACF of a CARMA process. This

is completely analogous with the discrete-time GARCH, which has the ACF of an ARMA

process.

Section 5 deals with conditions which ensure positivity of the volatility, while the

autocorrelation structure of the squared increments of the COGARCH process itself is

obtained in Section 6. Finally, an example with simulations is given in Section 7. In order

not to disturb the flow of arguments, proofs are postponed to Sections 8 – 11.

2 Definition of the COGARCH(p,q) process

Let (εn)n∈N0 be an iid sequence of random variables. Let p, q ≥ 0. Then the GARCH(p,q)

process (Yn)n∈N0 is defined by the equations,

ξn = σnεn,

σ2
n = α0 + α1ξ

2
n−1 + . . .+ αpξ

2
n−p + β1σ

2
n−1 + . . .+ βqσ

2
n−q, n ≥ s, (2.1)

where s := max(p, q), σ2
0, . . . , σ

2
s−1 are iid and independent of the iid sequence (εn)n≥s,

and ξn = Gn+1 − Gn represents the increment at time n of the log asset price process

(Gn)n∈N0 .

The squared volatility process (σ2
n)n∈N0 can thus be viewed as a “self-exciting” AR-

MA(q, p − 1) process driven by the noise sequence (σ2
n−1ε

2
n−1)n∈N. Motivated by this ob-

servation, we will define a continuous time GARCH model for the log asset price process

(Gt)t≥0 of order (p, q) by

dGt = σt dLt, t > 0, G0 = 0,
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where (σ2
t )t≥0 is a CARMA(q, p − 1) process driven by a suitable replacement for the

discrete time driving noise sequence (σ2
n−1ε

2
n−1)n∈N. The state-space representation of a

Lévy-driven CARMA(q, p− 1) process (ψt)t≥0 with driving Lévy process L, location pa-

rameter c, moving average coefficients α1, . . . , αp, autoregressive coefficients β1, . . . , βq and

q ≥ p is (see Brockwell [9]),

ψt = c+ a′ζt,

dζt =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . . 0

0 0 0 · · · 1

−βq −βq−1 −βq−2 · · · −β1

 ζtdt+


0

0
...

0

1

 dLt,

where a′ = [α1, . . . , αq] and αj := 0 for j > q. In order to obtain a continuous-time analog

of the equation (2.1) we suppose that the volatility process (σ2
t )t≥0 has the state-space

representation of a CARMA(q, p − 1) process in which the driving Lévy process (Lt) is

replaced by a continuous-time analog of the driving process (σ2
n−1ε

2
n−1)n∈N in (2.1).

The increments of the driving process in continuous time should correspond to the

increments of the discrete-time process,

R(d)
n :=

n−1∑
i=0

ξ2
i =

n−1∑
i=0

σ2
i ε

2
i .

We therefore replace the innovations εn by the jumps ∆Lt of a Lévy process (Lt)t≥0 to

obtain the continuous-time analogue,

Rt :=
∑

0<s≤t

σ2
s(∆Ls)

2, t > 0.

If L has no Gaussian part (i.e. τ 2
L = 0 in (2.2) below), we recognise R as the quadratic

covariation of G, i.e.

Rt =
∑

0<s≤t

σ2
s(∆Ls)

2 =

∫ t

0

σ2
sd[L,L]s = [G,G]t.

If L has a Gaussian part, then still
∑

0<s≤t(∆Ls)
2 = [L,L](d), the discrete part of the

quadratic covariation, and we have in general

Rt =

∫ t

0

σ2
sd[L,L](d)

s , i.e. dRt = σ2
t d[L,L]

(d)
t .

Recall that for a Lévy process L = (Lt)t≥0 the characteristic function of Lt can be

written in the form

E
(
eiθLt

)
= exp

(
t

(
iγLθ − τ 2

L

θ2

2
+

∫
R

(
eiθx − 1− iθx1|x|≤1

)
dνL(x)

))
, θ ∈ R. (2.2)
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The constants γL ∈ R, τ 2
L ≥ 0 and the measure νL on R form the characteristic triplet

of L. As usual, the Lévy measure νL is required to satisfy
∫
R

min(1, x2) dνL(x) <∞. For

more information on Lévy processes we refer to the books by Applebaum [1], Bertoin [5]

or Sato [26].

We now define the COGARCH(p,q) process by specifying the volatility process (Vt)t≥0,

the analogue of the discrete-time process (σ2
n)n∈N0 , to be a self-exciting continuous-time

ARMA process driven by the process (Rt)t≥0 defined above. As we shall see, when p =

q = 1 the resulting process coincides with the COGARCH(1,1) process of Klüppelberg et

al. [20]. (The parameters β1, . . . , βq and α1, . . . , αp in the following definition should not be

confused with the parameters denoted by the same symbols in the defining equation (2.1)

of the discrete-time GARCH process.)

Definition 2.1 Let 1 ≤ p ≤ q, α0 > 0, α1, . . . , αp ∈ R, β1, . . . , βq ∈ R, αp 6= 0, βq 6= 0,

and αp+1 = . . . = αq = 0. Define the (q × q)–matrix B and the vectors a and e by

B =


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−βq −βq−1 −βq−2 . . . −β1

 , a =


α1

α2

...

αq−1

αq

 , e =


0

0
...

0

1


(if q = 1, then B = −β1). Let L = (Lt)t≥0 be a Lévy process with non-trivial Lévy

measure and define the volatility process V = (Vt)t≥0 of a COGARCH(p,q) process (with

matrix B, vector a, scaling parameter α0 and driving (Lt)t≥0) by

Vt = α0 + a′Yt−, t > 0, V0 = α0 + a′Y0,

where (Yt)t≥0 is the unique càdlàg solution of the stochastic differential equation

dYt = BYt dt+ eVt d[L,L]
(d)
t , t > 0, (2.3)

with initial value Y0, independent of the driving Lévy process (Lt)t≥0. If the process

(Vt)t≥0 is non-negative almost surely, the COGARCH(p, q) process G = (Gt)t≥0 is given

by

dGt =
√
Vt dLt, t > 0, G0 = 0.

That there is in fact a unique solution of (2.3) for any starting random variable Y0

follows from standard theorems on stochastic differential equations (e.g. Protter [25],

Chapter V, Theorem 7). The stochastic integrals are interpreted with respect to the

filtration F = (Ft)t≥0, which is defined to be the smallest filtration satisfying the “usual

hypotheses” such that (Lt)t≥0 is adapted and Y0 is F0 measurable.
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Without restrictions on α0, a and B, the process (Vt)t≥0 is not necessarily non-negative,

as required for the definition of (Gt)t≥0 to make sense. Conditions which ensure that Vt is

non-negative will be discussed in Section 5. In particular, it will be shown that if a′eBte ≥ 0

for all t ≥ 0 and Y0 is such that α0 + a′eBtY0 ≥ 0 for all t ≥ 0, then Vt ≥ 0 as well.

But even if Vt has negative values, it is still of some interest in its own right and many

of the results we obtain for the process (Vt)t≥0 will be valid without the non-negativity

restriction.

We next show that if p = q = 1, then the COGARCH process just defined is indeed

the COGARCH(1,1) process as defined by Klüppelberg et al. [20].

Theorem 2.2 Suppose that p = q = 1, and that α0, α1, β1 > 0. Then the processes

(Gt)t≥0 and (Vt)t≥0 of Definition 2.1, driven by the Lévy process (Lt)t≥0, are exactly the

COGARCH(1,1) process and its volatility process (σ2
t )t≥0 driven by (Lt)t≥0 as given by

(1.3) – (1.5), with parameters ω0 = α0β1, ω1 = α1e
−β1 and η = β1.

Proof. From dYt = −β1Yt dt+ Vt d[L,L]
(d)
t and Vt+ = α0 + α1Yt follows that

dVt+ = α1 dYt = −α1β1
Vt+ − α0

α1

dt+ α1Vt d[L,L]
(d)
t ,

and hence that

Vt+ = α0β1t− β1

∫ t

0

Vs ds+ α1

∑
0<s≤t

Vs(∆Ls)
2 + V0.

But this equation is also satisfied by the volatility process (σ2
t )t≥0 of (1.4) when ω0 = α0β1,

η = β1 and ω1 = α1e
−β1 , as shown in Proposition 3.2 of [20], and uniqueness of the solution

gives the claim. �

We conclude this section with a few definitions and some notation which will be used

throughout the paper.

Definition 2.3 Let a and B be as in Definition 2.1. Then the characteristic polynomials

associated with a and B are given by

a(z) := α1 + α2z + . . .+ αpz
p−1, z ∈ C,

b(z) := zq + β1z
q−1 + . . .+ βq, z ∈ C.

The eigenvalues of the matrix B (which are exactly the zeroes of b) will be denoted by

λ1, . . . , λq and assumed to be ordered in such a way that

<λq ≤ <λq−1 ≤ . . . ≤ <λ1

(where <λi denotes the real part of λi). Further, define

λ := λ(B) := <λ1.
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For the rest of the paper, convergence in probability will be denoted by “
P→”, uniform

convergence on compacts in probability by “ucp”, or in symbols “
ucp→”, and equality in

distribution by “
d
=”. For x ∈ R we denote log+(x) = log(max{1, x}). The transpose of

a coloumn vector c ∈ Cq will be denoted by c′. If ‖ · ‖ is a vector norm in Cq, then the

natural matrix norm for a (q × q)-matrix C will also be denoted by ‖C‖ and is given

by ‖C‖ = supc∈Cq\{0}
‖Cc‖
‖c‖ . Correspondingly, for r ∈ [1,∞] we denote by ‖ · ‖r both the

vector Lr-norm and the associated natural matrix norm. Recall that the natural matrix

norms of the L1, L2 and L∞ vector norms are the coloumn-sum norm, the spectral norm

and the row-sum norm, respectively.

The (q × q)–identity matrix will be denoted by Iq or simply I, and the ith canonical

vector (0, . . . , 0, 1, 0, . . . , 0)′ in Cq, where the 1 is on the ith position, by ei. For eq we

simply write e. By diag (λ1, . . . , λq) we mean a diagonal (q× q)-matrix with these entries

on the diagonal. The Kronecker product of two (q× q)–matrices A and B will be denoted

by A ⊗ B, and by vec (A) we denote the coloumn vector in Cq
2

which arises from A by

stacking the coloumns of A in a vector (starting with the first coloumn). For the properties

of the Kronecker product we refer to Lütkepohl [23].

3 Stationarity conditions

Throughout this section, we fix the parameters B, a and α0, and (Vt)t≥0 and (Yt)t≥0

will be the processes as defined in Definition 2.1. In the next theorem we shall give suffi-

cient conditions implying the existence of a strictly stationary solution of the COGARCH

volatility. Rather than trying to obtain the most general conditions possible, we will con-

centrate on conditions which are easy to check and still give room to many interesting

examples. We restrict ourselves to the case where B can be diagonalised. Since any eigen-

vector to the eigenvalue λi must necessarily be a multiple constant of [1, λi, λ
2
i , . . . , λ

q−1
i ]′,

we see that B can be diagonalised if and only if all the eigenvalues of B are distinct. Let

S be a matrix such that S−1BS is a diagonal matrix. For example, a possible choice for

S is given by

S =


1 · · · 1

λ1 · · · λq
... · · · ...

λq−1
1 · · · λq−1

q

 , (3.1)

so that

S−1BS = diag (λ1, . . . , λq).

Theorem 3.1 Let (Yt)t≥0 be the state vector process of the COGARCH(p, q) process with

parameters B, a and α0. Suppose that all the eigenvalues of B are distinct. Let L be a
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Lévy process with non-trivial Lévy measure νL, and suppose there is some r ∈ [1,∞] such

that ∫
R

log(1 + ‖S−1ea′S‖r y2) dνL(y) < −λ = −λ(B), (3.2)

where S is such that S−1BS is diagonal. Then Yt converges in distribution to a finite

random variable Y∞, as t→∞. In particular, if Y0
d
= Y∞, then (Yt)t≥0 and (Vt)t≥0 are

strictly stationary.

Remark 3.2 (a) If (Vt)t≥0 is the volatility of a COGARCH(1,1) process with parameters

B = −β1 < 0, α0, α1 > 0, then ‖S−1ea′S‖r = α1 and (3.2) is exactly the necessary and

sufficient condition for the COGARCH(1,1) volatility process to be strictly stationary, as

shown in [20], Theorem 3.1.

(b) For general q ≥ 2, the quantity ‖S−1eaS‖r depends on the specific choice of S and on

r. Observe that it is sufficient to find some S and some r such that (3.2) holds. �

The proof of Theorem 3.1 will make heavy use of the general theory of multivariate

random recurrence equations, as discussed for example in Bougerol and Picard [7] or

Kesten [19], or Brandt [6] in the one–dimensional case. The COGARCH state vector

satisfies such a multivariate random recurrence equation, which is the contents of the

next theorem:

Theorem 3.3 Let (Yt)t≥0 be the state vector process of the COGARCH(p, q) process

with parameters B, a and α0, and driving Lévy process L. Then there exists a family

(Js,t,Ks,t)0≤s≤t of random (q × q)–matrices Js,t and random vectors Ks,t in Rq such that

Yt = Js,tYs + Ks,t, 0 ≤ s ≤ t. (3.3)

Further, the distribution of (Js,t,Ks,t) depends only on t − s, and (Js1,t1 ,Ks1,t1) and

(Js2,t2 ,Ks2.t2) are independent for 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2. For 0 ≤ s ≤ u ≤ t it holds

Js,t = Ju,t Js,u. (3.4)

If additionally the conditions of Theorem 3.1 hold, then the distribution of the vector Y∞

is for any h > 0 the unique solution of the random fixed point equation

Y∞
d
= J0,hY∞ + K0,h, (3.5)

with Y∞ independent of (J0,h,K0,h) on the right hand side of (3.5).

Remark 3.4 (a) We have concentrated on giving the feasible stationarity condition (3.2)

which is easy to check. Actually, as the proof of Theorems 3.1 and 3.3 shows, it would be

sufficient to a find a vector norm ‖ · ‖ and t0 > 0 such that for J0,t0 and K0,t0 it holds

E log ‖J0,t0‖ < 0 and E log+ ‖K0,t0‖ <∞. (3.6)
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By (3.4), E log ‖J0,t0‖ < 0 is equivalent to the requirement that there is t1 > 0 such that

the Lyapunov exponent of the iid sequence (Jt1n,t1(n+1))n∈N0 , which is given by

lim
n→∞

1

n
E
(
log ‖Jt1(n−1),t1n · · · J0,t1‖

)
= inf

n∈N

(
1

n
E
(
log ‖Jt1(n−1),t1n · · · J0,t1‖

))
and independent of the specific norm, is strictly negative. As shown by Bougerol and

Picard [7], provided that E log+ ‖J0,t1‖ < ∞, E log+ ‖K0,t1‖ < ∞ and a suitable irre-

ducibility condition holds, then strict negativity of the Lyapunov exponent is not only

sufficient but also necessary for the existence of stationary solutions of such random re-

currence equations. We shall not go into further details.

(b) The conditions of Theorem 3.1 are sufficient conditions which imply (3.6). The specific

vector norm used is given by

‖c‖B,r := ‖S−1 c‖r, c ∈ Cq, (3.7)

so that the associated natural matrix norm of any (q×q)-matrix A is ‖A‖B,r = ‖S−1AS‖r.
Observe, however, that the conditions of Theorem 3.1 are in general not necessary, in

particular one can also find stationary solutions if there are multiple eigenvalues. For

example, using similar methods as in the proof of Theorems 3.1 and 3.3, it can be shown

that for any vector norm ‖ · ‖ it holds

‖J0,t‖ ≤ ‖eBt‖+ e‖B‖t exp

(∑
0<s≤t

log
(
1 + (∆Ls)

2‖ea′‖
))
‖ea′‖

∑
0<s≤t

(∆Ls)
2, t ≥ 0.

Now if λ(B) < 0, then ‖eBt‖ → 0 as t→∞, and (3.6) can be fulfilled without assuming

that all the eigenvalues of B are distinct, but choosing ‖a‖ sufficiently small and imposing

certain integrability conditions on L. We shall not pursue this further here but concentrate

on the feasible conditions of Theorem 3.1. �

The matrices Js,t and the vector Ks,t of Theorem 3.3 will be constructed explicitly

when L is compound Poisson, and in the general case will be obtained as the limit of

the corresponding quantities for compound Poisson driven processes. We shall pay special

attention to the compound Poisson process. In particular, we show that in that case

the stationary state vector satisfies a distributional fixed point equation which is much

easier to handle than (3.5). Also, we compare the stationary distribution of Y∞ with the

stationary distribution of the state vector when sampled at the jump times of the Lévy

process. This is the contents of the next theorem:

Theorem 3.5 (a) Let (Yt)t≥0 be the state vector process of a COGARCH(p, q) process

with parameters B, a and α0. Suppose that the Lévy measure νL of the driving Lévy process
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L is finite. Let the compound Poisson process [L,L](d) have representation

[L,L]
(d)
t =

∑
0<s≤t

(∆Ls)
2 =

N(t)∑
i=1

Zi,

where the sojourn times (Ti)i∈N are iid exponentially distributed with parameter νL(R),

and the iid sequence (Zi)i∈N describes the jump sizes. Further, let (T0, Z0) be independent

of (Ti, Zi)i∈N and have the same distribution as (T1, Z1). For i ∈ N0, let

Ci = (I + Ziea′)eBTi ,

Di = α0Zie,

and let Γn :=
∑n

i=1 Ti, n ∈ N0, be the time of the nth jump. Then the discrete time process

(YΓn)n∈N0 satisfies the random recurrence equation

YΓn+1 = Cn+1YΓn + Dn+1, n ∈ N0. (3.8)

Further, for any t > 0,

Yt = eB(t−ΓN(t))

sgn(N(t))DN(t) +

N(t)−2∑
i=0

CN(t) · · ·CN(t)−iDN(t)−i−1 + CN(t) · · ·C1Y0


d
= eB(t−ΓN(t))

sgn(N(t)) D1 +

N(t)−1∑
i=1

C1 · · ·CiDi+1 + C1 · · ·CN(t)Y0

 . (3.9)

(b) Assume additionally that the assumptions of Theorem 3.1 are satisfied. Then the in-

finite sum
∑∞

i=0 C1 · · ·CiDi+1 converges almost surely absolutely to a random vector Ŷ,

which has the stationary distribution of the sequence (YΓn)n∈N0. The stationary state vec-

tor Y∞ satisfies

Y∞
d
= eBT Ŷ, (3.10)

where T is independent of (Ti, Zi)i∈N0 and has distribution T1. Further, Y∞ is the unique

solution in distribution of the distributional fixed point equation

Y∞
d
= QY∞ + R, (3.11)

where Y∞ is independent of (Q,R) on the right hand side of (3.11) and Q and R are

defined by

Q := eBT0(I + Z0ea′),

R := α0 Z0 e
BT0e.

The fixed point equation (3.11) will play a crucial role for the determination of the

covariance matrix of the stationary Y∞ as studied in the next section.

11



4 Second order behaviour of the volatility

In the whole section, (Yt)t≥0 will denote the state vector process of a COGARCH(p, q)

volatility Vt with parameters B, a and α0 and driving Lévy process L with Lévy measure

νL. The aim of this section is to study the autocorrelation function of (Vt)t≥0. Throughout,

we will write

µ :=

∫
R

y2 dνL(y) and ρ :=

∫
R

y4 dνL(y),

provided the quantities are finite. Further, provided µ <∞, we shall always denote

B̃ := B + µea′. (4.1)

Observe that B̃ has the same form as B, but with last row given by (−βq+µα1, . . . ,−β1 +

µαq). We first give sufficient conditions for the moments of Yt to exist:

Proposition 4.1 Suppose that all eigenvalues of B are distinct and that λ = λ(B) < 0.

Let ‖ · ‖ denote any vector norm in Cq and let k ∈ N. Then holds:

(a) If E|L1|2k <∞ and E‖Y0‖k <∞, then

E‖Yt‖k <∞ ∀ t ≥ 0.

(b) If E|L1|2k < ∞ and there are a matrix S such that S−1BS is diagonal and some

r ∈ [1,∞] such that ∫
R

(
(1 + ‖S−1ea′S‖r y2)k − 1

)
dνL(y) < −λk,

then (3.2) holds with the same S and r, and E‖Y∞‖k <∞. In particular, E(Y∞) exists

if

EL2
1 <∞ and ‖S−1ea′S‖r µ < −λ, (4.2)

and the covariance matrix cov (Y∞) exists if

EL4
1 <∞ and ‖S−1ea′S‖2

r ρ < 2(−λ− ‖S−1ea′S‖rµ). (4.3)

Further, (4.3) implies (4.2), and (4.2) implies that all eigenvalues of B̃ have negative real

parts, in particular B̃ is invertible, i.e. βq 6= α1µ.

Next, we obtain the ACF of the (non-stationary) volatility process.

Theorem 4.2 Let (Vt)t≥0 be the COGARCH(p,q) volatility process with state vector pro-

cess (Yt)t≥0 and parameters B, a and α0. Assume that EL4
1 <∞ and that E‖Yt‖2 <∞

∀ t ≥ 0 (this holds for example if the conditions of Proposition 4.1 are satisfied). Then,

with B̃ as defined in (4.1), it holds

cov (Vt+h, Vt) = a′eB̃hcov (Yt) a, t, h ≥ 0. (4.4)

12



Equation (4.4) shows the qualitative behaviour of the ACF of V as a function in h.

However, since we are mainly interested in the case when (Yt)t≥0 is stationary, it seems

desirable to have a formula for cov (Y∞), too. This will be the topic of Theorem 4.4, but

first we give a formula for E(Y∞).

Lemma 4.3 Suppose that all the eigenvalues of B are distinct and that (4.2) holds. Then

E(Y∞) = −α0µB̃
−1e =

α0µ

βq − α1µ
e1. (4.5)

Now we are able to present the main theorem of this section. In particular, it shows

that the ACF of the stationary COGARCH volatility is identical to the ACF of a CARMA

process, however, with a different matrix. This is very much the same situation as for the

volatility of the discrete GARCH, which is that of an ARMA process.

Theorem 4.4 Suppose that all eigenvalues of the matrix B are distinct, that λ(B) < 0

and that (4.3) holds. Then the matrix (I ⊗ B̃) + (B̃ ⊗ I) + ρ((ea′)⊗ (ea′)) is invertible,

and the covariance matrix of Y∞ is the unique solution of[
(I ⊗ B̃) + (B̃ ⊗ I) + ρ((ea′)⊗ (ea′))

]
vec (cov(Y∞)) =

−α2
0β

2
qρ

(βq − µα1)2
vec (ee′). (4.6)

Denote by (ζt)t≥0 the state vector process of a CARMA(q,p − 1) process (ψt)t≥0 with

location parameter 0, moving average coefficients α1, . . . , αp, autoregressive coefficients

β1 − µαq, β2 − µαq−1, . . . , βq − α1µ (corresponding to the matrix B̃), and suppose it is

driven by a Lévy process L̃ such that E(L̃1) = µ and var (L̃1) = ρ. Further, define

m := ρ

∫ ∞
0

a′eB̃tee′eB̃
′ta dt = var (ψ∞).

Then 0 ≤ m < 1, and

cov (Y∞) =
α2

0β
2
q

(βq − µα1)2(1−m)
cov (ζ∞)

=
α2

0β
2
qρ

(βq − µα1)2(1−m)

∫ ∞
0

eB̃tee′eB̃
′t dt, (4.7)

var (V∞) =
α2

0β
2
q

(βq − µα1)2

m

1−m
, (4.8)

E(V∞) =
α0βq

βq − µα1

, (4.9)

E(ψ∞) =
α1µ

βq − µα1

. (4.10)
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If (Vt)t≥0 and (ψt)t≥0 are the stationary versions of the COGARCH volatility and CARMA

process, respectively, then

cov(Vt+h, Vt) =
α2

0β
2
q

(βq − µα1)2(1−m)
cov(ψt+h, ψt), t, h ≥ 0. (4.11)

In particular, the autocorrelation functions of the stationary V and the stationary ψ are

the same. If furthermore the eigenvalues λ̃1, . . . , λ̃q of B̃ are distinct, and a(z) and b̃(z)

denote the characteristic polynomials associated with a and B̃, then

cov(Vt+h, Vt) =
α2

0β
2
qρ

(βq − µα1)2(1−m)

q∑
j=1

a(λ̃j) a(−λ̃j)
b̃′(λ̃j) b̃(−λ̃j)

eλ̃jh, t, h ≥ 0, (4.12)

where b̃′ denotes the derivative of b̃.

5 Positivity conditions for the volatility

In order for the definition of the COGARCH price process dGt =
√
Vt dt to make sense

it is necessary that Vt is non-negative for all t ≥ 0. The following Theorem now gives

necessary and sufficient conditions when this happens:

Theorem 5.1 (a) Let (Yt)t≥0 be the state vector of a COGARCH(p,q) volatility process

(Vt)t≥0 with parameters B, a and α0 > 0. Let γ ≥ −α0 be a real constant. Suppose that

the following two conditions hold:

a′eBte ≥ 0 ∀ t ≥ 0, (5.1)

a′eBtY0 ≥ γ a.s. ∀ t ≥ 0. (5.2)

Then, whatever the driving Lévy process is, it holds almost surely

Vt ≥ α0 + γ ≥ 0 ∀ t ≥ 0. (5.3)

Conversely, if either (5.2) fails, or (5.2) holds with γ > −α0 and (5.1) fails, then there

exists a driving compound Poisson process L and t0 ≥ 0 such that P (Vt0 < 0) > 0.

(b) Suppose that all the eigenvalues of B are distinct and that (3.2) and (5.1) both hold.

Then the stationary version (Vt)t≥0 of the COGARCH(p,q) volatility process satisfies al-

most surely

Vt ≥ α0 > 0 ∀ t ≥ 0.

Since we are mainly interested in stationary solutions or in processes started with

Y0 = 0, the condition to check is (5.1). The question when (5.1) holds arises similarly for
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CARMA processes, and some results in this direction have been recently obtained by Tsai

and Chan [29]. We state their result in the next theorem in the language of COGARCH

rather than CARMA processes. Statement (e) below has also been obtained by Todorov

and Tauchen [28]. Recall that a function φ on (0,∞) is called completely monotone if

it possesses derivatives of all orders and satisfies (−1)n d
nφ
dtn

(t) ≥ 0 for all t > 0 and all

n ∈ N0.

Theorem 5.2 Let B and a be the parameters of a COGARCH(p, q) process. Suppose that

λ(B) < 0 and α1 > 0. Then the following holds:

(a) For the COGARCH(p, q) process, equation (5.1) holds if and only the ratio of the

characteristic polynomials a(·)/b(·) is completely monotone on (0,∞).

(b) A sufficient condition for (5.1) to hold for the COGARCH(1, q) process is that either

(i) all eigenvalues of B are real and negative, or

(ii) if (λi1 , λi1+1), . . . , (λir , λir+1) is a partition of the set of all pairs of complex con-

jugate eigenvalues of B (counted with multiplicity), then there exists an injective map-

ping u : {1, . . . , r} → {1, . . . , n} such that λu(j) is a real eigenvalue of B satisfying

λu(j) ≥ <(λij).

(c) A necessary condition for (5.1) to hold for the COGARCH(1, q) process is that there

exists a real eigenvalue of B not smaller than the real part of all other eigenvalues of B.

(d) Suppose 2 ≤ p ≤ q, that all eigenvalues of B are negative and ordered as in Defini-

tion 2.3, and that the roots γj of a(z) = 0 are negative and ordered such that γp−1 ≤ . . . ≤
γ1 < 0. Then a sufficient condition for (5.1) to hold for the COGARCH(p, q) process is

that
k∑
i=1

γi ≤
k∑
i=1

λi ∀ k ∈ {1, . . . , p− 1}.

(e) A necessary and sufficient condition for (5.1) to hold for the COGARCH(2, 2) process

is that both eigenvalues of B are real, that α2 ≥ 0 and that α1 ≥ −α2λ(B).

Although characterisation (a) may be difficult to check in general, it gives a method of

constructing further pairs of a’s and B’s, since the product of two completely monotone

functions is again completely monotone.

6 The autocorrelation of the squared increments

In Section 4 we have investigated the behaviour of the autocorrelation function of the

volatility process. However, it is also important to know something about the second

order properties of the increments of the COGARCH process itself. In order to do that,
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suppose that Vt ≥ 0 almost surely for all t ≥ 0, and define for r > 0,

G
(r)
t := Gt+r −Gt =

∫
(t,t+r]

√
Vs dLs, t ≥ 0.

We shall restrict ourselves to the case of stationary (Yt)t≥0 such that (5.1) holds. It is

easy to see that in that case, also (G
(r)
t )t≥0 is a stationary process. Let µ and B̃ be defined

as in Section 4. We then have:

Theorem 6.1 Let B, a and α0 be parameters of a COGARCH(p,q) process such that (5.1)

holds and such that all the eigenvalues of B are distinct. Assume that the driving Lévy

process (Lt)t≥0 has no Gaussian part and that EL1 = 0. Further assume (4.2). Let (Vt)t≥0

be the stationary volatility process. Then for any t ≥ 0 and h ≥ r > 0,

E(G
(r)
t ) = 0, (6.1)

E((G
(r)
t )2) =

α0βqr

βq − µα1

E(L2
1), (6.2)

cov(G
(r)
t , G

(r)
t+h) = 0. (6.3)

Assume further that (4.3) holds. Then

cov((G
(r)
t )2, (G

(r)
t+h)

2) = a′eB̃hHr, h ≥ r, (6.4)

where

Hr := E(L2
1) B̃−1(I − e−B̃r) cov(Yr, G

2
r)

(here, cov(Yr, G
2
r) = E(YrG

2
r)− E(Yr)E(G2

r)).

Equation (6.4) describes the behaviour of the autocovariance function of the squared

increments as a function of h. It can be seen that it has a similar structure like the

autocovariance function of a CARMA process with matrix B̃. In particular, if B̃ has a

pair of complex conjugate eigenvalues, then the autocorrelation function of (G
(r)
t )2 should

show damped oscillatory behaviour.

7 An Example

In this section we consider the COGARCH(1,3) process driven by a compound Poisson

process with jump-rate 2 and normally distributed jumps with mean zero and variance

0.74. The COGARCH coefficients are α0 = α1 = 1, β1 = 1, β2 = .48 + π2, and β3 =

.64 + .4π2, from which we find that the eigenvalues of B are −.4, −.4 + πi and −.4− πi.
With S defined as in (3.1), ||S−1ea′S||2 = 0.21493 and it is easy to check from this that
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the conditions (4.2) and (4.3) are satisfied. Condition (c) of Theorem 5.2 also implies that

the volatility process is non-negative.

The eigenvalues of the matrix B̃ = B + µea′ are −.25038, −.47481 + 3.14426i and

−.47481 − 3.14426i. From (4.12) we conclude that the autocorrelation of the volatility

in this case is a linear combination of exp(−.25038t) and a damped sinusoid with period

close to 2 and damping factor exp(−.47481t).

The top graph in Figure 1 shows the values at integer times 1, . . . , 8000 of a simulated

series (Gt)0<t<1000000 with the parameters specified above. The second graph shows the

differenced series (Gt+1 − Gt)t=0,...,7999 and the last graph shows the volatility sequence

(σ2
t )t=1,...,8000.

As is the case for a discrete-time GARCH process, the increments (Gt+1−Gt) exhibit

no significant correlation, but the squared increments ((Gt+1−Gt)
2) have highly significant

correlations as shown in the second graph of Figure 2. The first graph in Figure 2 shows

the sample autocorrelation function of the volatility process at integer lags. This too is

highly significant for large lags, reflecting the long-memory property frequently observed

in financial time series. As expected from the remarks in the first paragraph above, it has

the form of an exponentially decaying term plus a small damped sinusoidal term with

period approximately equal to two.

8 Proofs for Section 3

We start by proving Theorem 3.5, since equation (3.9) will be needed in the proof of

Theorems 3.1 and 3.3.

Proof of Theorem 3.5. (a) It follows from (2.3) that Yt satisfies dYt = BYt dt for

t ∈ [Γn,Γn+1), so that

Yt = eB(t−Γn)YΓn , t ∈ [Γn,Γn+1), n ∈ N0. (8.1)

At time Γn+1 a jump of size e(α0 + a′YΓn+1−)Zn+1 occurs, so that

YΓn+1 = YΓn+1− + e(α0 + a′YΓn+1−)Zn+1

= (I + Zn+1ea′)YΓn+1− + α0Zn+1e

= Cn+1YΓn + Dn+1, n ∈ N0,

which is (3.8). Solving this recursion gives

YΓn = Dn +
n−2∑
i=0

Cn · · ·Cn−iDn−i−1 + Cn · · ·C1Y0, n ∈ N,
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and the first equality in (3.9) follows from this and Yt = eB(t−ΓN(t))YΓN(t)
. The sec-

ond equality in (3.9) is a consequence of the fact that the infinite random element

(N(t),ΓN(t), CN(t),DN(t), . . . , C1,D1, 0, 0, . . .) has the same distribution as (N(t),ΓN(t), C1,

D1, . . . , CN(t),DN(t), 0, 0, . . .); indeed, for any n ∈ N0 and c ≥ 0 the random vectors

(C1,D1), . . . , (Cn,Dn) are iid and depend on the restriction {N(t) = n, ΓN(t) ≥ c} only

in terms of
∑n

i=1 Ti and Tn+1, but not on the Ti, i = 1, . . . , n, individually.

(b) Let S be such that S−1BS =: Λ is diagonal and define the vector norm ‖c‖B,r =

‖S−1c‖r as in equation (3.7), so that the associated natural matrix norm is ‖A‖B,r =

‖S−1AS‖r. Then we have for t ≥ 0,∥∥eBt∥∥
B,r

=
∥∥S eΛt S−1

∥∥
B,r

=
∥∥eΛt

∥∥
r

= eλt. (8.2)

This gives ‖C1‖B,r ≤ (1 + Z1‖ea′‖B,r)eλT1 and ‖D1‖B,r = α0‖e‖B,r Z1, so that, using

ν[L,L]([x,∞)) = νL({y ∈ R : |y| ≥
√
x} for x ≥ 0,

E log ‖C1‖B,r ≤ λE(T1) + E log(1 + Z1‖ea′‖B,r)

=
λ

νL(R)
+

1

νL(R)

∫
(0,∞)

log(1 + ‖ea′‖B,r y2) dνL(y) < 0

by (3.2) and

E log+(Z1) =
1

νL(R)

∫
R

log+(y2) dνL(y) <∞.

From the general theory of random recurrence equations this implies the almost sure

absolute convergence of
∑∞

i=0 C1 · · ·CiDi+1 to Ŷ which has the stationary distribution of

(YΓn)n∈N, see e.g. Bougerol and Picard [7].

To prove (3.10), for m ∈ N let

Ŷm :=
m−1∑
i=0

C1 · · ·CiDi+1 + C1 · · ·CmY0,

and

Yt,m := eB(t−ΓN(t))Ŷm, t ≥ 0.

Since the random variable (t−ΓN(t)) is asymptotically independent of T1, Z1, . . . , Tm, Zm

(for t → ∞, m fixed), it follows that eB(t−ΓN(t)) is asymptotically independent of Ŷm,

and hence Yt,m converges in distribution to eBT Ŷm, as t→∞, where T is exponentially

distributed with parameter νL(R) (e.g. Taylor and Karlin [27], Section 7.4.4) and indepen-

dent of T1, Z1, . . . , Tm, Zm and hence can be chosen to be independent of (Ti)i∈N, (Yi)i∈N

(as in the statement of the theorem). Moreover, eBT Ŷm converges almost surely, hence in

distribution to eBT Ŷ, as m→∞. Denote by Ỹt the expression in the lower line of (3.9).

Then (3.10), and in particular the existence of the limit variable Y∞ in the compound
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Poisson case, follow from (3.9) and a variant of Slutsky’s Theorem (e.g. Brockwell and

Davis [11], Proposition 6.3.9), provided

lim
m→∞

lim sup
t→∞

P (‖Ỹt −Yt,m‖B,r > ε) = 0, ∀ ε > 0. (8.3)

Since ‖eB(t−ΓN(t))‖B,r ≤ 1, and sgn(N(t))D1 +
∑N(t)−1

i=1 C1 · · ·CiDi+1 + C1 · · ·CN(t)Y0 −
Ŷm converges almost surely, hence in probability as t → ∞ to

∑∞
i=mC1 · · ·CiDi+1 −

C1 · · ·CmY0, which itself converges almost surely to 0 as m→∞, (8.3) is true and (3.10)

follows. That Y∞ satisfies (3.11) is clear from (3.10), and that it is the unique solution

follows from E log ‖Q‖B,r < 0 and E log+ ‖R‖B,r <∞. �

The proof of Theorem 3.5 (b) already showed the existence of the limit variable Y∞

for the case of a driving compound Poisson process. Nevertheless, this existence will be

reestablished in the proof of Theorems 3.1 and 3.3 for the general case, making use of

Theorem 3.5 (a) only. We shall use an approximation argument and introduce the following

notation:

Definition 8.1 Let L be a Lévy process. Then for any ε > 0, the
√
ε-cut Lévy process

(L
(ε)
t )t≥0 is defined by

L
(ε)
t :=

∑
0<s≤t,|∆Ls|≥

√
ε

|∆Ls|, t ≥ 0.

If (Yt)t≥0 is a state vector process of a COGARCH(p, q) process driven by L, then the

COGARCH(p, q) process with the same parameters and starting vector but driving Lévy

process (L
(ε)
t )t≥0 will be denoted by (Y

(ε)
t )t≥0.

The quadratic covariation of L(ε) is given by

[L(ε), L(ε)]t = [L(ε), L(ε)]
(d)
t =

∑
0<s≤t,|∆Ls|2≥ε

|∆Ls|2.

In particular, the corresponding COGARCH volatility results in being driven by a com-

pound Poisson process. With this notation, we have the following lemma:

Lemma 8.2 Let (Yt)t≥0 be the state vector process of a COGARCH(p,q) process. Then

Y
(ε)
t converges in ucp to Yt, as ε→ 0.

Proof of Lemma 8.2. This is an easy consequence of perturbation results in stochastic

differential equations: recalling the definition of prelocal convergence in Hp, 1 ≤ p ≤ ∞,

as in Protter [25], page 260, it is easy to see that [L(ε), L(ε)] converges prelocally to [L,L](d)

in Hp, 1 ≤ p ≤ ∞, as ε → 0 (for example, with stopping times as in the proof of [25],

Theorem 4 of Chapter V, page 247). The claim then follows from Theorems 14 and 15 of

Chapter V in [25]. �
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Proof of Theorems 3.1 and 3.3. We shall first concentrate on (3.3) and (3.4) and then

prove Theorem 3.1 and the rest of Theorem 3.3 simultaneously. Let ε > 0, and assume

the representation

[L(ε), L(ε)]t =

Γ
(ε)
Nε(t)∑
i=1

Z
(ε)
i ,

where L(ε) is the
√
ε–cut Lévy process of Definition 8.1. Define C

(ε)
i and D

(ε)
i similarly as

in Theorem 3.5. Further, let

J
(ε)
0,t := eB(t−Γ

(ε)
Nε(t)

)C
(ε)
Nε(t)
· · ·C(ε)

1 ,

K
(ε)
0,t := eB(t−Γ

(ε)
Nε(t)

)

sgn(Nε(t))D
(ε)
Nε(t)

+

Nε(t)−2∑
i=0

C
(ε)
Nε(t)
· · ·C(ε)

Nε(t)−iD
(ε)
Nε(t)−i−1

 .

Then, by Theorem 3.5 (a),

Y
(ε)
t = J

(ε)
0,t Y0 + K

(ε)
0,t . (8.4)

From the previous Lemma we know that Y
(ε)
t converges in ucp to Yt as ε→ 0. Since this

is true for any starting value Y0, it holds in particular for Y0 = 0, and from (8.4) follows

that K
(ε)
0,t converges in ucp to some K0,t, as ε → 0. Hence, again from (8.4) follows that

for arbitrary Y0,

J
(ε)
0,t Y0 = Y

(ε)
t −K

(ε)
0,t

ucp→ Yt −K0,t, as ε→ 0.

Since this holds for arbitrary Y0, we conclude that J
(ε)
0,t converges in ucp to some J0,t as

ε→ 0. From (8.4) then follows

Yt = J0,tY0 + K0,t.

By starting at an arbitrary time s instead of at time 0, we obtain (3.3). For example, J
(ε)
s,t

is given by

J
(ε)
s,t = eB(t−Γ

(ε)
Nε(t)

)CNε(t) . . . CNε(s)+2(I + ZNε(s)+1ea′)eB(Γ
(ε)
Nε(s)+1

−s), 0 ≤ s ≤ t,

giving (3.4). The independence and stationarity assertions on (Js,t,Ks,t) are clear, since

Js,t and Ks,t are constructed only from the segment (Lu)s<u≤t of the Lévy process L.

Now assume that all eigenvalues of B are distinct and that (3.2) holds. Applying (8.2)
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to J
(ε)
0,t gives

‖J (ε)
0,t ‖B,r ≤

∥∥∥eB(t−Γ
(ε)
Nε(t)

)
∥∥∥
B,r

∥∥∥C(ε)
Nε(t)

∥∥∥
B,r
· · ·
∥∥∥C(ε)

1

∥∥∥
B,r

≤ eλ(t−Γ
(ε)
Nε(t)

)
Nε(t)∏
i=1

(
(1 + Z

(ε)
i ‖ea′‖B,r)eλ(Γ

(ε)
i −Γ

(ε)
i−1)
)

= eλt exp

Nε(t)∑
i=1

log(1 + Z
(ε)
i ‖S−1ea′S‖r)

 (8.5)

≤ eλt exp

(∑
0<s≤t

log(1 + (∆Ls)
2‖S−1ea′S‖r)

)
. (8.6)

Since ‖J0,t‖B,r ≤ lim supε→0 ‖J
(ε)
0,t ‖B,r, we conclude that

log ‖J0,t‖B,r ≤ λt+
∑

0<s≤t

log(1 + (∆Ls)
2‖S−1ea′S‖r), (8.7)

giving

E log ‖J0,t‖B,r ≤ t

(
λ+

∫
R

log(1 + ‖Sea′S−1‖y2) dνL(y)

)
< 0

by (3.2) (see e.g. Protter [25], Chapter I, Theorems 36 and 38). This is the left hand

inequality of (3.6). To show that E log+ ‖K0,t‖B,r <∞, observe that

‖K(ε)
0,t‖B,r

≤ eλ(t−Γ
(ε)
Nε(t)

)sgn(Nε(t))α0‖e‖B,r Z(ε)
Nε(t)

+α0‖e‖B,r
Nε(t)−2∑
i=0

eλ(t−Γ
(ε)
Nε(t)−i−1

)
(

1 + Z
(ε)
Nε(t)
‖ea′‖B,r

)
· · ·
(

1 + Z
(ε)
Nε(t)−i‖ea′‖B,r

)
×Z(ε)

Nε(t)−i−1 (8.8)

≤ α0‖e‖B,r sgn(Nε(t))Z
(ε)
Nε(t)

+α0 ‖e‖B,r
Nε(t)−2∑
i=0

exp

(∑
0<s≤t

log(1 + (∆Ls)
2‖ea′‖B,r)

)
Z

(ε)
Nε(t)−i−1

≤ α0‖S−1e‖r exp

(∑
0<s≤t

log(1 + (∆Ls)
2‖S−1ea′S‖r)

) ∑
0<s≤t

(∆Ls)
2. (8.9)

From this follows that

log ‖K0,t‖B,r ≤ log(α0‖S−1e‖r) +
∑

0<s≤t

log(1 + (∆Ls)
2‖S−1ea′S‖r) + log [L,L]

(d)
t .
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The expectation of the second summand is finite as shown above, and E(log[L,L]
(d)
t ) <∞

since
∫

(1,∞)
log x dν[L,L](x) =

∫
R\[−1,1]

log x2 dνL(x) <∞, showing the right hand inequality

of (3.6).

Let (Jn,Kn)n∈N be an iid sequence with distribution (J0,1,K0,1), independent of L and

Y0. Let γ ∈ [0, 1) and n ∈ N. Then it follows from (3.3) that

Yn+γ = Kn+γ−1,n+γ +
n−2∑
i=0

Jn+γ−1,n+γ · · · Jn+γ−i−1,n+γ−iKn+γ−i−2,n+γ−i−1

+Jn+γ−1,n+γ · · · Jγ,γ+1Yγ

d
= K1 +

n−1∑
i=1

J1 · · · Ji Ki+1 + J1 · · · JnYγ

=: Gn +HnYγ, say.

Since E log ‖J1‖B,r < 0 and E log+ ‖K1‖B,r < ∞, it follows from the general theory of

random recurrence equations (e.g. Bougerol and Picard [7]) that Hn converges almost

surely to 0 as n → ∞ and that Gn converges almost surely absolutely to some random

vector G, as n→∞. Since Y has càdlàg paths, it follows that supγ∈[0,1) ‖Yγ‖B,r is almost

surely finite. Hence

lim
n→∞

sup
γ∈[0,1)

‖HnYγ‖B,r = 0 a.s.,

and it follows that Yt converges in distribution to Y∞ := G as t → ∞. That Y∞

satisfies (3.5) and is the unique solution is clear by the theory of random recurrence

equations. Equations (3.5) and (3.3) then imply that if Y0
d
= Y∞, then Yt

d
= Y∞ for all

t > 0, showing strict stationarity of (Yt)t≥0 since it is a Markov process. �

9 Proofs for Section 4

In order to prove Proposition 4.1, we will show that the state vector process (Yt)t≥0 can

be majorised by the state vector process of a COGARCH(1,1) process, for which we can

apply the moment conditions of [20]. We further show that under the conditions of Theo-

rem 3.1, the stationary distribution Y∞ can be approximated by stationary distributions

of compound Poisson driven COGARCH processes, and that there is a majorant for this

approximation. This will allow to restrict attention to compound Poisson driven processes

when calculating autocorrelations, the general case following from Lebesgue’s dominated

convergence theorem. This is the contents of the next lemma:

Lemma 9.1 Let (Yt)t≥0 be the state vector process of a COGARCH(p, q) process with

parameters B, a and α0 > 0 such that all eigenvalues of B are distinct and that λ =
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λ(B) < 0. Let r ∈ [1,∞], S such that S−1BS is diagonal, and denote by ‖ · ‖B,r the

vector norm defined in (3.7). Further, denote by (Yt)t≥0 the state vector process of a

COGARCH(1,1) process with (1 × 1)–matrix λ, vector ‖ea′‖B,r ∈ R1, scaling parameter

α0‖e‖B,r > 0 and initial state vector Y0 := ‖Y0‖B,r. Then

‖Yt‖B,r ≤ Yt, t ≥ 0. (9.1)

If (3.2) is satisfied for this r, then there exist versions of Y∞ and Y∞ such that

‖Y∞‖B,r ≤ Y∞. (9.2)

Further, if (Y
(ε)
t )t≥0 is the process defined in Definition 8.1 for ε > 0, then versions of

Y
(ε)
∞ can be chosen such that ‖Y(ε)

∞ ‖B,r ≤ Y∞ for all ε > 0 and Y
(ε)
∞

P→ Y∞, as ε→ 0.

Proof of Lemma 9.1. We use the notations and setup of the proof of Theorems 3.1

and 3.3. Let ε > 0 and define a COGARCH(1,1) state vector process Y
(ε)

similarly as

above (with respect to Y(ε)). Let J
(ε)

0,t and K
(ε)

0,t be defined similarly as J
(ε)
0,t and K

(ε)
0,t (with

respect to Y
(ε)

). Then it is easy to see that J
(ε)

0,t and K
(ε)

0,t are the right hand sides of (8.5)

and (8.8), respectively. In particular, ‖J (ε)
0,t ‖B,r ≤ J

(ε)

0,t and ‖K(ε)
0,t‖B,r ≤ K

(ε)

0,t , and since J
(ε)

0,t

and K
(ε)

0,t converge in ucp as ε→ 0 to some J0,t and K0,t such that

Yt = J0,tY0 + K0,t,

it follows that ‖Yt‖B,r ≤ Yt for fixed t ≥ 0, giving (9.1).

Similar quantities such as J
(ε)

s,t and Js,t can be defined when going from time s to time

t, and similar results hold. Let V
(ε)

t := α0‖e‖B,r + ‖ea′‖B,r Y
(ε)

t− be the COGARCH(1,1)

volatility corresponding to Y
(ε)

. Define

Xt := −λt−
∑

0<s≤t

log(1 + (∆Ls)
2‖ea′‖B,r),

X
(ε)
t := −λt−

∑
0<s≤t,(∆Ls)2≥ε

log(1 + (∆Ls)
2‖ea′‖B,r).

Then it follows from Theorem 2.2 and (1.4), that

V
(ε)

t+ =

(
V 0 − α0‖e‖B,rλ

∫ t

0

eX
(ε)
s ds

)
e−X

(ε)
t .

Thus we have J
(ε)

0,t = e−X
(ε)
t and obtain another formula for K

(ε)

0,t , namely

K
(ε)

0,t = ‖ea′‖−1
B,r

[
α0‖e‖B,r e−X

(ε)
t − α0‖e‖B,rλ

∫ t

0

e−(X
(ε)
t −X

(ε)
s ) ds− α0‖e‖B,r

]
.
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From this it can be seen that J
(ε)

0,t and K
(ε)

0,t are bounded by J0,t = e−Xt and

K0,t = ‖ea′‖−1
B,r α0‖e‖B,r

[
e−Xt − λ

∫ t

0

e−(Xt−Xs) ds− 1

]
,

respectively. Now define the versions

Y∞ :=
∞∑
i=0

J0,1 · · · J i−1,iKi,i+1,

Y(ε)
∞ :=

∞∑
i=0

J
(ε)
0,1 · · · J

(ε)
i−1,iK

(ε)
i,i+1,

Y∞ :=
∞∑
i=0

J0,1 · · · Ji−1,iKi,i+1.

In the proof of Theorems 3.1 and 3.3 we have seen that (3.2) implies that the sum defining

Y∞ converges almost surely. This then gives the claim, since

‖Ji−1,i‖B,r, ‖J (ε)
i−1,i‖B,r ≤ J i−1,i, ‖Ki,i+1‖B,r, ‖K(ε)

i,i+1‖B,r ≤ Ki,i+1,

and J
(ε)
i−1,i and K

(ε)
i,i+1 converge in probability to Ji−1,i and Ki,i+1 as ε → 0, respectively.

�

Proof of Proposition 4.1. All assertions apart from the implication “(4.2) =⇒ λ(B̃) <

0” follow immediately from Lemma 9.1 (observing that the existence of E‖Yt‖k is indepen-

dent of the specific matrix norm) and the corresponding properties of the COGARCH(1,1)

process, see Section 4 in [20]. That (4.2) implies λ(B̃) < 0 is a consequence of the Bauer-

Fike perturbation result on eigenvalues, stating that for every eigenvalue λ̃j of B̃ we have

min
i=1,...,q

|λi − λ̃j| ≤ ‖S−1(B̃ −B)S‖r = µ ‖S−1ea′S‖r,

see e.g. Theorem 7.2.2 and its proof in Golub and van Loan [18]. �

Proof of Theorem 4.2. Since for fixed t, almost surely Vt = Vt+ = α0 + a′Yt, we obtain

cov (Vt+h, Vt) = a′ cov (Yt+h,Yt) a. (9.3)

For the ease of notation, we will assume that t = 0. Let Jh := J0,h and Kh := K0,h as

constructed in the proof of Theorem 3.3. Then, using that ‖eBt‖ ≤ e‖B‖t for any vector

norm ‖ · ‖, it follows as in the proof of (8.6) that

E‖Jh‖ ≤ e‖B‖tE

{
exp

( ∑
0<s≤h

log(1 + (∆Ls)
2‖ea′‖)

)}
<∞ (9.4)
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by [20], Lemma 4.1 (a). Using that Yh = JhY0 + Kh, we conclude that E‖Kh‖ <∞ and

that

E(YhY
′
0) = E(E(YhY

′
0|Jh,Kh))

= E (JhE(Y0Y
′
0) + KhE(Y′0)) = E(Jh)E(Y0Y

′
0) + E(Kh)E(Y′0).

On the other hand,

E(Yh)E(Y′0) = E(Jh)E(Y0)E(Y′0) + E(Kh)E(Y′0),

so that cov (Yh,Y0) = E(Jh) cov (Y0), and (4.4) will follow from (9.3) once we have

shown that

E(Jt) = eB̃t, t ≥ 0. (9.5)

To do that, it suffices to assume that [L,L]t is a compound Poisson process. The general

case then follows from the fact that J
(ε)
t as defined in the proof of Theorem 3.1 converges

to Jt in L1 as ε → 0, since it converges stochastically and since there is an integrable

majorant by (9.4) and its proof. So suppose that [L,L]t =
∑N(t)

i=1 Zi is compound Poisson

with intensity c > 0 and let Ci = (I + Ziea′) eB(Γi−Γi−1). Then, for 0 ≤ s, t, it follows

from (3.4) and the independence of J0,s and Js,s+t that

E(Js+t) = E(Js)E(Jt).

It is easy to see that E(Jt) is a continuous function in t ∈ [0,∞). Further, E(J0) = I, and

we conclude that (E(Jt))t≥0 is a semigroup. We shall show that its generator AJ satisfies

AJ := lim
t→0

1

t
(E(Jt)− I) = B +

∫
R

y2 dνL(y) ea′ = B̃. (9.6)

This then implies (9.5), since E(Jt) = etAJ , see e.g. Goldstein [12], Proposition 2.5. To

show (9.6), write

Jt = eBt 1{N(t)=0} + eB(t−Γ1)C1 1{N(t)=1} + eB(t−ΓN(t))CN(t) · · ·C1 1{N(t)≥2}. (9.7)
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SinceN(t) is Poisson distributed with parameter ct, we have P (N(t) = k) = e−ct(ct)k/(k!).

Then by (9.4),

E
(
eB(t−ΓN(t))CN(t) · · ·C1 1{N(t)≥2}

)
≤ e‖B‖tE

exp

N(t)∑
i=1

log(1 + Zi‖ea′‖)

 1{N(t)≥2}


= e‖B‖tE

exp

N(t)∑
i=1

log(1 + Zi‖ea′‖)

∣∣∣N(t) ≥ 2

 P (N(t) ≥ 2)

≤ e‖B‖tE

exp

N(t)+2∑
i=1

log(1 + Zi‖ea′‖)

 P (N(t) ≥ 2)

= e‖B‖tE ((1 + Z1‖ea′‖)(1 + Z2‖ea′‖) E

(
exp

(∑
0<s≤t

log(1 + (∆Ls)
2‖ea′‖)

))
×P (N(t) ≥ 2)

= o(t) as t→ 0, (9.8)

since P (N(t) ≥ 2) = o(t) as t → 0. Further, since Γ1 is uniformly distributed on (0, t),

conditional that N(t) = 1, it follows that

E
(
eB(t−Γ1)C1 1{N(t)=1}

)
= E

(
eB(t−Γ1)(I + Z1ea′)eBΓ1

∣∣∣N(t) = 1
)
P (N(t) = 1)

=

∫ t

0

eB(t−s) (I + E(Z1)ea′)eBs
ds

t
e−ct ct.

Since sup0≤s≤t ‖eBs − I‖ converges to 0 as t→ 0, we conclude that

lim
t→0

1

t
E
(
eB(t−Γ1)C1 1{N(t)=1}

)
= (I + E(Z1)ea′)c.

Now (9.7) and (9.8) give (9.6), since

lim
t→0

E(Jt)− I
t

= lim
t→0

eBte−ct − I
t

+ c(I + E(Z1)ea′) = −c I +B + c(I + E(Z1)ea′) = B̃.

�

We need the following lemma:

Lemma 9.2 Let T be exponentially distributed with parameter c, and suppose that λ(B) <

0. Let

M := E(eBT ⊗ eBT ).
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Then

E(eBT ) =
(
I − c−1B

)−1
, (9.9)

M−1 = Iq2 −
(
I ⊗ (c−1B)

)
−
(
(c−1B)⊗ I

)
. (9.10)

Further, (I ⊗ B) + (B ⊗ I) is invertible, and for any real (q × q)–matrix U the unique

solution of ((I ⊗B) + (B ⊗ I)) x = vec (U) is given by

x = vec

(
−
∫ ∞

0

eBt U eB
′t dt

)
. (9.11)

Here, we denote by I the (q× q)–identity matrix, and by Iq2 the (q2× q2)–identity matrix.

Proof. Equations (9.9) and (9.10) follow by simple calculations and a diagonalisation

argument, while invertibility of (I⊗B)+(B⊗I) and (9.11) are consequences of Lyapunov’s

theorem for the solution of Lyapunov equations, see e.g. Section 9.3 in Godunov [17]. �

Proof of Lemma 4.3. Suppose first that the Lévy measure of L is finite and let Q and

R be as in Theorem 3.5 (b) (writing (T, Z) instead of (T0, Z0)). Then by Lemma 9.2,

E(Q) =
(
I − c−1B

)−1
(I + E(Z)ea′),

E(R) = α0E(Z)
(
I − c−1B

)−1
e,

so that (3.11) gives

(I − E(Q))E(Y∞) = E(R).

Further,(
I − c−1B

)
(I − E(Q)) =

[(
I − c−1B

)
− I − E(Z)ea′

]
= −1

c
(B + µea′),

giving

E(Y∞) = −c(B + µea′)−1
(
I − c−1B

)
E(R) = −α0µ(B + µea′)−1e.

Denoting u = (u1, . . . , uq)
′ := (B + µea′)−1e, it is easy to see that u2 = . . . = uq = 0

and u1 = 1/(α1µ− βq). In the case when νL is infinite the result follows from Lemma 9.1,

using that Y ∞ is an integrable majorant by (4.2). �

Proof of Theorem 4.4. By Lemma 9.1 and the dominated convergence theorem, it is

sufficient to assume that [L,L] is a compound Poisson process. Hence, let Q and R be as

in Theorem 3.5, writing (T, Z) instead of (T0, Z0), where T is exponentially distributed

with parameter c > 0. Then

E(Y∞Y′∞)− E(QY∞Y′∞Q
′) = E(QY∞R′) + E(RY′∞Q

′) + E(RR′) (9.12)
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by (3.11), and all these expectations exist by (4.3). Now

E(QY∞Y′∞Q
′) = E (E[QY∞Y′∞Q

′|Q])

= E (E[QE(Y∞Y′∞)Q′|T ])

= E
(
eBT E [(I + Zea′)E(Y∞Y′∞) (I + Zae′)] eB

′T
)
.

Using that vec (A1A2A3) = (A′3 ⊗ A1)vec (A2) for matrices A1, A2 and A3 it follows with

M as in Lemma 9.2 that

vec (E(QY∞Y′∞Q
′))

= M vec (E ((I + Zea′)E(Y∞Y′∞)(I + Zae′)))

= M (E ((I + Zea′)⊗ (I + Zea′))) vec (E(Y∞Y′∞))

= M
(
Iq2 + E(Z)((ea′)⊗ I) + E(Z)(I ⊗ (ea′)) + E(Z2)((ea′)⊗ (ea′))

)
vec (E(Y∞Y′∞)).

Similar expressions can be obtained for vec (E(QY∞R′)), vec (E(RY′∞Q
′)) and vec (E(RR′))

and we obtain from (9.12) that[
Iq2 −M

(
Iq2 + E(Z)((ea′)⊗ I) + E(Z)(I ⊗ (ea′)) + E(Z2)((ea′)⊗ (ea′))

)]
vec (E(Y∞Y′∞))

= M vec
[
α2

0E(Z2)ee′ + α0(E(Z)I + E(Z2)ea′)E(Y∞)e′ + α0eE(Y′∞)(E(Z)I + E(Z2)ae′)
]

Multiplying this equation by cM−1, using (9.10), (4.5) as well as µ = cE(Z) and ρ =

cE(Z2), we obtain

−
[
(I ⊗ (B + µea′)) + ((B + µea′)⊗ I) + ρ((ea′)⊗ (ea′))

]
vec (E(Y∞Y′∞))

= vec
[
α2

0ρee′ − α2
0(µI + ρea′)µ(B + µea′)−1ee′ − α2

0ee′(B′ + µae′)−1µ(µI + ρae′)
]
.

Adding to this[
(I ⊗ B̃) + (B̃ ⊗ I) + ρ((ea′)⊗ (ea′))

]
vec (E(Y∞)E(Y′∞))

= vec
[
B̃ E(Y∞)E(Y′∞) + E(Y∞)E(Y′∞) B̃′ + ρea′E(Y∞)E(Y′∞)ae′

]
= α2

0 vec
[
µ2ee′(B̃′)−1 + µ2B̃−1ee′ + ρµ2ea′B̃−1ee′(B̃′)−1ae′

]
on both sides results in

−
[
(I ⊗ B̃) + (B̃ ⊗ I) + ρ((ea′)⊗ (ea′))

]
vec (cov(Y0))

= α2
0ρ
[
1− µ

(
a′B̃−1e

)]2

vec (ee′) =
α2

0β
2
qρ

(βq − µα1)2
vec (ee′),

which is (4.6), where we used (4.5) in the last equation.
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Now let A := (I ⊗ B̃) + (B̃ ⊗ I) and x := vec (cov(Y∞)). By Proposition 4.1 and

Lemma 9.2, A is invertible. Observe that the matrix ρ((ea′)⊗ (ea′)) has non-zero entries

only in the last row. Denote this row by c′. Further, set γ := ρα2
0β

2
q (µα1 − βq)−2. Then

(4.6) can be written as

Ax + (c′x)eq2 = −γ eq2 .

We know already that a solution to this equation exists. Suppose there are two of them,

call them x1 and x2. Then Ax1 = −(γ + c′x1)eq2 and Ax2 = −(γ + c′x2)eq2 . Denoting

the unique solution of Ay = −n eq2 by y(n), n ∈ R, it follows that x1 = y(γ + c′x1)

and x2 = y(γ + c′x2). Since x1 6= 0 6= x2, this implies γ + c′x1 6= 0 6= γ + c′x2, and

using the linearity of the solution y(n) in n it follows that there is κ 6= 0 such that

x2 = κx1. Thus we have Ax1 = −(γ + c′x1)eq2 and κAx1 = −(γ + κc′x1)eq2 , and this is

only possible if κ = 1, so x1 = x2. So the solution of (4.6) is unique, implying that the

matrix A+ ρ((ea′)⊗ (ea′)) is invertible.

By (9.11), the solution y(n) of Ay = −neq2 is given by

y(n) = vec

(
n

∫ ∞
0

eB̃tee′eB̃
′t dt

)
. (9.13)

This gives

cov (Y∞) = (γ + c′ vec (cov (Y∞)))

∫ ∞
0

eB̃tee′eB̃
′t dt.

Since both cov (Y∞) and
∫∞

0
eB̃tee′eB̃

′t dt are positive semidefinite, it follows that γ +

c′ vec (cov (Y∞)) > 0. By Brockwell [9], the stationary CARMA state vector ζ∞ has

covariance matrix

cov (ζ∞) = ρ

∫ ∞
0

eB̃tee′eB̃
′t dt,

so that there is u > 0 such that

cov (Y∞) = u cov (ζ∞). (9.14)

Inserting (9.14) in (4.6) and using (9.13) shows

−uρ vec (ee′) + uρ2 vec

(
ea′
∫ ∞

0

eB̃tee′eB̃
′t dt ae′

)
=
−α2

0β
2
qρ

(βq − µα1)2
vec (ee′),

so that

−u(1−m) vec (ee′) =
−α2

0β
2
q

(βq − µα1)2
vec (ee′).

Since u > 0 and α0, βq 6= 0, it follows that 0 ≤ m < 1 and that

u =
α2

0β
2
q

(βq − µα1)2(1−m)
,
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giving (4.7). This implies (4.8) using V∞ = α0 + a′Y∞, and (4.9) follows from (4.5).

Finally,

E(ψ∞) = a′E

∫ ∞
0

eB̃te dL̃t = µ

∫ ∞
0

a′eB̃te dt = −µa′B̃−1e,

giving (4.10), and (4.11) and (4.12) are direct consequences of (4.4), (4.7) and the auto-

covariance function of a CARMA process (see Brockwell [9]). �

10 Proofs for Section 5

Proof of Theorem 5.1. (a) Suppose that (5.1) and (5.2) both hold. By Lemma 8.2, it

suffices to show (5.3) for the case that [L,L] =
∑N(t)

i=1 Zi is a compound Poisson process,

with jump times (Γn)n∈N. Then it follows easily by induction from (2.3) and (8.1) that

Yt = eBtY0 +

N(t)∑
i=1

eB(t−Γi)eVΓiZi, t ≥ 0.

In view of the proof of (b) below, let s ≥ 0. Then

a′eBsYt = a′eB(s+t)Y0 +

N(t)∑
i=1

a′eB(s+t−Γi) eVΓiZi (10.1)

≥ γ +

N(t)∑
i=1

a′eB(s+t−Γi) eVΓiZi. (10.2)

Setting s = 0, it follows that Vt = α0 + a′Yt− ≥ α0 + γ for t ∈ [0,Γ1], hence also

VΓ1+ ≥ α0 +γ ≥ 0 by (5.1) and (10.2), and an induction argument shows that Vt ≥ α0 +γ

for all t ≥ 0, i.e. (5.3) holds.

For the converse, suppose first that (5.2) fails. Then, using the continuity of the func-

tion t 7→ eBt, it follows that there is (t1, t2) ⊂ (0,∞) such that P (α0 + a′eBtY0 < 0 ∀ t ∈
(t1, t2)) > 0, and since P (Γ1 > t2) > 0 we get the claim from (10.1). So suppose that (5.2)

holds with γ > −α0, but (5.1) fails. Suppose that the support of the Lévy measure of

the compound Poisson process [L,L] (and hence the support of the jump distribution Z1)

is unbounded. Let (t3, t4) ⊂ (0,∞) be an interval such that a′eBte ≤ −c1 < 0 for all

t ∈ (t3, t4) for some c1 < 0. Let t5 > t4. By (5.2) we have P (VΓ1 ≥ α0 + γ) = 1, so that it

is easy to see that the set

A := {Γ1 < t5 < Γ2, t5 − Γ1 ∈ (t3, t4), VΓ1 ≥ α0 + γ}

has positive probability. On A, we have by (10.1)

Vt5 = α0 + a′eBt5Y0 + a′eB(t5−Γ1) eVΓ1Z1.
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Now a′eB(t5−Γ1)e ≤ −c1, and by choosing Z1 (which is independent of Γ1,Γ2 and Y0) large

enough we obtain P (Vt5 < 0) > 0.

(b) In view of (a) it remains to show that Y∞ satisfies (5.2). For the proof of this, it

suffices by Lemma 9.1 to assume that [L,L] is compound Poisson. Let (Ỹt)t≥0 be a state

vector process with Ỹ0 = 0. Then (5.2) holds for Ỹ0 with γ = 0, and it follows from (10.2),

(5.1) and (5.3) that a′eBsỸt ≥ 0 for all s, t ≥ 0. Since Ỹt converges in distribution to Y∞

as t→∞, (5.2) follows with γ = 0. �

11 Proofs for Section 6

Proof of Theorem 6.1. We mimic the proof of Proposition 5.1 of [20], i.e. in the CO-

GARCH(1,1) case. Observe that (6.1) and (6.3) follow immediately, since (Lt)t≥0 is a

zero-mean martingale. Further, (Gt)t≥0 is a square integrable martingale, and using the

compensation formula (e.g. Bertoin [5], page 7), we have

EG2
r = E

∫ r

0

Vs d[L,L]s = E
∑

0<s≤r

Vs(∆Ls)
2 = E(L1)2rE(V∞),

and (6.2) follows from (4.9). Before showing (6.4), we verify that EG4
t < ∞ if (4.3)

is satisfied: it follows from the Burkholder-Davis-Gundy inequality (see e.g. Protter [25],

page 222) that EG4
t <∞ if E[G,G]2t <∞. Let V t = α0‖e‖B,r+‖ea′‖B,rYt− the volatility

of the COGARCH(1,1) process constructed in Lemma 9.1, and let Gt =
∫ t

0

√
V t dLt the

corresponding GOGARCH(1,1) price process. Then it follows from Lemma 9.1 that there

is C1 > 0 such that

0 ≤ Vs = α0 + a′Ys− ≤ α0 + C1Ys− = α0 + C1
V s − α0‖e‖B,r
‖ea′‖B,r

.

Then

[G,G]t =

∫ t

0

Vs d[L,L]s ≤
C1

‖ea′‖B,r

∫ t

0

V s d[L,L]s +

(
α0 −

C1α0‖e‖B,r
‖ea′‖B,r

)
[L,L]t

=
C1

‖ea′‖B,r
[G,G]t +

(
α0 −

C1α0‖e‖B,r
‖ea′‖B,r

)
[L,L]t,

so that again by the Burkholder-Davis-Gundy inequality and Doob’s maximal inequality

finiteness of EG
4

t implies finiteness of E[G,G]2t and hence of EG4
t . That EG

4

t < ∞ was

already used in [20].

Denote by Er the conditional expectation with respect to the σ-algebra Fr. Using

partial integration, we have

(G
(r)
h )2 = 2

∫ h+r

h+

Gs− dGs + [G,G]h+r
h+ = 2

∫ h+r

h

Gs−
√
Vs dLs +

∑
h<s≤h+r

Vs(∆Ls)
2.
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Since the increments of L on the interval (h, h+ r] are independent of Fr and since L has

expectation 0, it follows that

Er

∫ h+r

h+

Gs−
√
Vs dLs = 0.

Recall that Ys = Jr,sYr + Kr,s by (3.3). Hence we also have Ys− = Jr,s−Yr + Kr,s−, so

that by the compensation formula

Er(G
(r)
h )2 = Er

∑
h<s≤h+r

(α0 + a′Ys−)(∆Ls)
2

= Er
∑

h<s≤h+r

(α0 + a′Jr,s−Yr + a′Kr,s−)(∆Ls)
2

= E(L2
1)α0r + E(L2

1)a′
∫ h+r

h+

(EJr,s−)Yr ds+ E(L2
1)a′

∫ h+r

h+

(EKr,s−) ds

= E(L2
1)

∫ h+r

h

Er(Vs) ds. (11.1)

Since Y∞
d
= Jr,sY∞ + Kr,s by (3.5), with Y∞ independent on the right hand side, and

EJr,s = eB̃(s−r) by the proof of Theorem 4.2, it follows from (4.5) that

EKr,s = (I − eB̃(s−r))
α0µ

βq − α1µ
e1.

Hence

Er(Vs) = α0 + a′eB̃(s−r)Yr + a′
α0µ

βq − α1µ
(I − eB̃(r−s))e1

=
α0βq

βq − α1µ
+ a′eB̃(s−r)

(
Yr −

α0µ

βq − α1µ
e1

)
. (11.2)

Combining
∫ h+r

h
eB̃(s−r) ds = eB̃hB̃−1(I − e−B̃r) with (11.1), (11.2) and (4.5) gives

Er(G
(r)
h )2 = E(L2

1)

(
α0rβq

βq − α1µ
+ a′eB̃hB̃−1(I − e−B̃r) (Yr − EYr)

)
,

and we conclude with (6.2) that

E((G
(r)
0 )2(G

(r)
h )2) = E(Er((G

(r)
h )2G2

r))

= E(L2
1) E

(
α0rβq

βq − α1µ
G2
r + a′eB̃hB̃−1(I − e−B̃r)(Yr − EYr)G

2
r

)
= (E(G2

r))
2 + E(L2

1)a′eB̃hB̃−1(I − e−B̃r)
[
E(YrG

2
r)− (EYr)(EG

2
r)
]
,

showing (6.4). �
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[5] Bertoin, J. (1996) Lévy Processes. Cambridge University Press, Cambridge.

[6] Brandt, A. (1986) The stochastic equation Yn+1 = AnYn + Bn with stationary coeffi-

cients. Adv. in Appl. Probab. 18 (no. 1), 211–220.

[7] Bougerol, P. and Picard, N. (1992) Stationarity of GARCH processes and of some

nonnegative time series. J. Econometrics 52, 115–127.

[8] Brockwell, P.J. (2000) Continuous–time ARMA processes. In: C.R. Rao and

D.N. Shanbhag (Eds.), Stochastic processes: theory and methods, Handbook of Statist.

19, pp. 249-276, North–Holland, Amsterdam.
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Figure 1: The simulated compound-Poisson driven COGARCH(1,3) process with jump-rate 2, normally
distributed jumps with mean zero and variance 0.74 and coefficients α0 = α1 = 1, β1 = 1, β2 = .48 + π2,

and β3 = .64 + .4π2. The graphs show the process (Gt) sampled at integer times (top), the corresponding
increments ((Gt+1 −Gt)) (centre), and the corresponding volatility sequence (σ2

t ) (bottom).
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Figure 2: The sample autocorrelation functions of the volatilities (σt)2 (left) and of the squared CO-
GARCH increments (Gt+1 − Gt)2 (right) of a realisation of (σ2

t , Gt) of length 1000000, the first 8000
values of which are shown in the graphics of Figure 1. The dashed lines show the 95 % confidence bounds.
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