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Abstract

LImited Memory Influence Diagrams (LIMIDs) are general models of decision problems
for representing limited memory policies (Lauritzen and Nilsson (2001)). The evalua-
tion of LIMIDs can be done by Single Policy Updating that produces a local maximum
strategy in which no single policy modification can increase the expected utility. This
paper examines the quality of the obtained local maximum strategy and proposes three
different methods for evaluating LIMIDs. The first algorithm, Temporal Policy Up-
dating, resembles Single Policy Updating. The second algorithm, Greedy Search, suc-
cessively updates the policy that gives the highest expected utility improvement. The
final algorithm, Simulating Annealing, differs from the two preceeding by allowing the
search to take some downhill steps to escape a local maximum. A careful comparison
of the algorithms is provided both in terms of the quality of the obtained strategies,
and in terms of implementation of the algorithms including some considerations of the
computational complexity.

1 Introduction

LImited Memory Influence Diagrams or simply LIMIDs are general models of decision prob-
lems for representing limited memory policies (Lauritzen and Nilsson (2001)). In contrast
to traditional influence diagrams (IDs), LIMIDs have no assumption of no-forgetting, and
consequently the LIMID framework is an extension of IDs. The study of such policies is
motivated in a number of ways, as detailed below.

Limited memory policies are not only simpler; they may also be optimal: In many cases
previous events can be ignored because they are irrelevant given all other available informa-
tion. That is indeed the case in the class of Markovian environments, in which the optimal
choice of a particular decision is completely determined by the latest observation leaving
all other observations irrelevant. Similarly, in IDs it is well-known that optimal decisions
can be made by only considering the so-called requisite information observed up until the

∗This paper is also available electronically from http://www.statistik.lmu.de/sfb386/
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decisions are made (Shachter 1998; Nielsen and Jensen 1999; Nilsson and Lauritzen 2000;
Jensen 2001).

’Full memory policies’ can also be computationally expensive. This holds, for example,
for partially observable Markov decision problems, also known as POMDPs (Lovejoy (1991),
Kaelbling et al. (1998)). Here, optimal policies are based on the whole history, i.e. all previous
observations and all previous actions. Even though there exists exact algorithms for solving
POMDPs, general POMDPs are intractable. Similarly, the performance of IDs in practice
has been disappointing because the existing algorithms compute policies from all requisite
information; a procedure that is bound to fail for most real world applications.

When leaving the territory of ’full memory policies’, finding global optimal policies may be
intractable. Lauritzen and Nilsson (2001) present a LIMID algorithm, termed Single Policy

Updating, which produces a local maximum strategy in which no single policy modification
can increase the expected utility. The algorithm is exact in some, ’soluble’, cases, and only
approximate in other, ’non-soluble’, cases.

Despite the large number of potential applications of non-soluble LIMIDs, we only have
little knowledge on the quality of the local maximum strategies produced by Single Policy
Updating. This paper investigates three algorithms for evaluating LIMIDs in the non-soluble
case. The first algorithm, Temporal Policy Updating, resembles Single Policy Updating.
The second algorithm, Greedy Search, successively updates the policy that gives the highest
expected utility improvement. The final algorithm, Simulating Annealing, differs from the
two preceeding by allowing the search to take some downhill steps to escape a local maximum.
Instead of picking the best move, it picks a random move. The random move dictates to
make an inferior decision with a low, but positive probability. A careful comparison of the
algorithms is provided both in terms of the quality of the obtained strategies, and in terms
of implementation of the algorithms including some considerations of the computational
complexity.

We will illustrate our methods on a robot navigation problem used by e.g. Littman et al.
(1995) and Horsch and Poole (1998). The quantitative specifications are provided from the
latter source.

The Maze Problem

An agent is traversing a maze to reach a goal state. To begin with, the agent is placed
at random in one of 22 valid non-goals and the task is to navigate to the goal state in
at most 10 steps. The maze is shown in Figure 1.

Four sensors, one in each compass direction inform the agent about presence of walls
in neighbouring tiles. Based on this information, the agent decides whether to move n,
s, e, w, or stay in its current position. After 10 steps the game ends and a reward of 1
is given if the current state is the goal state, otherwise no reward is given.

Four agents are examined with different ability to act and sense. The sensor of an agent
can either be perfect or noisy and the actuators of an agent can also either be perfect
or noisy. With perfect actors, moving in a direction where there is a wall always fails.
Otherwise the desired moves always succeeds. Noisy actors on the other hand have a
0.089 probability of not moving, a 0.001 probability of moving in the opposite direction,
a probability of 0.01 for moving in a +90 degree direction and finally a 0.01 probability
for the -90 direction. Except for stay actions which always succeed, the probability of
moving in the desired direction is thus 0.89. In case of walls, all directions containing a
wall are assigned zero probability and the remaining probabilities are normalized. With
perfect sensors, a wall is detected if and only if there is a wall. With noisy sensors, a
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Figure 1: Maze environment. Shaded tiles indicate walls and the star denotes the goal state.

sensor fails to recognize a wall with probability 0.1, and with probability 0.05 a wall is
reported even though no existed.

Whereas such decision problems are typically represented as POMDPs, our model uses
the LIMID representation. The LIMID framework has no assumption of no-forgetting and
consequently it can easily model the situation in which the agent does not remember previous
observations and previous actions. This ability is crucial, because the magnitude of all
previous observations (sensor inputs) grows exponentially and makes it prohibitive to find
an optimal strategy.

2 Limited Memory Influence Diagrams

The present section gives a basic description of LIMIDs as developed in Lauritzen and Nilsson
(2001). For proofs, the reader is referred to this source.

2.1 LIMID Representation

A LIMID is a directed acyclic graph (DAG) with no cycles. There are three types of nodes
in the graph: Chance nodes, shown as circles, represent random variables. Decision nodes,
shown as boxes, represent decision variables. Finally, value nodes, shown as diamonds,
represent (local) utility functions.

We are given a LIMID L with chance nodes Γ, decision nodes ∆, and utility nodes Υ.
We let V = Γ ∪ ∆. Elements in V will be termed nodes or variables interchangeably. The
variable v ∈ V is taking values in a discrete space Xv. For A ⊆ V we write XA for ×v∈AXv.
Typically elements of XA are called configurations and denoted by xA = (xv : v ∈ A). The set
of parents of a node n is denoted pa(n), and the family of d is given by fa(d) = pa(d)∪ {d}.
For S ⊆ V , we let fa(S) be a short-hand notation for ∪{fa(n) : n ∈ S}. Further, de(n)
denotes the descendants of node n.

Arcs in a LIMID have a different meaning depending on which node they go into. Arcs
into chance nodes denote probabilistic (or functional) dependence. Associated with each
chance node r is a nonnegative real function pr on Xr×Xpa(r) such that for each configuration
of Xpa(r), pr adds to 1 when summing over the possible configurations in Xr. The arcs into
value nodes are functional. Associated with each value node u, there is a utility function Uu

on Xpa(u). Arcs into a decision node are informational since they originate from nodes whose
values are known for the decision maker when the decision is to be made. In contrast with
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Figure 2: Basic structure of the LIMID representing the maze example. All informational
arcs are explicitly depicted.

traditional IDs, LIMIDs have no assumption of ‘no forgetting’1.
Figure 2 shows a LIMID representation of the maze problem. The nodes xi and yi denote

the horizontal and vertical position of the agent in the grid at time i. In our representation
of the problem, the only informational arcs into decision node di originate from the current
sensor inputs {nsi, esi, ssi, wsi}. Consequently, our model represents the decision problem
where the agent only remembers the current sensor inputs when decision di is to be made. A
more compact representation would be possible using an object oriented framework (Koller
and Pfeffer (1997), Bangsø and Wuillemin (2000), Höhle et al. (2000)).

2.2 Policies and strategies

A policy for d ∈ ∆ is a nonnegative real function δd on Xd × Xpa(d) such that for each
configuration of Xpa(d), δd adds to 1 when summing over the possible configurations in Xd.
A policy for d is said to be pure, if it prescribes a unique alternative of Xd for each possible
configuration xpa(d) ∈ Xpa(d). Further, a policy is said to be uniform, and denoted δ̄d, if
δ̄d ≡ 1/|Xd|.

A strategy q = {δd : d ∈ ∆} determines a joint distribution of all the variables in V as
(abbreviating xV and XV to x and X respectively)

fq(x) =
∏

r∈Γ

pr(xr|xpa(r))
∏

d∈∆

δd(xd|xpa(d)), x ∈ X .

A strategy is uniform if it consists of uniform policies only. Similarly, a strategy is pure

if it consists of pure policies only. If a strategy is not pure it is called random.
The expected utility of q is the expectation of the total utility U =

∑

u∈Υ Uu wrt. the
joint distribution of V induced by q:

EU(q) =
∑

x∈X

fq(x)U(x).

Throughout we shall use the notion q ∗ δ̃d, where q = {δd : d ∈ ∆} is a strategy and δ̃d is
a policy for d ∈ ∆, to denote the strategy q′ := q \ {δd} ∪ { ˜deltad}. So, q′ is obtained from q
by replacing δd by δ̃d.

1The assumption of ’no forgetting’ implies that decision maker does not forget: If the value of a variable
is known to the decision maker when a decision is to be made, then the variable is also known at the time
of all subsequent decisions.
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A local maximum policy for a strategy q = {δd : d ∈ ∆} at d is a policy δ̃d that satisfies

EU(q ∗ δ̃d) ≥ sup
δ′
d

EU(q ∗ δ′d),

where the supremum is taking over the set of possible policies for d. Further, a local maximum

strategy has the property that all its policies are local maximum policies, i.e., for all d ∈ ∆
and all policies δd we have that EU(q) ≥ EU(q ∗ δd). Finally, a global maximum strategy q̂
is a strategy that maximizes the expected utility, i.e. EU(q̂) ≥ EU(q) for all strategies q.

2.3 Single Policy Updating

Single Policy Updating (SPU) is an iterative procedure for evaluating general LIMIDs. It
starts with the uniform strategy and proceeds by modifying (updating) the policies in a
random or systematically order. If the current strategy is q = {δd : d ∈ ∆} and the policy
for di ∈ ∆ is to be updated, then SPU essentially consists of two steps:

Optimize: Compute a new policy for di:

δ̃di
= arg sup

δdi

EU (q ∗ δdi
) ,

where the supremum is taking over the set of possible policies.

Replace: Redefine q := q ∗ δ̃di
.

So, SPU computes a local maximum policy δ̃di
for q at di, and replaces the current policy

for di by δ̃di
. During SPU, the policies are updated until they converge to a local maximum

strategy where no single policy modification can increase the expected utility.

SPU is an iterative improvement algorithm, i.e. after each policy updating, the expected
utility of the current strategy has increased or is unaltered. Further, SPU converges to a
local maximum strategy in a finite number of updating steps. Convergence is reached, if no
single policy updating can increase the expected utility. Section 2.5 describes how SPU can
be performed by a simple message passing algorithm in a junction tree.

2.4 Potentials

During evaluation of the decision problem, the quantative elements of our LIMID is repre-
sented through entities called potentials.

Let W ⊆ V . A potential on W consists of a pair of real-valued functions φW = (pW , uW )
on XW . The first part pW is called the probability part and is non-negative, and the second
part is called the utility part. We shall need two operations on potentials.

Definition 1 Let φW1
= (pW1

, uW1
) and φW2

= (pW2
, uW2

) be two potentials on W1 and W2.
The combination of φW1

and φW2
is defined by

φW1
⊗ φW2

= (pW1
pW2

, uW1
+ uW2

).
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Figure 3: Junction tree for the maze problem. A short-hand notation has been used: pi =
{nsi, esi, ssi, wsi}, zi = {yi, xi}. Clique Ri contains decision di and its parents pa(di) = pi.

Definition 2 Let φW = (pW , uW ) be a potential on W , and let W1 ⊆ W . The marginaliza-

tion φ↓W1

W of φW on W1 is given by

φ↓W1

W =





∑

W\W1

pW ,

∑

W\W1
pW uW

∑

W\W1
pW



 ,

where
∑

W\W1
is defined as the ’usual’ marginal and a

0
= 0 for all a.

The notion of potential is similar to what is used in Shenoy (1992), Jensen et al. (1994),
and Cowell et al. (1999). Further, the above definitions of combination and marginalization
satisfy the Shenoy-Shafer axioms (Shenoy and Shafer (1990)).

2.5 Junction Tree Representation

The whole decision problem can be represented and evaluated in terms of a junction tree.
A process of compilation, involving various graph-manipulations, such as moralization

and triangulation is performed on the LIMID to make it amenable for evaluation. The result
of the compilation is a tree of cliques C, the junction tree. Figure 3 presents the junction
tree for the LIMID representation of the maze problem.

After initializing the junction tree, a potential φC is associated with each clique C. The
joint potential is defined by the combination of all the cliques potentials:

φV = ⊗C∈CφC =

(

∏

r∈Γ

pr

∏

d∈∆

δd,
∑

u∈Υ

Uu

)

.

SPU evaluates the decision problem by message passing in the junction tree. The struc-
ture of a message from clique C1 to clique C2 is given by

φC1→C2
= (φC1

⊗ (⊗C∈ne(C1)\C2
φC→C1

))↓C2 , (1)

where ne(C1) are the neighbours of C1 in the junction tree, and φC→C1
is the message from

C to C1. The message passing in (1) corresponds to the Shafer-Shenoy propagation scheme
described in Shafer and Shenoy (1990).
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1. Step 1: Retract the policy for d from the potential on R to obtain φ̃R.

2. Step 2: Collect messages to R to obtain φ∗
R.

3. Step 3: Compute φ∗
fa(d) = (φ∗

R)↓fa(d).

4. Step 4: Compute the contraction cfa(d) of φ∗
fa(d).

5. Step 5: For each xpa(d), find a configuration x∗
d ∈ Xd satisfying

x∗
d = arg max

xd

cfa(d)(xd, xpa(d)),

and define δ̃d(xd, xpa(d)) as 1 if xd = x∗
d and 0 otherwise.

6. Step 6: Add δ̃d to the potential on R.

Table 1: Single Policy Updating (SPU). The updating of the policy for decision d, where d
is assigned to root-clique R.

Let φW = (pW , uW ) be a potential on W . The contraction of φW , denoted cont(φW ), is
defined as the real-valued function on XW given as cont(φW ) = pW uW .

Table 1 shows the computational steps performed by SPU. Note that all steps, except
the collect step (Step 2), consists of computations within the root-clique R.

2.6 Soluble LIMIDs

This subsection provides a characterization of LIMIDs for which a global maximum strategy
is achieved during Single Policy Updating.

An optimum policy δ̂d for decision d is a policy that maximizes the expected utility among
all policies for d whatever the other policies in L are. In other words, an optimum policy is
a local maximum policy for all strategies q in L. It is not all decision nodes that have an
optimum policy, but below we provide a graphical characterization of decision nodes that
has an optimum policy. For this purpose, we apply the notion of irrelevance as expressed
through d-separation (Pearl (1986)). Let the symbolic expression

A⊥L B | S

denote that A and B are d-separated by S in the DAG formed by all the nodes in the LIMID
L, i.e. including the utility nodes.

A decision node d0 in L having decision nodes ∆, is said to be extremal in L, if

u⊥L fa(∆ \ {d0}) | fa(d0) (2)

for every utility node u ∈ de(d0)∩Υ. It can be shown that if d0 is extremal in L, then it has
an optimum policy. Further, the optimum policy for d0 is simply a local maximum policy at
d0 for the uniform strategy. The latter provides a simple method for computing an optimum
policy: Start with the uniform strategy in L and update the policy for d0 using SPU (see
Table 1).

A LIMID L is said to have an exact solution ordering d1, . . . , dk, if for all i, di is extremal
in L when di+1, . . . , dk have been converted into chance nodes. In this case, L is said to be
soluble, and it can be shown that SPU converges to a global maximum strategy when the
policies initially are uniform, and they are updated using the order dk, . . . , d1.

7



2.7 Redundant information

Redundant information in a LIMID L is expressed by informational arcs that can be ig-
nored because they are irrelevant. So, irrelevant informational arcs can be removed from L
without effecting the global maximum strategy for L. The results can be used to reduce the
complexity of evaluating L during SPU.

A node n ∈ pa(d) in L is said to be non-requisite for d, if

n⊥L (Υ ∩ de(d)) | (fa(d) \ {n}),

and in this case we say that the informational arc from n to d is non-requisite. A node
(arc) that is not non-requisite is said to be requisite. For instance, it can be seen that all
informational arcs in the LIMID in Figure 2 are requisite.

A reduction of L is obtained by successively removing non-requisite informational arcs
in L. A minimal reduction of L, denoted Lmin, is a reduction of L in which all informational
arcs are requisite. Every LIMID has a unique minimal reduction.

As shown in Lauritzen and Nilsson (2001), extremality is preserved under reduction, i.e.
if d is extremal in L, then d is extremal in any reduction L′ of L. Further, solubility and the
maximum expected utility is also preserved under reduction. In particular these properties
lead to more efficient algorithms for solving influence diagrams (Nilsson and Lauritzen (2000),
and Madsen and Nilsson (2001)).

3 Evaluating non-soluble LIMIDs

The search for a global maximum strategy in a non-soluble LIMID L is computational
prohibitive in general. So, we must rely on approximate methods for the evaluation of L.
This section proposes three algorithms for this task.

The first algorithm, Temporal Policy Updating resembles SPU. The second algorithm,
Greedy Search, successively updates the policy that gives the highest expected utility im-
provement. The final algorithm, Simulating Annealing, differs from the two preceeding
algorithms by dictating an inferior decision with a low, but positive probability.

For computational efficiency, we assume that our starting point is a LIMID L where
non-requisite arcs have been removed – e.g. by the use of the methods in 2.7. Further, we
assume that L has no extremal decision nodes since, as explained in Section 2.6, the case
with one extremal decision node d is easily handled by an initial computation of an optimum
policy δ̃d, and then implement δ̃d by converting d into a chance node with δ̃d as the associated
conditional probability distribution.

3.1 Temporal Policy Updating

It is wellknown that for soluble LIMIDs, the exact solution order is the optimal policy
updating order (Section 2.6). For non-soluble LIMIDs however, we have no knowledge of a
superior updating order. In this subsection, we will argue that it is sensible to use a temporal
solution order:

Definition 3 A temporal solution ordering (d1, . . . , dn) of the decision nodes in L, is an
ordering with the property that for all i, there is no directed path from di to any nodes in
{di+1, . . . , dn}.

8



The acyclicity of LIMIDs ensures the existence of a temporal solution order. For instance,
the LIMID in Figure 2 has a unique temporal solution order (d1, . . . , d10).

For soluble LIMIDs, temporal solution orders and exact solution orders coincide in the
following sense:

Theorem 1 If L is soluble, then there exists an exact solution order of L, which also is a

temporal solution order of L.

To prove Theorem 1, we use that d-separation obeys the graphoid axioms (Verma and Pearl
(1990)). In particular we will need the following axiom: For any subsets A,B,C, and D of
nodes in L we have that

if A⊥L B | C and D ⊆ B then A⊥L D | C. (3)

Proof (Theorem1): Suppose (d1, . . . , dn) is an exact solution order in L, and define T as
the set of pairs given by

T = {(i, j) | i < j, di ∈ de(dj)}. (4)

We want to show that (d1, . . . , dn) is a temporal solution order, i.e. T = ∅. We use the
shorthand notation ∆j = {d1, . . . , dj}, and Υj = de(dj) ∩ Υ. Without loss of generality, we
assume that Υj 6= 0 for all j. The proof is by contradiction.

Suppose (a, b) ∈ T . Since (d1, . . . , dn) is an exact solution ordering we have

Υb ⊥L fa(∆b−1) | fa(db). (5)

Because (a, b) ∈ T , it follows that Υa ⊆ Υb, and fa(∆a) ⊆ fa(∆b−1). So, from (5) and the
graphoid axiom (3) we obtain

Υa ⊥L fa(∆a) | fa(db). (6)

Since Υa ⊆ de(da) and da ∈ de(db), there is a directed path from da to Υa containing no
nodes from fa(db), i.e. Υa 6⊥L da | fa(db). Thus Υa = ∅, and we have reached a contradiction.
The result follows. 2

Theorem 1 provides a heuristic argument for using a temporal solution order for eval-
uating non-soluble LIMIDs: Typically, a non-soluble LIMID L′ has emerged by removing
informational arcs from a soluble LIMID L having exact solution ordering, say (d1, . . . , dn).
It seems sensible to update the policies in L′ using the same ordering (d1, . . . , dn) because
this ordering is optimal for solving L. A natural question rises: Can we deduce an exact
solution ordering of L from L′? The following corollary gives an answer to this question:

Corollary 1 Suppose L′ is obtained by removing informational arcs from a soluble LIMID

L. If (d1, . . . , dn) is a unique temporal solution order in L′, then (d1, . . . , dn) is an exact

solution order in L.

Proof: Suppose L′ is obtained by removing informational arcs from L, and assume (d1, . . . , dn)
is a unique temporal solution order in L′. Then, (d1, . . . , dn) is also a unique temporal solu-
tion order in L and, by Theorem 1, (d1, . . . , dn) is an exact solution order in L. 2

The conditions in Corollary 1 are fulfilled for the Maze problem since the associated
LIMID (Figure 2) has a unique temporal solution ordering (d1, . . . , d10). So, by Corollary 1,

9



Input:

• A minimal reduction L with temporal solution order (d1, . . . , dn);

• Uniform strategy q0 := {δ̄d : d ∈ ∆} and its expected utility EU(q0);

• ǫ > 0;

for a := 1 to ∞ do

1. qa := qa−1;

2. for j := n to 1 do

(a) apply SPU (see Table 1) for decision dj to obtain δ̃dj
;

(b) let qa := qa ∗ δ̃dj
and compute expected utility EU(qa);

3. if EU(qa) − EU(qa−1) < ǫ then stop.

Table 2: The pseudo-code for Temporal Policy Updating.

(d1, . . . , d10) is also an exact solution ordering for the original (soluble) version of the problem
containing all no-forgetting arcs. It is easily seen that this is indeed the case.

After introducing temporal solution orders, we now present the algorithm Temporal Pol-
icy Updating for evaluating a non-soluble LIMID L. The pseudo-code is given in Table 2.
The algorithm is essentially SPU using a temporal solution order, say (d1, ..., dn), of L.
Temporal Policy Updating starts from a uniform strategy and initially computes a local
maximum policy for dn. Then, a local maximum policy for dn−1 is computed and so forth.
The computations are performed by the propagation of flows in a junction tree T . If dj

(j = 1, . . . , n) is assigned to root-clique Rj ⊇ fa(dj) in T , then the initial policy updating
of dn is done by collecting flows towards Rn. Similarly, the policy updating of dn−1 may be
computed by collecting flows towards Rn−1. For efficiency reasons, however, we may only
perform a partial collect, in which flows are only passed along the unique path from Rn

towards Rn−1. Likewise, when subsequent policies are updated, a partial collect propagation
is sufficient. Details can be found in Lauritzen and Nilsson (2001).

3.2 Greedy Search

Greedy Search updates the policy that gives the highest increase in expected utility. So, in
each updating step, Greedy Search examines the result of updating each policy, and updates
the policy that gives the highest increase in expected utility. Typically, this algorithm
demands fewer policy updates before convergence, but each updating step is more time-
consuming than in the previous algorithm.

A pseudo-code of Greedy Search is presented in Table 3. During each policy updating
it is advantageous to distribute flows as follows: Suppose dj is assigned to root-clique Rj,
and assume the policy for dj is the last policy that has been updated. The next policy to
be updated is the policy that gives the highest increase in expected utility (i.e. step 1(a)-(b)
in the algorithm). In principle, we could search for this policy by performing n − 1 collect
propagations towards each of the other root-cliques Rk, k 6= j. This usually involves a great
deal of duplication. Instead, we distribute flows from Rj towards the other root-cliques.
After this ’distribution-phase’, the increase in expected utility by updating the policy for dk,
k 6= j can be computed by with-in clique computations of the root-clique Rk.

10



Input:

• A minimal reduction L with decision nodes ∆ = {d1, ..., dn};

• Uniform strategy q0 := {δ̄d : d ∈ ∆} and its expected utility EU(q0);

• ǫ > 0;

for a := 1 to ∞ do

1. for j := 1 to n do

(a) perform Step 1–5 in SPU (see Table 1) for decision dj to obtain δ̃dj
;

(b) compute expected utility EU(qa−1 ∗ δ̃dj
);

2. let j′ := arg maxj EU(qa−1 ∗ δ̃dj
) and do

(a) add δ̃dj′
to the potential of the root-clique of dj′ ;

(b) for every j 6= j′, re-add the retracted policy for dj to the potential of the root-clique of dj ;

(c) let qa := qa−1 ∗ δ̃dj′
;

3. if EU(qa) − EU(qa−1) < ǫ then stop.

Table 3: The pseudo-code for Greedy Search.

3.3 Simulating Annealing

The problem with the two preceeding algorithms is that both algorithms may quickly get
stuck on a local maximum. Simulated Annealing, on the other hand, allows the search to
take some downhill steps to escape the local maximum. Instead of picking the best move, it
picks a random move. The algorithm selects a randomized strategy for the agent, such that
the best move is chosen with a probability less than one, and the remaining (bad) moves
are chosen with equal probability. Because random strategies are handled and computed
efficiently in LIMIDs, our implementation of Simulated Annealing is obtained by a simple
and efficient modification of SPU.

Table 4 shows the pseudo-code of Simulated Annealing algorithm. A temperature func-
tion is used to determine the probability of picking the best move. At higher ’temperatures’,
’bad’ moves are more likely. Suppose decision d is to be updated and x∗

d is an optimal move
whereas x

′

d is non-optimal. Then the updated policy δd is determined by

δd(x
′

d | xpa(d))

δd(x∗
d | xpa(d))

= Tx,y(c), (7)

where the temperature function Tx,y(c) is a function of the updating cycle c and given by2

Tx,y(c) =
1{y≤c}

x · c
, x ∈ R+, y ∈ N+.

Figure 4 shows Tx,y for different choices of (x, y). From (7), it can be seen that Tx,y can
be interpreted as the odds of picking a non-optimal move versus an optimal move: In the
cth (c ≤ y) cycle, it is c x times more likely to pick an optimal move than an inferior move.
Further, after the yth cycle, the probability of an inferior move drops to zero.

2Here, 1{·} denotes the indicator function. R+ and N+ denote the set of positive real numbers and
positive integers respectively.
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Input:

• A minimal reduction L with temporal solution order (d1, ..., dn);

• Uniform strategy q0 := q̄ and its expected utility EU(q0);

• ǫ > 0;

• Temperature function Tx,y(c) ∈ [0, 1] decreasing in c;

for c := 1 to ∞ do

1. qc := qc−1;

2. for j := n to 1 do

(a) apply SPU (see Table 1) for decision dj as follows:

i. perform Step 1–4;

ii. perform Step 5 in which δ̃dj
is exchanged by (where α is a normalization constanta)

δ̃dj
(xdj

| xpa(dj)) =

{

α if xdj
= x∗

dj

αTx,y(c) else

iii. perform Step 6;

(b) let qc := qc ∗ δ̃dj
and compute expected utility EU(qa);

3. if EU(qa) − EU(qa−1) < ǫ then stop.

aHere, α equals [1 + Tx,y(c) · (|Xd| − 1)]−1 in the case where there is a unique optimal action.

Table 4: The pseudo-code for Simulated Annealing.
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Figure 4: The temperature function Tx,y for different parameter choices.
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Figure 5: Maze 1–3. Shaded tiles indicate walls and the star denotes the goal state.

Simulated Annealing implemented with Tx,y is referred to as SA(x, y). Some comments
regarding the implementation of SA(x, y) are needed. Firstly, SA(x, y) always converges
to a local maximum strategy since the algorithm eventually behaves like Temporal Policy
Updating. Further, it is a deterministic algorithm, i.e. it achieves the same result in two
different runs of the algorithm. Secondly, even though each updating step in SA(x, y) is
just as computationally efficient as in Temporal Policy Updating, SA(x, y) typically needs a
larger number of updates before convergence has occured. Thirdly, during the updating of
the policies, it is advantageous to perform partial propagation as explained in Section 3.1.
Finally, the algorithm is an iterative improvement algorithm: After each policy updating,
the expected utility of the current strategy has increased or is unaltered. This is because
the updated policy always performs at least as good as the current policy.

4 Empirical results

This section presents the performance of the various algorithms on the Maze Problem.

4.1 The problems

Figure 5 shows the three mazes in our experiment. The arrangement of walls is the same
for the mazes, but the goal state differs. For all experiments, the goal state can always be
reached within 10 steps from each starting position.

The algorithms were applied on the LIMID shown in Figure 2. Here, the agent only
remembers the current sensor inputs. So, all previous sensor inputs and all previous actions
are forgotten and will not be taken into account when an action is taken. Clearly, our LIMID
representation of the maze problem is non-soluble because no decision node is extremal (see
(2)).

In Maze 1–3, the perfect agent has a global maximum strategy that always finds the goal
state without the use of past observations. Table 5 shows such a global maximum strategy
for Maze 1.

4.2 The results

The present subsection presents the results of performing the various algorithm on the maze
problem, and assess the quality of the obtained local maximum strategies.

Below follow some implementation details of the three algorithms:

• As precision, ǫ = 0.0001 was chosen for all three algorithms.
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Decision Policy
d1 if possible go south; else if possible go east; else go west;
d2–d8 if possible go south; else go east;
d9 go north;
d10 go east.

Table 5: Maze 1. A global maximum strategy for the perfect agent. The strategy has ’limited
memory’ since current sensor inputs are only used.

MAZE 1 MAZE 2 MAZE 3 Mean

Actuat. noi noi per per noi noi per per noi noi per per

Sensors noi per noi per noi per noi per noi per noi per

Algorithm

SA* .840 .926 .976 1.0 .678 .853 .866 1.0 .800 .958 .977 1.0 .906
Temporal .838 .899 .964 1.0 .653 .836 .866 1.0 .801 .947 .966 1.0 .897
Greedy .838 .899 .964 1.0 .625 .620 .645 1.0 .800 .947 .968 1.0 .859
Simulation

Max .840 .927 .985 1.0 .684 .859 .934 1.0 .801 .961 .981 1.0 .914
Min .816 .898 .962 1.0 .275 .323 .464 .455 .682 .872 .810 .909 .705
Mean .837 .915 .974 1.0 .604 .776 .819 .956 .765 .947 .927 .996 .876

Table 6: Maze 1–3. Expected utilities of strategies obtained by SA∗, TPU and Greedy.
For each of the 12 experiments, some statistics of 500 random simulated local maximum
strategies are also provided.

• In our experiment, Simulated Annealing was implemented using SA(6,3), which hence-
forth is abbreviated to SA∗. As in all applications of simulated annealing, there can be
a large number of different annealing schedules. A robustness analysis of the chosen
parameters (x, y) = (6, 3) is performed in Section 4.4.

• In TPU and SA∗ we updated the policies using the (unique) temporal solution order
(d1, . . . , d10) for our LIMID.

To evaluate the quality of the obtained strategies from our three algorithms, we searched
for a global maximum strategy for each experiment. This search was done by simulation as
follows:3 Initially, we generated a random solution order for the 10 decision nodes. Then,
SPU was applied using the random solution order, to obtain a local maximum strategy.
Table 6 displays the results from our experiment:

3The simulation study is motivated by the fact that the computation of a global maximum strategy in
the non-soluble LIMID representation is computational prohibitive.

MAZE 1 MAZE 2 MAZE 3 Mean

Actuat. noi noi per per noi noi per per noi noi per per

Sensors noi per noi per noi per noi per noi per noi per

SA* 0.0 5.8 39.8 0.0 12.0 5.4 41.0 0.0 13.6 37.2 2.6 0.0 13.1
TPU 39.4 95.6 95.2 0.0 37.4 35.4 41.0 0.0 0.0 72.0 11.6 0.0 35.6
Greedy 39.4 95.6 95.2 0.0 52.2 90.2 90.2 0.0 13.6 72.0 7.2 0.0 46.3

Table 7: Maze 1–3. The fraction (in percentage) of the 500 random simulated local maximum
strategies whose expected utility exceeds the obtained strategies from SA∗, TPU, and Greedy.
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Actuators noi noi per per

Sensors noi per noi per

RAF .7045 .8874 .7767 .8696

Table 8: Maze 1. The results from the Random Access Refinement (RAF) algorithm de-
scribed in Horsch and Poole (1998).

• In Maze 1, the quality of all simulated local maxima is similar which can be seen from
the small difference between the Min and Max values. To some extent, this conclusion
also holds for Maze 3.

• In Maze 2, which represents the hardest decision problem, some of the randomly gen-
erated local maximum strategies are significantly inferior to the global maximum. For
instance, in Maze 2 with the perfect agent, there exists a local maximum strategy that
only finds the goal state with probability 45.5%, which is far from the global maximum
strategy that always finds the goal state.

• The strategies obtained by SA∗, TPU, and Greedy always find the goal state for the
perfect agent.

Overall, SA∗ outperforms the two other algorithms as documented by the following ob-
servations from Table 6: Firstly, in 8 out of 9 experiments with non-perfect agents, the
SA∗-strategy is better or equally good as the best strategy of TPU and Greedy. Further,
in our experiments TPU performs better than Greedy. Secondly, in 11 out of the 12 ex-
periments, the SA∗-strategy is less than 1% from the simulated maximum. Thirdly, for all
12 experiments, the SA∗-strategy performs at least as good as the average local maximum
strategy, and typically it performs significantly better.

Table 7 emphasizes the superiority of SA∗. The table shows the fraction of the 500 random
simulated local maximum strategies whose expected utility exceed the obtained strategies
from the three algorithms. On average only 13.1% of the generated local maxima perform
better than the SA∗-strategy. For comparison, the table shows that on average 35.6% and
46.3% of the generated local maxima outperform the TPU-strategy and Greedy-strategy
respectively. Further, in each of the 12 experiments, the SA∗-strategy is better than or equal
to the majority of the generated local maxima.

Finally, Table 8 displays the results from the anytime algorithm Random Access Refine-
ment (RAF) presented in Horsch and Poole (1998) on the Maze 1 problem. Even though,
care should be taken when directly comparing the expected utilities since the numbers for
RAF depends on the time that the anytime algorithm was allowed to run, the table gives
a strong indication that the SA∗ algorithm is superiour to the RAF algorithm. In fact all
the local maximum strategies computed by simulation perform better than the strategies
obtained by RAF.

To conclude, the above analysis shows that Simulated Annealing outperforms the com-
peting algorithms Greedy Search and Temporal Policy Updating and provides significantly
better strategies than ’average’ local maximum strategies. Section 4.3 investigates the com-
putational aspects of the algorithms. Here, it suffices to note that on average it only took
about one second to compute a local maximum strategy using the TPU algorithm, whereas
the computational time for SA∗ and Greedy was slightly longer4.

4The low computational time usage is mainly due to our LIMID representation in which the robot only
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MAZE 1 MAZE 2 MAZE 3 Mean

Actuat. noi noi per per noi noi per per noi noi per per

Sensors noi per noi per noi per noi per noi per noi per

# updating steps

SA* 70 50 80 50 80 50 110 50 80 60 90 50 68.3
Temporal 40 20 60 30 70 30 80 20 70 20 60 20 43.3
Greedy 28 10 22 10 21 12 19 10 34 11 28 11 18.0
# flows

SA* 228 154 235 154 235 154 316 154 235 181 262 154 205.2
Temporal 127 73 181 100 208 100 235 73 208 73 181 73 136.0
Greedy 570 228 456 228 437 266 399 228 684 247 570 247 380.0

Table 9: Maze 1–3. Complexity analysis: The table shows the number of updating steps
and the number of flows passed in the junction tree by SA∗, TPU, and Greedy. The number
of flows approximates the computational complexity of the algorithm.

4.3 Computational aspects

Temporal Policy Updating can be implemented in a simple and efficient way. However, we
would claim that Simulated Annealing, and to some extent Greedy Search, can be imple-
mented in a computational feasible manner which is almost as efficient as Temporal Policy
Updating. To give further support, this section briefly discuss the computational complexity
of the methods when evaluating the various maze problems.

In our analysis, the starting point is the initialized junction tree. The complexity of an
algorithm is approximated by the number of flows that are passed in the junction tree until
convergence. So, in our complexity analysis we ignore the within root-cliques computations
performed when optimizing a policy. These computations are relative unexpensive and will
only have little effect on the final result. To see this, note that all root-cliques in the junction
tree in Figure 3 are considerably smaller than the other cliques5.

Table 9 shows the number of updating steps used, and the number of flows passed in the
junction tree before convergence. The latter approximates the computational complexity
of the algorithm. It can be seen that TPU used the lowest number of flows, whereas SA∗

passed, on average, only 50% more flows than TPU until convergence. Finally, even though
Greedy used fewest updates until convergence, it passed, on average, almost twice as many
flows as SA∗. This is because, each policy updating in Greedy is done by distributing flows,
whereas in TPU and SA∗ this is done by a simple (partial) collect propagation.

Figure 6 shows the expected utility as a function of updating steps for the three al-
gorithms. As expected, Greedy used the lowest number of updating steps before a local
maximum strategy was achieved. After only 21 updating steps Greedy converged, whereas
TPU and SA∗ needed about twice as many updating steps.

4.4 Robustness of Simulated Annealing

As in all applications of simulated annealing, there can be quite a lot of problem-dependent
subtlety in the choice of annealing schedule. To investigate the robustness of the output

remembers its most recent observations and actions (see Figure 2).
5In the junction tree (Figure 3), the cardinality of the state space of a root-clique is 35 · 5 · 16 = 2800,

whereas for the other cliques the cardinality is 35 · 35 · 5 = 6125. This is because |Xzi
| = 7 · 5 = 35,

|Xpi
| = 24 = 16, and |Xdi

| = 5.

16



0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Updating step

E
xp

ec
te

d 
U

til
ity

SA*
TPU
Greedy

Figure 6: Maze 2(noisy,noisy): Expected utilities as a function of number of updating steps.
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Figure 7: Maze 2(noisy,noisy): Convergence speed of SA(x, y).

strategies, a brute-force sensitivity analysis is performed.

Figure 7 shows the convergence speed of SA(x, y) for different values of (x, y). As ususal,
in SA(x, y) it is x times more likely to pick an optimal action than a non-optimal action
during the first cycle of updates. Further, non-optimal actions are made during the initial y
cycles. As a consequence, the speed of convergence increases as y decreases and x increases.

Table 10-11 present the expected utilities of strategies obtained by 9 different imple-
mentations of Simulated Annealing on Maze 2. Below follow some observations: Firstly,
all SA-strategies in Table 10 perform well, and significantly better than the average local
maxima in Table 11. Secondly, all SA-strategies perform better than the Greedy algorithm.
Finally, 19 out of the 21 SA-strategies perform better than the TPU-strategy.
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x

2 3 4 5 6 7 8
y 1 0.857 0.857 0.866 0.872 0.873 0.872 0.871

2 0.867 0.874 0.872 0.874 0.867 0.864 0.865
3 0.873 0.874 0.872 0.873 0.875 0.866 0.864

Table 10: Maze 1–3. Average utilities obtained by Simulated Annealing SA(x, y) for different
values of (x, y). Each number is an average of 9 experiments with non-perfect agents (where
each experiment is a combination of a non-perfect agent and a maze).

Algorithm Simulation result

SA∗ TPU Greedy Max Mean Min
0.875 0.863 0.812 0.886 0.841 0.678

Table 11: Maze 1–3. Average utilities obtained by the algorithms. Each number is an
average of 9 experiments with non-perfect agents (where each experiment is a combination
of a non-perfect agent and a maze). In addition, statistics of 500 simulations are provided.

5 Conclusion

We presented three methods for evaluating non-soluble LIMIDs. To our knowledge, this is
the first paper that performs a careful comparison of methods for evaluating LIMIDs in the
non-soluble case. The methods were evaluated on various instances of a large maze problem.
To compare the results, for each problem, 500 random local maxima were generated.

Temporal Policy Updating is an instance of SPU proposed in Lauritzen and Nilsson
(2001). It performs better than the average local maxima and in addition the obtained
strategy using Temporal Policy Updating is easily found. Greedy Search always updates the
policy that gives the highest increase in expected utility in the short run. Overall, in our
experiments, Greedy Search was on the same level as the average local maxima. However,
typically the algorithm performs worse than Temporal Policy Updating, and is almost three
times as time-consuming. The final method, Simulated Annealing is inspired by a technique
that has attracted significant attention for large scale optimization problems, especially
ones where a desired global maximum is hidden among many poorer, local maxima. In
our experiments, the algorithm outperforms the above algorithms. It achieved significantly
better results than the average local maxima, and in most cases the obtained strategy was
close to the maximum of the 500 local maxima. Furthermore, we would claim that Simulated
Annealing can be implemented in a computational feasible manner: In the experiments of
the various maze problems, our implementation of Simulated Annealing was less than twice
as time-consuming as Temporal Policy Updating.

Future research may lead to additional refinements of the algorithms proposed in this
paper. For instance, as in all applications of simulated annealing there can be quite a lot
of problem-dependent subtlety in the choice of annealing schedule and we anticipate that
refinements will be investigated.
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