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Abstract

Classification trees are a popular statistical tool with
multiple applications. Recent advancements of tra-
ditional classification trees, such as the approach of
classification trees based on imprecise probabilities by
Abellán and Moral (2005), effectively address their
tendency to overfitting. However, another flaw in-
herent in traditional classification trees is not elim-
inated by the imprecise probability approach: Due
to a systematic finite sample-bias in the estimator of
the entropy criterion employed in variable selection,
categorical predictor variables with low information
content are preferred if they have a high number of
categories. Mechanisms involved in variable selection
in classification trees based on imprecise probabilities
are outlined theoretically as well as by means of sim-
ulation studies. Corrected estimators are proposed,
which prove to be capable of reducing estimation bias
as a source of variable selection bias.

Keywords. Classification trees, credal classification,
IDM, variable selection bias, Shannon entropy, en-
tropy estimation.

1 Introduction

Classification trees are a means of non-parametric re-
gression analysis for predicting the value of a categor-
ical response variable Y from the values of categori-
cal or continuous predictor variables X1, . . . , Xp. In
comparison to other traditional classification proce-
dures such as the linear discriminant analysis or lo-
gistic regression the prominent advantages of classifi-
cation trees are the nonparametric and nonlinear ap-
proach and the straightforward interpretability of the
results. One major field of application of traditional
classification trees and their advancements is the pre-
diction of medical diagnoses from clinical and, most
recently, genetical data (cp. e.g. Myles et al., 2004, for

a review on applications in gene expression analysis).

A strong disadvantage of traditional classification
trees, however, is their susceptibility to overfitting,
which affects their robustness against outliers in the
sample and necessitates terminal pruning. The exten-
sion of classification trees as credal classifiers based on
imprecise probabilities by Abellán and Moral (2005)
establishes a more sensitive means of classification,
which is not as susceptible to overfitting and thus pro-
vides more reliable results.

Classification tree algorithms are specified by their
split selection criterion, which controls variable selec-
tion, and the number of splits they produce in each
node. In the approach of classification trees based on
imprecise probabilities for categorical predictor vari-
ables by Abellán and Moral (2005), which is consid-
ered here, the number of nodes produced in each split
is equal to the number of categories of the predictor
variable chosen for the next split. Variable selection is
conducted with respect to an upper entropy criterion.

Another serious problem in practical applications of
classification trees is that split selection criteria can
be biased in variable selection, preferring variables
for features other than their information content (see
Strobl, 2005, for a review on variable selection bias
in traditional classification trees). We will show that
variable selection bias does affect variable selection in
the approach of Abellán and Moral (2005) if the pre-
dictor variables vary in their numbers of categories.

The source of this variable selection bias is the fact
that the empirical Shannon entropy, a generalization
of which is employed in the algorithm by Abellán
and Moral (2005), is a negatively biased estimator
of the true Shannon entropy. Even though the effect
of this estimation bias on variable selection is mod-
erated by the upper entropy-approach, it is still a
relevant source of variable selection bias. Proposals
for corrected entropy estimators will be discussed and
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Figure 1: Example of a classification tree. Configu-
rations of predictor values characterizing the obser-
vations in each node are displayed in boxes depicting
the nodes.

evaluated in simulation studies investigating the vari-
able selection performance of the biased and corrected
estimators in classification trees based on imprecise
probabilities.

The paper starts with an outline of the approach of
classification trees based on imprecise probabilities in
Section 2. Section 3 covers the problem of biased
sample estimators of entropy measures in general and
in application to classification trees based on impre-
cise probabilities, and introduces possible corrections,
which are evaluated in a simulation study in Section 4.
Section 5 gives a concluding summary of the results.

2 Classification trees based on
imprecise probabilities

The rationale of classification trees based on impre-
cise probabilities for categorical predictor variables by
Abellán and Moral (2005) is similar to the traditional
classification tree approach of Quinlan (1993):

Starting with the set of all possible predictor variables
the first splitting variable is selected such that it min-
imizes the value of a specified impurity criterion in
the resulting nodes (the following considerations will
focus on this part of the procedure). Once a predic-
tor variable is selected for splitting as many nodes as
categories of that predictor are produced. Each node
is characterized by the configuration of predictor val-
ues that characterizes the observations in the node
(cp. Figure 1). The splitting then proceeds in each
node until the impurity reduction induced by splitting
reaches a specified stopping criterion.

In an advancement of this traditional classification
tree algorithm Abellán and Moral (2005) apply the

Imprecise Dirichlet Model (IDM) (Walley, 1996) in
the construction of the classification tree and in the
credal classification of observations in the final nodes.

The split selection criteria and procedure of Abellán
and Moral (2005) are introduced more formally in the
following: At first, the split selection criteria are in-
troduced for one arbitrary node in Section 2.1. Then
the entire split selection procedure, starting from that
node, is treated in Section 2.2.

2.1 Total impurity criteria

The predictor variable configuration that character-
izes all observations in one node is denoted as σ (cp.
again Figure 1: e.g. the lower left node is defined by
the configuration σ = (X3 = 1, X1 = 1)).

Let Y be a categorical response variable with values
k = 1, 2, . . . , |K| in a finite set K. The credal set Pσ

is a convex set of probability distributions represent-
ing the available information on the unknown value
of the response variable Y in the node defined by pre-
dictor variable configuration σ. The total impurity
criterion TU2(Pσ) for the credal set Pσ consisting
of probability distributions1 pσ on the set K

TU2(Pσ) = max
pσ ∈Pσ



−

|K|∑

k=1

pσ(k) ln[pσ(k)]



 (1)

is a generalization of the popular Shannon entropy
(Shannon, 1948) for classical probabilities.

As an alternative the authors have previously sug-
gested another total impurity criterion (which we will
revisit later)

TU1(Pσ) = TU2(Pσ) + IG(Pσ), (2)

where IG(Pσ) is a measure of non-specificity with

IG(Pσ) =
∑

A⊆K

mPσ (A) ln(|A|)

and mPσ is the Möbius inverse of the lower envelope
fPσ = inf

pσ∈Pσ
pσ(A)

mPσ (A) =
∑

B⊆A

(−1)|A−B| fPσ (B),

with |A−B| denoting the cardinality of the set A ex-
cluding B. IG(Pσ) is a generalization of the Hartley
measure of non-specificity I(A) = log2(|A|) (in bits).

1To indicate classical precise probabilities they will be de-
noted as lower case p(·) throughout this paper.
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Here, the finite set A includes all possible candidates
for a true class. Thus, the non-specificity of the char-
acterization increases with the cardinality of the set
of possible alternatives (cp. Klir, 1999, 2003).

The total impurity measure TU1(Pσ) additively
incorporates both uncertainty and non-specificity.
Abellán and Moral (2005) argue that adding a mea-
sure of non-specificity as in TU1(Pσ) overweighs non-
specificity in the total impurity criterion, because
TU2(Pσ) also increases with non-specificity. The au-
thors thus settle for TU2(Pσ) as a measure of total
uncertainty.

The data are incorporated in estimating the value
of TU2(Pσ) by means of applying the IDM locally
within each node. For each node, defined by pre-
dictor variable configuration σ, the calculation of the
lower and upper probabilities with the IDM is based
on counts of nσ

k class k objects out of Nσ objects in
total in the node:

[P σ
IDM(k), P

σ

IDM(k)] =
[

nσ
k

Nσ + s
,

nσ
k + s

Nσ + s

]
, (3)

where s denotes the hyperparameter of the IDM, in-
terpretable as the number of yet unobserved observa-
tions. Taking this interpretation of s literally, the cal-
culation of the lower and upper probabilities is based
on relative frequencies assigning 0 or s additional ob-
servations to class k. The credal set Pσ in TU2(Pσ)
is then given by all probability distributions pσ on
the set K, for which pσ(k) ∈ [P σ

IDM(k), P
σ

IDM(k)] for
all k, as derived in Equation 3. The maximization in
TU2(Pσ) is technically accomplished by means of the
upper entropy algorithm introduced in Abellán and
Moral (2003). The algorithm identifies the posteriori
probability distribution on K with the upper entropy
that is in accordance with the upper and lower prob-
abilities for each class k ∈ K derived from the IDM.

2.2 Split selection procedure

The complete process of variable selection in the clas-
sification tree algorithm of Abellán and Moral (2005)
consists of the following successive tasks:

Let Xj be a categorical predictor variable with values
xj = 1, 2, . . . , |Uj | in a finite set Uj . Starting from the
root node (or a subsequent node respectively), defined
by predictor variable configuration σ, for each poten-
tial splitting variable Xj as many nodes as categories
xj ∈ Uj are produced. Within each new node, de-
fined by the previous configuration σ in combination
with the value xj of the potential splitting variable
Xj by σ ∪ (Xj = xj), the lower and upper probabil-

ities [P σ∪(Xj=xj)
IDM (k), P

σ∪(Xj=xj)

IDM (k)] of each response

class k are derived from the class counts n
σ∪(Xj=xj)
k by

means of the IDM. The interval width is determined
by the number of observations per node Nσ∪(Xj=xj)

and the hyperparameter s of the IDM. The computa-
tion of the upper entropy criterion is then conducted
in two steps:

1. From the credal set Pσ∪(Xj=xj) derived
from the lower and upper probabilities
[P σ∪(Xj=xj)

IDM (k), P
σ∪(Xj=xj)

IDM (k)] the poste-
rior upper entropy distribution p

σ∪(Xj=xj)
maxE , i.e.

the distribution closest to the uniform distrib-
ution over the response classes in the set K, is
determined by the algorithm given in Abellán
and Moral (2003).

2. The value of TU2(Pσ∪(Xj=xj)) is then esti-
mated2 by applying the plug-in estimator of the
Shannon entropy, indicated by Ĥ(·) (cp. Section
3), to the posterior upper entropy distribution.

TU2(Pσ∪(Xj=xj)) = Ĥ
(
p

σ∪(Xj=xj)
maxE

)
=

−
|K|∑

k=1

p
σ∪(Xj=xj)
maxE (k) · ln

[
p

σ∪(Xj=xj)
maxE (k)

]
(4)

The impurity reduction induced by splitting in vari-
able Xj is measured by the weighted sum of total
impurity measures over all new nodes

I(σ,Xj) =
∑

xj∈Uj

Nσ∪(Xj=xj)

Nσ
TU2(Pσ∪(Xj=xj)) (5)

where Nσ∪(Xj=xj)

Nσ is the relative frequency of
observations assigned to each new node, with∑

xj∈Uj
Nσ∪(Xj=xj) = Nσ. The variable Xj for which

I(σ,Xj) is minimal is selected for the next split.

2.3 Characteristics of the total impurity
criterion TU2

The variable selection performance of a split selec-
tion criterion can be evaluated by means of simula-
tion studies. In order to illustrate the variable se-
lection characteristics of the total impurity criterion
TU2(Pσ) the following standard simulation study de-
sign was chosen here:

Several predictor variables are generated such that
they only differ in one feature, which is expected to

2In Section 3 the distinction between theoretical and empir-
ical quantities will be emphasized, and the sample estimator

will then be denoted by dTU2(Pσ∪(Xj=xj)).
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X1 X2 Y
11
2

Bin(0.5 + relevance)

32
4

Bin(0.5− relevance)

Table 1: Study design of simulation study on char-
acteristics of the total impurity criterion TU2: For
fixed predictor values the response is sampled from a
Binomial distribution with sample size n

2 and different
class probabilities.

affect variable selection. The relative frequencies of
simulations in which each variable is selected by the
split selection criterion, out of the number of all sim-
ulations, are estimates for the selection probabilities,
which should be equal for equally informative predic-
tor variables if no selection bias occurs3.

The results displayed below are from a simulation
study run with 1000 simulations and sample size
n = 120. Two equally informative predictor vari-
ables were created, one of which had 2 and the other
4 equally frequent categories. The value of the hyper-
parameter s of the IDM was set equal to 1. The sam-
pling distribution for the response variable was varied
to manipulate the relevance of the predictor variables.
As displayed in Table 1 the sampling distribution of
the response variable differed in the categories of the
predictor variables depending on the relevance para-
meter. All simulation studies were conducted with
the software package R (Version 2.0.0).

Figures 2 through 4 depict the results of the simu-
lation study as barplots with the bar height indicat-
ing the estimated selection probabilities for the two
equally informative predictor variables and the crosses
marking ± 2 empirical standard errors of the point es-
timates.

The results of the simulation studies show that
two characteristics of the total impurity criterion
TU2(Pσ∪(Xj=xj)) have an impact when the cat-
egorical predictor variables competing for variable
selection vary in their number of categories, and
thus in the number of observations within each new
node: When deriving the upper entropy distribu-
tion p

σ∪(Xj=xj)
maxE (in step 1 of the computation of

the upper entropy criterion outlined in Section 2.2)
a smaller number of observations per node results

3In this simulation design the relative frequencies can sum
up to values greater than 1 if more than one variable reaches
the minimum criterion value, i.e. if more than one variable is
equally appropriate to be selected, in one simulation. In a tree
building algorithm one variable has to be randomly chosen for
splitting in this case.

X1 X2

Criterion: Ĥ, n = 120, relevance=0.2

X1 has 2 categories,  X2 has 4 categories

P̂
(X

j s
el

ec
te

d)

0.
0
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2

0.
4

0.
6

0.
8

Figure 2: Estimated variable selection probabilities
for the upper entropy-total impurity criterion TU2.
Both predictors are informative with medium rele-
vance, they only vary in their number of categories.

in a wider interval of lower and upper probabilities
[P σ∪(Xj=xj)

IDM (k), P
σ∪(Xj=xj)

IDM (k)]. From a wider in-
terval a more uninformative upper entropy distrib-
ution p

σ∪(Xj=xj)
maxE can be derived. Thus, the total

impurity criterion TU2(Pσ ∪ (Xj = xj)) increases
when the number of observations in the new node de-
creases, and variables with more distinct categories
are penalized. This mechanism of variable selection
bias is most prominent in highly informative vari-
ables, because their true information content differs
strongly from the much less informative distribution
p

σ∪(Xj=xj)
maxE , that is obtained from the wide intervals.

Figure 2 illustrates this mechanism for two equally
informative predictor variables, showing that on av-
erage the predictor variable X1 with 2 categories is
preferred over X2 with 4 categories.

However, when the relevance of the predictor variables
decreases as in Figure 3 we see that the mechanism
explained above is superposed by another, yet unac-
counted, mechanism that affects variable selection in
less relevant predictor variables. For uninformative
predictor variables4 this second mechanism is most
prominent as shown in Figure 4. The mechanism ob-

4The paradigm employed in Figure 4 is also the standard
paradigm used for the evaluation of variable selection bias (e.g.
Kim and Loh, 2001; Strobl, 2005, for a summary). The under-
lying rationale is that uninformative predictor variables should
be selected with equal (random choice) probability if no vari-
able selection bias occurs.
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Figure 3: Estimated variable selection probabilities
for the upper entropy-total impurity criterion TU2.
Both predictors are informative with low relevance,
they only vary in their number of categories.
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Figure 4: Estimated variable selection probabilities
for the upper entropy-total impurity criterion TU2.
Both predictors are uninformative, they only vary in
their number of categories.

vious in Figures 3 and 4 induces a preference of the
predictor variable X2 with 4 categories over X1 with 2
categories. We will show that the underlying mecha-
nism is a bias in the estimation procedure of the total
impurity criterion from the posterior upper entropy
distribution (in step 2 of the computation of the up-
per entropy criterion outlined in Section 2.2). The
statistical background of this estimation bias, as well
a correction approach, is given in the next section.

The two mechanisms illustrated here counteract in
their effect on variable selection: The tradeoff be-
tween the upper entropy-approach on one hand and
estimation bias on the other hand depends on the data
situation. In an extreme case, however, the effect of
estimation bias can induce a preference of a less in-
formative variable over a more informative variable in
variable selection - merely due to different numbers of
categories. Thus, the mechanism of estimation bias is
elaborated in the following section.

3 Empirical entropy measures in split
selection

As implied above the biased estimation of the split-
ting criterion can be identified as one source of vari-
able selection bias in classification trees. In order to
address this problem, we review the necessary statisti-
cal background on the estimation of entropy measures
in a theoretical section and then apply the results to
classification trees based on imprecise probabilities.

Since the central issue in this section is the distinc-
tion between theoretical quantities and their sample
estimators, we will follow a common statistical no-
tation, where estimators of theoretical quantities are
indicated by adding a ̂ to the symbol. E.g. esti-
mators of classical probabilities are denoted as p̂(·),
while the true probabilities are denoted as p(·).

3.1 Estimation bias for empirical entropy
measures

The theoretical Shannon entropy

H(p) = −
|K|∑

k=1

p (k) ln[p (k)]

is a function of the true response class probabilities
p(k). In order to estimate the Shannon entropy from
empirical data the popular estimator Ĥ is a plug-in
estimator retaining the original function but replac-
ing the true class probabilities by the observed rela-
tive class frequencies, i.e. by the maximum-likelihood
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estimators of the true class probabilities

Ĥ(p̂) = −
|K|∑

k=1

p̂ (k) ln[p̂ (k)].

However, this widely used estimator is biased for fi-
nite sample sizes, because with a decreasing number
of observations the standard error of the estimators
p̂(k) increases, producing posterior class distributions
misleadingly implying a higher information content.

Based on a statistical evaluation of the bias, pos-
sible correction strategies are derived in the follow-
ing: From Jensen’s inequality, f (Ep(p̂)) ≥ Ep (f(p̂))
for any concave function f , it is obvious that the
unbiasedness of the maximum-likelihood estimators
p̂ (k) is not necessarily transferred to the plug-in esti-
mator Ĥ, which may be negatively biased. The extent
of the bias can be evaluated from the expected value
of the plug-in estimator Ĥ for the true Shannon en-
tropy H independently derived by Miller (1955) and
Basharin (1959)

Ep

(
Ĥ(p̂)

)
= Ep


−

|K|∑

k=1

p̂ (k) ln[p̂ (k)]




= Ep


−

|K|∑

k=1

nk

N
ln

[nk

N

]



= H(p)− |K| − 1
2N

+ O

(
1

N2

)
,

where O( 1
N2 ) includes terms of order 1

N2 , which are
suppressed in the following naive correction approach
because they depend on the true class probabilities
p(k) (cp. also Schürmann, 2004).

According to the above assessment of the estimation
bias a naive correction approach for an unbiased esti-
mate ĤMiller as suggested by Miller (1955) is

ĤMiller(p̂) = Ĥ(p̂) +
|K| − 1

2N
.

Due to the omission of the terms of order 1
N2 this

correction provides a decent approximation of the true
entropy value only for sufficiently large sample sizes,
while for N →∞ the correction is negligible.

3.2 Relevance of estimation bias for
classification trees based on imprecise
probabilities

As described in the beginning of Section 2.3 small
sample sizes result in wider intervals of lower and

upper probabilities [P σ∪(Xj=xj)
IDM (k), P

σ∪(Xj=xj)

IDM (k)] in
each new node, from which more uninformative pos-
terior upper entropy distributions can be derived.

However, another general effect of small sample sizes
is that small changes in the data result in high changes
of relative class frequencies computed from the data.
This limited sample-effect also affects the intervals of
lower and upper probabilities for the response classes
in the approach of classification trees based on impre-
cise probabilities. The interval-bounds in Equation 3
can be naively considered as artificial relative class fre-
quencies, where imprecision is incorporated by means
of the s yet unobserved observations the class of which
is not yet determined. The hyperparameter s is often
set to a value of the magnitude 1 or 2. Thus, the arti-
ficial relative frequencies derived from the IDM suffer
from the same weakness as classical relative frequen-
cies, namely that for small sample sizes small changes
in the data produce crucial changes in the relative
frequencies, misleadingly implying class distributions
with a higher information content. The estimation
bias for empirical entropy measures outlined in the
previous section therefore applies to the estimation of
the total impurity criterion T̂U2(Pσ∪(Xj=xj)) from
the data.

When a predictor variable is highly informative, the
effect of the estimation bias is compensated by the
upper entropy-approach. However, for less or unin-
formative predictor variables the effect of estimation
bias influences variable selection in favor of variables
with more categories: For less informative or uninfor-
mative variables, where the posterior upper entropy
distribution is a uniform distribution over the set of
response classes K, the negative estimation bias oc-
curring in each node is carried forward to the esti-
mated criterion value Î(σ,Xj) (cp. Equation 5), on
which the final decision in the variable selection pro-
cedure is based.

For an uninformative predictor variable, with the true
class distribution p∗ := p

σ∪(Xj=xj)
maxE = U(1, |K|) dis-

cretely uniform on support [1, |K|], the true entropy
value H∗ :=

∑|K|
k=1 p∗(k)ln[p∗(k)] is maximal and

equal in each node. The approximated expected value
of Î(σ,Xj) is then

Ep∗
(
Î(σ,Xj)

)
=

≈
∑

xj∈Uj

Nσ∪(Xj=xj)

Nσ

{
H∗ − |K| − 1

2
(
Nσ∪(Xj=xj) + s

)
}

≈ H∗ − |Uj | · |K| − 1
2 Nσ

where the number of response categories |K| is fixed,

6



while the number of categories |Uj | differs between
the predictor variables Xj . Thus, the number of cate-
gories of the predictor variable Xj crucially affects its
selection chance.

3.3 Suggested corrections based on the IDM

With Ĥ
(
p

σ∪(Xj=xj)
maxE

)
denoting the plug-in estimator

of the Shannon entropy applied to the posterior upper
entropy distribution (cp. Equation 4) we suggest

ĤMiller

(
p

σ∪(Xj=xj)
maxE

)
=

Ĥ
(
p

σ∪(Xj=xj)
maxE

)
+

|K| − 1
2(Nσ∪(Xj=xj) + s)

(6)

as the empirical entropy estimator in every new node
of a classification tree based on imprecise probabil-
ities. This correction accounts for the derivation of
the posterior upper entropy distribution, to which
the entropy estimator is applied, from the posterior
lower and upper probabilities computed with respect
to the IDM with hyperparameter s and sample size
Nσ∪(Xj=xj). This correction is again appropriate for
medium Nσ∪(Xj=xj), while it over-penalizes for small
Nσ∪(Xj=xj) with respect to the number of categoies
|K|, which is supported by the numerical results in
Section 4.

In another correction approach we are revisiting
the empirical measure ÎG(Pσ∪(X=)), the theoreti-
cal analogy of which was employed by Abellán and
Moral (2005) as a measure of non-specificity in the to-
tal impurity criterion TU1(Pσ∪(Xj=xj)) (cp. Equa-
tion 2). Like the correction term in the above ap-
proach ÎG(Pσ∪(Xj=xj)) is a function of the sam-
ple size Nσ∪(Xj=xj) and the number of categories
|K|. In the special case where the lower probabili-
ties used in the computation of the Möbius inverses
in ÎG(Pσ∪(Xj=xj)) are derived from the IDM, the
Möbius inverses of all subsets of the power set of K,
besides the sigletons k ∈ K and the complete set K,
are equal to zero due to the additivity induced by
the IDM. Because the logarithm of the cardinality of
the singletons is zero, the Möbius inverse for the set
K collapses to the width s

Nσ∪(Xj=xj)+s
of the inter-

vals of lower and upper probabilities on K computed
from the IDM with hyperparameter s, and the empiri-
cal non-specificity measure ÎG(Pσ∪(Xj=xj)) depends
only on the sample size Nσ∪(Xj=xj) through the in-
terval width, and on the number of categories |K|
through the factor ln(|K|). We thus suggest

Ĥ
(
p

σ∪(Xj=xj)
maxE

)
+ ÎG

(
Pσ∪(Xj=xj)

)
=

Y X1 X2 . . . X10

1
2

U(1,3) or U(1,5) U(1,2)

Table 2: Study design of simulation study on entropy
estimators: For fixed response values (n1 class 1 ob-
servations and n2 class 2 observations, set equal) the
uninformative predictors were sampled from discrete
uniform distributions with sample sizes n = n1 + n2

and different ranges.

Ĥ
(
p

σ∪(Xj=xj)
maxE

)
+ m̂

Pσ∪(Xj=xj)(K) ln(|K|)(7)

i.e. T̂U1(Pσ∪(Xj=xj)), as another corrected estima-
tor, where m̂

Pσ∪(Xj=xj)(K) is the Möbius inverse com-
puted from the posterior lower class probabilities de-
rived from the IDM. We will again see in Section
4 that this correction is only reliable for sufficiently
large Nσ∪(Xj=xj) and small |K|, while otherwise it is
overcautious.

4 Simulation study: performance of
entropy estimators in split selection

Again the variable selection performance of each split
selection criterion can be evaluated by means of the
following simulation study design: Several uninforma-
tive predictor variables are generated such that they
only differ in the number of categories. The relative
frequencies of simulations in which each variable is
selected by the split selection criterion, out of the
number of all simulations, are estimates for the selec-
tion probabilities, which should be equal (at random
choice probability 1/number of variables) for uninfor-
mative predictor variables if no selection bias occurs.
The following results are from a simulation study run
with 1000 simulations and 10 uninformative predictor
variables, one of which has 3 (respectively 5) distinct
categories, while the rest have 2 distinct categories.
The value of the hyperparameter s of the IDM was
again set equal to 1. As displayed in Table 2 the re-
sponse values in the simulation were fixed, while the
uninformative predictors were sampled from discrete
uniform distributions5 on support [1,3] (respectively
[1,5]) and [1,2]. The frequencies of the two response
classes were set equal at n1 = n2 = 100 for medium
sample size and n1 = n2 = 10 for small sample size.

In this study, the behavior of the plug-in estimator Ĥ
for the Shannon entropy (cp. Equation 4) is compared
to the behavior of the corrected estimators ĤMiller

5This simulation design is equivalent to the standard para-
digm displayed in Figure 4 in Section 2.3.
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(Equation 6) and Ĥ + ÎG (Equation 7). Figures 5
through 8 display that, with the plug-in estimator Ĥ
for the Shannon entropy, variable selection bias af-
fects the estimated selection probabilities even if the
variables differ in their number of categories only by
1. This effect is strongly aggravated if the variables
differ more in their number of categories.

For the corrected estimator ĤMiller, Figures 9
through 12 document that the variable selection bias
caused by the estimation bias of the entropy estimate
can be fairly compensated by the correction. Only
for small sample sizes, aggravated by a large differ-
ence in the number of categories of the predictor vari-
ables, the correction is overly cautious, resulting in a
reverse variable selection bias. For the corrected esti-
mator Ĥ + ÎG, Figures 13 through 16 show that the
reverse bias for small sample sizes and large difference
in the number of categories is even stronger than for
ĤMiller.

5 Discussion and perspective

The split selection criterion TU2 introduced for clas-
sification trees based on imprecise probabilities for
categorical predictor variables by Abellán and Moral
(2005) is affected by two mechanisms relevant in vari-
able selection when predictors differ in their number
of categories:

The first mechanism, relying on the selection of the
posterior upper entropy distribution, penalizes highly
informative predictor variables with many categories.
The second counteracting mechanism, relying on the
biased estimation of the total impurity criterion, fa-
vors less or uninformative predictor variables with
many categories. In a tradeoff the combination of
both mechanisms can lead to unwanted variable se-
lection bias depending on the data situation.

In a first approach employing corrected estimators of
the total impurity criterion in variable selection our
results imply that the corrections accomplish to elim-
inate part of the variable selection bias induced by
estimation bias. Both corrected estimators perform
better than the TU2 criterion in the standard par-
adigm with uninformative predictor variables. The
corrected estimator ĤMiller in Equation 6 shows even
better variable selection performance than the cor-
rected estimator Ĥ+ÎG in Equation 7. The corrected
estimators are less reliable for small sample sizes and
large numbers of categories of the predictor variables,
where they react overcautious. However, for appli-
cation in a classification tree this effect can be ac-
counted for by incorporating the tolerable minimum

number of observations per node in the stopping crite-
rion. The corrected estimators can be easily applied
to the posterior upper entropy distribution derived
from the lower and upper probabilities computed with
the IDM as suggested by (Abellán and Moral, 2005).
The correction so far incorporates only the deviation
of the expected value of the estimator of the Shannon
entropy. Another relevant factor, which could be in-
tegrated in further corrections, is the variance of the
estimator derived e.g. in Roulston (1999). More elab-
orate entropy estimators will be considered for split
selection in future research.
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Figure 5: Estimated variable selection probabilities
for the plug-in estimator of the Shannon entropy for 3
vs. 2 categories in the predictor variables and medium
sample sizes.
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Figure 7: Estimated variable selection probabilities
for the plug-in estimator of the Shannon entropy for 5
vs. 2 categories in the predictor variables and medium
sample sizes.
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Figure 9: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
ĤMiller, for 3 vs. 2 categories in the predictor vari-
ables and medium sample sizes.
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Figure 6: Estimated variable selection probabilities
for the plug-in estimator of the Shannon entropy for
3 vs. 2 categories in the predictor variables and small
sample sizes.
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Criterion: Ĥ, n1=n2= 10

(X1 has  5  categories, all other variables have 2 categories)

P̂
(X

j s
el

ec
te

d)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 8: Estimated variable selection probabilities
for the plug-in estimator of the Shannon entropy for
5 vs. 2 categories in the predictor variables and small
sample sizes.
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Figure 10: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
ĤMiller, for 3 vs. 2 categories in the predictor vari-
ables and small sample sizes.

10



X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Criterion: ĤMiller, n1=n2= 100

(X1 has  5  categories, all other variables have 2 categories)

P̂
(X

j s
el

ec
te

d)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 11: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
ĤMiller, for 5 vs. 2 categories in the predictor vari-
ables and medium sample sizes.
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(X1 has  3  categories, all other variables have 2 categories)

P̂
(X

j s
el

ec
te

d)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 13: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
Ĥ+ÎG, for 3 vs. 2 categories in the predictor variables
and medium sample sizes.
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Figure 15: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
Ĥ+ÎG, for 5 vs. 2 categories in the predictor variables
and medium sample sizes.
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Figure 12: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
ĤMiller, for 5 vs. 2 categories in the predictor vari-
ables and small sample sizes.
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Figure 14: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
Ĥ+ÎG, for 3 vs. 2 categories in the predictor variables
and small sample sizes.
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Figure 16: Estimated variable selection probabilities
for the corrected estimator of the Shannon entropy
Ĥ+ÎG, for 5 vs. 2 categories in the predictor variables
and small sample sizes.
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