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Geoadditive Survival Models

Andrea Hennerfeind, Andreas Brezger, and Ludwig Fahrmeir*

ABSTRACT

Survival data often contain small-area geographical or spatial information, such as the residence of individ-
uals. In many cases the impact of such spatial effects on hazard rates is of considerable substantive interest.
Therefore, extensions of known survival or hazard rate models to spatial models have been suggested recently.
Mostly, a spatial component is added to the usual linear predictor of the Cox model. We propose flexible
continuous—time geoadditive models, extending the Cox model with respect to several aspects often needed
in applications: The common linear predictor is generalized to an additive predictor, including nonparamet-
ric components for the log—baseline hazard, time—varying effects and possibly nonlinear effects of continuous
covariates or further time scales, and a spatial component for geographical effects. In addition, uncorrelated
frailty effects or nonlinear two—way interactions can be incorporated. Inference is developed within a unified
fully Bayesian framework. We prefer to use penalized regression splines and Markov random fields as basic
building blocks, but geostatistical (kriging) models are also considered. Posterior analysis uses computa-
tionally efficient MCMC sampling schemes. Smoothing parameters are an integral part of the model and
are estimated automatically. Propriety of posteriors is shown under fairly general conditions, and practical
performance is investigated through simulation studies. We apply our approach to data from a case study
in London and Essex that aims to estimate the effect of area of residence and further covariates on waiting

times to coronary artery bypass graft (CABG). Results provide clear evidence of nonlinear time varying
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effects, and considerable spatial variability of waiting times to bypass graft.

Key words: Bayesian hazard rate model, Markov random field, penalized spline, MCMC, semiparametric

modelling, spatial survival data.

1. INTRODUCTION

In epidemiological, economic or social science applications, survival data often contain geographical or spatial
information such as the district or postal code of the residence of individuals in the study. Analyzing and
modelling geographical patterns for survival or waiting times, in addition to the impact of other covariates,
is of obvious interest in many studies. For example, Henderson, Shimakura and Gorst (2002) model spatial
variation in survival of acute myeloid leukemia patients in northwest England, Banerjee, Wall and Carlin
(2003) apply a spatial frailty model to infant mortality in Minnesota, and Li and Ryan (2002) analyze the
effect of risk factors on the onset of childhood asthma with spatial data from the East Boston Asthma Study.
In a study on unemployment duration in Germany, Fahrmeir, Lang, Wolff and Bender (2003) investigate the
impact of small area labor market regions and other covariates, such as calendar time, age and unemployment
benefits. Because unemployment duration is given in months, they apply a geoadditive discrete time probit
model. In Section 5 of this paper, we will apply our approach to data from the Appropriateness of Coronary
Revascularisation (ACRE) study. Spatial survival data from this study have been recently analyzed within

a discrete—time setting by Crook, Knorr—-Held and Hemingway (2003).

In this paper, we propose geoadditive survival models as a flexible spatial and spatio-temporal generalization
of Cox-type models. Within a unified framework, we extend the common linear predictor of the Cox model
to an additive predictor, including a spatial component for geographical effects and nonparametric terms for
modelling and exploring unknown functional forms of the (log-) baseline hazard rate, of nonlinear effects of
continuous covariates and further time scales, such as calendar time, and of time-varying coefficients. The
incorporation of such nonparametric components and their simultaneous estimation with the baseline hazard
and the spatial effects is a feature which is not considered in recent other proposals for survival models with

spatial components. This motivates the term ”geoadditive”, originally introduced by Kammann and Wand



(2003) in a mixed model approach to semiparametric Gaussian regression. In addition, uncorrelated frailty

effects or nonlinear two—way interactions can be incorporated if appropriate.

Modelling and inference is developed from a Bayesian perspective, using information from the full likelihood
rather than from a partial likelihood. A particular advantage of our approach is that all unknown functions
and parameters can be treated within a unified general framework by assigning appropriate priors with
the same structure but different forms and degrees of smoothness. Based on previous work (Fahrmeir and
Lang, 2001; Lang and Brezger, 2004) on semiparametric regression, nonlinear effects of unknown functions
of time, in particular of the log-baseline hazard rate, and of continuous covariates or further time scales are
modelled through Bayesian versions of penalized splines (P-splines) introduced by Eilers and Marx (1996),
Marx and Eilers (1998) for generalized additive models in a frequentist setting. Basically, time is treated
in the same way as a continuous covariate, but the degree and amount of smoothness may be different.
For example, simple random walk priors for the log—baseline effect in a piecewise exponential model are P—
splines of degree zero. The spatial component is modelled by Gaussian Markov random field (MRF) priors,
as common in disease mapping, by two—dimensional penalized tensor—product splines, or by a geostatistical
(kriging) stationary Gaussian random field (GRF) model. From a computational point of view, MRF’s and
P—splines are clearly preferable to GRF’s because their posterior precision matrices are band matrices or can
be transformed into a band matrix-like structure. This special structure considerably speeds up computations
and enhances numerical stability compared to the full precision matrices arising from the GRF approach.
For data observed on a irregular discrete lattice, MRF’s seem to be most appropriate. If exact locations
are available, P—spline or GRF surface smoothers seem to be more natural, but they can also be applied to
discrete lattices after computing centroids of regions.

Our unified general framework also has computational and theoretical advantages for posterior analysis.
Extending previous results for mixed models in Sun, Tsutakawa and Speckman (1999) and Speckman and
Sun (2003), we can show propriety of posteriors under regularity conditions. This is important, because
some of our priors are diffuse or partially improper. The Appendix on propriety in mixed models should
be of general value. From the computational point of view, full conditionals of blocks of parameters have

similar structure, and lead to efficient MCMC techniques. Smoothing parameters are an integral part of the



model and can be estimated jointly with unknown functions and other parameters. Inferential procedures

have been implemented in C++ as part of BayesX (Brezger, Kneib and Lang 2003).

Non- and semiparametric Bayesian survival models have become quite popular in recent years, and some
previous work deals with special or related cases of our approach. For models without a spatial component
Ibrahim, Chen and Sinha (2001) provide a good introduction and overview. Joint estimation of the baseline
hazard and usual linear covariate effects in the Cox model has been considered by several authors. Gamerman
(1991) proposes a Gaussian random walk model for the log-baseline hazard in the piecewise exponential
model, and Sinha (1993) suggests a joint Gaussian smoothness prior, and Cai, Hyndman and Wand (2002)
and Cai and Betensky (2003) use a mixed model representation of linear basis regression splines to estimate
the baseline hazard. In all these approaches, however, effects of continuous covariates are assumed to be of

the usual linear parametric form, and no spatial component is present.

Survival models with a spatial component have recently been suggested in several publications. The ap-
proaches differ in the specification of the baseline hazard rate and in the model chosen for the spatial
component, but the remaining part of the predictor is still of linear parametric form. Thus, non-parametric
terms for flexible modelling and estimation of the effects of continuous covariates, further time scales and
time-varying coefficients are not considered in these approaches. Li and Ryan (2002) add a spatial compo-
nent in form of a stationary Gaussian process to the linear predictor of the Cox model. Treating the baseline
hazard as a nuisance parameter, inference for the linear predictor and for correlation function parameters is
based on a marginal rank likelihood. No procedure for estimating the spatial (random) effects is provided.
Henderson et al. (2002) propose a Cox model with conditionally independent gamma frailties, with means
following either a geostatistical model or a Markov random field. For inference they use MCMC methods,
except the baseline hazard estimate. For this they plug in the Breslow estimator at each iteration of the
chain. Banerjee et al. (2003) assume a parametric Weibull baseline hazard and geostatistical or MRF priors
for the spatial component. In comparison they prefer MRF priors, since computing times for geostatistical
GRF models are much larger. This is in agreement with our own findings. Banerjee and Carlin (2003)
develop Bayesian spatio—temporal survival models, modelling baseline hazard functions nonparametrically

through a beta mixture approach and assuming MRF or CAR . (conditionally autoregressive) priors for spatial



effects, and Carlin and Banerjee (2003) extend this approach to multivariate MRF models, with applications
to cancer survival data from lowa.

The rest of the paper is organized as follows. In Section 2 we describe models, likelihood, and priors for
unknown functions and parameters. MCMC inference is outlined in Section 3.1, and Section 3.2 provides
results on the propriety of posteriors in geoadditive survival models. Performance is studied in Section
4 through a simulation study. An application to the CABG study in Section 5 illustrates the method.
The concluding section contains some proposals for future research. The Appendix provides lemmas and

corollaries on the propriety of posteriors in mixed models.

2. MODELS, LIKELIHOOD AND PRIORS

2.1 OBSERVATION MODEL AND LIKELIHOOD

Consider survival data in usual form, i.e., it is assumed that each individual 7 in the study has a lifetime T; and
a censoring time C; that are independent random variables. The observed lifetime is then ¢; =min (7}, C;),

and J; denotes the censoring indicator. The data are then given by
(ti75i;vi)7 i:].,...,’I'L (1)

where v; is the vector of covariates. Covariates may also be time-dependent, but we restrict discussion to

time—constant covariates for simplicity.

In Cox’s proportional model the hazard rate for individual 7 is assumed as the product
i(t;v:) = Ao(t) exp(y1vin + - .« + Yrvir) = Ao(t) exp(viy). (2)

The baseline hazard rate is unspecified, and, through the exponential link function, the covariates v =
(v1,...,v,) act multiplicatively on the hazard rate. As pointed out in the introduction, in a number of
applications there is a need for extending this basic model with respect to several aspects. We propose novel
nonparametric Bayesian survival models that can deal with these issues in a flexible and unified framework.
Reparametrizing the baseline hazard rate through exp{go(¢)}, go(t) = log{Xo(t)} and partitioning the vector

of covariates into groups of covariates @, z, s and v, we extend model (2) to the nonparametric multiplicative



observation model

)‘i (t) = )\Z (t, i, Z;, S8, ’Ui) = exp{m (t)} (3)
with geoadditive predictor
P q
i) = go(t) + Y 95(D)zi5 + D Fi(i5) + Fapar(si) + viy + by, (4)
j=1 j=1

Here go(t) = log{A\o(t)} is the log-baseline effect, g;(t) are time-varying effects of covariates z;, f;(z;) is
the nonlinear effect of a continuous covariate x;, fopat(s) is the (structured) effect of the spatial covariate s,
with s; = s if unit ¢ is from area s, s = 1,...,.5, v is the vector of usual linear fixed effects, and b, is a unit—
or group-specific frailty or random effect, with by; = by if unit ¢ is in group ¢, g = 1,...,G. For G = n, we
obtain individual-specific frailties, for G < n, by, might be the effect of center g in a multicenter study or the
unstructured (uncorrelated random) spatial effect of an area (i.e. by = b,), for example. As an extension,
random slopes could be introduced in (4), but we omit this here. Several other extensions of the model,
such as choice of other link functions, inclusion of interactions and competing risks, are possible. We discuss
this in the concluding section. For identifiability reasons, we center all unknown functions about zero, and

include an intercept term in the parametric linear term.

Under the usual assumption about noninformative censoring, the likelihood is given by

L = H)\i(ti)‘;i-exp </Oti/\i(u)du)

inserting (3) and (4).

To obtain a unified and generic notation, we rewrite the observation model in general matrix notation. This
is useful for defining priors in the next subsection and for developing posterior analysis in Section 3 as well
as for describing and proving results on propriety of posteriors for mixed models in the Appendix.

Let n = (W1,-..,1i,.-.,My)’ denote the predictor vector, where n; := n;(t;) is the value of predictor (4)
at the observed lifetime ¢;,i = 1,...,n. Correspondingly, let g; = (g;(t1),...,9;(tn))" denote the vector
of evaluations of the functions g;(t),j = 0,...,p, f; = (fj(z15),.-., fj(%n;))" the vector of evaluations
of the functions fj(x;),j = 1....,¢, fopar = (fspat(51),.--, fspat(sn))’ the vector of spatial effects, and

b= (by,,....bg,)" the vector of uncorrelated random effects.



In the following, we express all vectors g;, f, f,,q+ and b as the matrix product of an appropriately defined
design matrix Z, say, and a (possibly high-dimensional) vector 3 of parameters, e.g. g, = Z,8,, fi=2;B,,

etc. Then, after reindexing, we can represent the predictor vector m in generic notation as

n=Vy+ZBo+...+ ZnB,- (6)

2.2 PRIORS FOR PARAMETERS AND FUNCTIONS

The Bayesian model formulation is completed by assumptions about priors for parameters and functions.
For fixed effect parameters v in (6) we assume diffuse priors p(7y) o const. A weakly informative normal
prior would be another choice. Uncorrelated random effects are assumed to be 1.i.d. Gaussian, b, ~ N(0, 7'62)
Priors for functions and spatial components are defined by a suitable design matrix Z;, j =1,...,m, and a

prior for the parameter vector 3;. The general form of a prior for 3; in (6) is
S 1,

p(,@j|7'j) X Tj ? exp (ﬁﬁjKjﬁj> ) (7)
where K ; is a precision or penalty matrix of rank(K ;) = r;, shrinking parameters towards zero or penalizing
too abrupt jumps between neighboring parameters. For P splines and MRF priors, K ; will be rank deficient,
ie., r; < dj =dim(;), and the prior is partially improper.
For unknown functions fj(x;) or g;(t), we assume Bayesian P—spline priors as in Lang and Brezger (2004).
Random walk priors, which have been suggested in Fahrmeir and Lang (2001) and may be used as smoothness
priors for the baseline effect and time—varying covariate effects in a piecewise exponential model, appear as

a special case. The basic idea of P-spline regression (Eilers and Marx 1996) is to approximate a function

fj(x;) as a linear combination of B-spline basis functions B,,, i.e.
dj
Fi@s) =" BjmBun (). (8)
m=1
The basis functions B,, are B splines of degree [ defined over a grid of equally spaced knots z,,i, = &g < &1 <
... <& = Tyaa, dj = 1+ 5. The number of knots is moderate, but not too small, to maintain flexibility, but

smoothness of the function is encouraged by difference penalties for neighboring coefficients in the sequence

B; = (Bj1,---,Bj4,;)"- The Bayesian analogue are first or second order random walk smoothness priors

Bim = Bjm—1+ Ujm or Bim = 28j,m-1 — Bjm—2 + Ujm 9)



with i.i.d. Gaussian errors wj, ~ N(0, Tj2> and diffuse priors p(3;1) o const, or p(3;1) and p(fBj2) x const, for
initial values. A first order random walk penalizes abrupt jumps 8, — 3jm—1, and a second order random
walk penalizes deviations from a linear trend. The amount of smoothness or penalization is controlled by
the variance TjQ, which acts as a smoothness parameter.

The joint prior of the regression parameters 3; is Gaussian and can be easily computed as a product of

conditional densities defined by (8) as
2 —Tj 1 /
B | 1 o ;7 exp _Wﬁj K;B; | . (10)
j

which is the generic form (7).

The penalty matrix K is of the form K; = D’D, where D is a first or second order difference matrix. The
matrix K ; has band structure which is very useful for computationally efficient MCMC updating schemes.
It has rank r; = d; —1 and r; = d; —2 for first and second order random walk priors, respectively. The n x d;
design matrix Z; consists of the basis functions evaluated at the observations z;;, i.e., Z;(i,m) = By, (245).
Priors for the unknown functions g;(t) are defined in complete analogy as in (8), (9) and (10).

A common choice for approximating smooth curves are quadratic or cubic B-splines. Computationally,
linear splines are simpler. The simplest choice are B splines of degree zero, i.e. B,,(z) = 1 over the m-th
interval, and B,,(z) = 0 elsewhere. Then the effect is approximated by a piecewise constant function, and
the function values follow a random walk model as in Fahrmeir and Lang (2001). This special choice, with
time t as covariate, is the easiest way to smooth the baseline in the piecewise exponential model; moreover
the integral in the likelihood (5) reduces to a sum, see the next section. With P—splines of higher degree,
however, estimation of smooth baseline effects is improved in terms of MSE’s, see Section 4.

For the structured spatial effect fspqi(s) we assume either Markov random field (MRF) priors, two dimensional
tensor product P-spline priors, or Gaussian random field (GRF) priors, common in geostatistics (kriging).
In the case of MRF priors we define areas as neighbors if they share a common boundary and assume that the
effect of an area s is conditionally Gaussian, with the mean of the effects of neighboring areas as expectation

and a variance that is inverse proportional to the number of neighbors of area s, i.e.

1 2
.__ Qspat __ spat spat
fspat(s) = Bsp = E /EZ(S /Bs’ +U57 Ug ~ N (05 Ns )



where N, is the number of neighbors of area s, and s’ € §, denotes that area s’ is a neighbor of area s. This
prior is a generalization of a first order random walk to two dimensions and is also called a conditionally
autoregressive (CAR) prior. The n x S design matrix Z,pq is now a 0/1 incidence matrix. Its value in the
i-th row and s-th column is 1 if observation ¢ is located in site or region s, and zero otherwise. The S x S

penalty matrix K ,,,; has the form of an adjacency matrix with rank(K pa:) = rsper = S — 1.

Our second approach is based on two—dimensional P-splines, a rather parsimonious, but flexible method
for modelling interactions between continuous covariates described in Lang and Brezger (2004) for Gaussian
regression. Considering the x and y coordinates of the geographical center of each area, the spatial effect
can be seen as an interaction between two continuous covariates xs and ys. The assumption is that the
unknown structured spatial effect fspq¢(s) can be approximated by the tensor product of one-dimensional
B-splines, i.e.

spat dspat

spat spat xmys 'm1me 2 spat,mi Ts spat,mo Ys)-
Fipar(s) =1 Brima B (z5)B (¥s)

mi=1mso=1

Now the B-splines of degree [ are defined over a regular two—dimensional grid of a moderate, but not too
small number of equally spaced knots &,,, p,v = 1,...,dspet — 1. We restrict ourselves to an equal number

of knots for each direction. Knots are equally spaced within each direction, but the distance may differ

(ﬁspat spat spat spat

/
1 e Py B 1o o dspatdspm) are based on

between direction z; and y,. Priors for g7 =
spatial smoothness priors common in spatial statistics (see e.g. Besag and Kooperberg, 1995). Since there
is no natural ordering of parameters, priors have to be defined by specifying the conditional distributions

of 3P4t given neighboring parameters and the variance component . The most commonly used prior

mime spat
specification based on the four nearest neighbors can be defined by
2
spat ~ N 1 spat spat spat spat Tspat 11
ﬂm1m2|' Z(ﬂmlfl,mg +ﬂm1+l,m2 +ﬂm1,m271 +ﬂm1,m2+l)’ 4 ( )
or my,my = 2,...,dspqt — 1 and appropriate changes for corners and edges. For example, for the upper
fi 2 dsp 1 and iate ch f d ed F le, for th

left corner we obtain 375 ~ N(3(3:5% + B57*), S”‘”) For the left edge, we get B0 |- ~ N(3(B:Eet | +
2
t t TS a
Blims—1 T Baimy ) <52)-

The prior (11) is a direct generalization of a first order random walk in one dimension. Its conditional mean

can be interpreted as a least squares locally linear fit at knot position &,, given the neighboring parameters.



More details can be found in Lang and Brezger (2004). Defining K spo; = D} D1+ D} Ds, where Dy = I® D
and Dy = DRI, the prior can again be expressed in the general form (7). Here, D is the first order difference
matrix known from the one—dimesional case, and D] D; corresponds to the penalization in the direction of

x and D5D; corresponds to the penalization in the direction of y.

Our third option are stationary Gaussian random field (GRF) priors, which can be seen as two-dimensional
surface smoothers based on special basis functions, e.g. radial basis functions, and have been used by Kam-
mann and Wand (2003) for modelling the spatial component in Gaussian regression models. The spatial com-
ponent fspar(s) = 3P is assumed to follow a zero mean stationary Gaussian random field {3579 : s € R?}
with variance 72,,; and use an isotropic covariance function cov (P, 32F “y = C(||s — &'||) as proposed by
Stein (1999). For a finite array s € {1,...,S} of sites as in our application the prior can be brought in the

general form

1

2
2Tspat

B T x 0 (=5 (B Ky 67 )

with penalty matrix K gy = C ', where C[k,1] = C(||sk — s1]|), 1 < k,I < n, and design matrix Zspq = C.
For the covariance function C(r) we follow again recommendations of Stein (1999) and use the Matérn family
of covariance functions C(r; p,v). For the special case v = 1.5 for the smoothness parameter the covariance

functions simplify to

C(r;p,v) = 20 (L + |r|/p)e”"177,

which is the simplest member of the Matérn family that results in differentiable surface estimates as Kam-
mann and Wand (2003) point out. The parameter p controls how fast covariances die out with increasing

distance r. We choose p according to the rule

p=max|lsp —sif|/c

)

to ensure scale invariability. This rule proved to work well in practice. The constant ¢ is chosen in such a
way that C'(c) is small, e.g. C(¢) = 0.001.

While the dimension of the penalty matrix in a MRF equals the number of different regions S, in a GRF
the dimension corresponds to the number of distinct locations which is likely to be close to or equal to the

sample size. To overcome this computational burden Kammann and Wand (2003) propose low—rank kriging

10



to approximate stationary Gaussian random fields. Therefore they define a 'representative’ subset of knots
D = {k1,...,kar} of the set of distinct locations by applying a space filling algorithm (compare Johnson et
al. (1990) and Nychka and Saltzman (1998) for details). Based on these knots, we obtain the approximation
fspat(8) = 24,0 (s)B°P*" with the M-dimensional design vector zspat(s) = (C(||s — k1l]),...,C(lls — ral]))’
and penalty matrix K, = C and C[k,l] = C(||kr — #i]). The number of knots controls the trade-
off between accuracy of the approximation and numerical simplification. Details on GRF and (low-rank)

kriging can be found in Kammann and Wand (2003) or Kneib and Fahrmeir (2004).

The main drawback of this approach is the computational effort involved. Since the penalty matrix C has
no longer band structure it is not possible to employ efficient matrix algorithms for sparse matrices like
the Cholesky decomposition in order to draw samples from our multivariate normal proposal density and
to compute the inverse of the precision matrix, which is needed to calculate the acceptance probability of
the MH-step in every iteration (compare Section 3). For the application in Section 5, e.g., this means that
the required CPU time multiplies approximately by the factor 20, even if we use low rank kriging with a

moderate number of 100 knots.

In general, it is not clear which of the different approaches leads to the best fit. For data observed on a
discrete lattice or on the level of geographical regions as in our application, MRFs seem to be most adequate,
while surface smoothers as 2d P splines of kriging may be more natural in situations where exact locations
are available. However, in applications sometimes surface estimators outperform MRFs even for discrete

data and vice versa.

Again, in all described approaches the amount of smoothness is controlled by a smoothing parameter Tszpat

that is estimated jointly with the unknown parameters 37,

When applying our model to real data we do not know how much of the spatial variation is explained by
structured, spatially correlated effects and how much by unstructured, uncorrelated effects. Therefore we
usually fit an additional (unstructured) area—specific random effect in a first step and possibly remove one
(or both) of these spatial effects, if it does not improve the fit. When fitting a structured and an unstructured

spatial effect, we interpret the sum of the two effects, since identifiability is not given in that case.

Variances Tj2 routinely follow inverse Gamma priors IG(a;;b;). The hyperparameters aj, b; are chosen such

11



that this prior is weakly informative. We use a; = b; = 0.001 as a standard choice. From our experience
results are rather insensitive to the choice of a; > 0 and b; > 0 for moderate to large data sets and the
posterior distribution is proper in any case (see Subsection 3.2 and Appendix for a proof). However, since the
limiting case, when a; and b; are zero, leads to an improper posterior distribution, we present a sensitivity
analysis in Section 4 and compare the results to those we obtain with an alternative prior specification that
does not depend on further hyperparameters and is proposed in Gelman (2004), who imposes an uniform
prior on the standard deviations 7;.

We also routinely assume an inverse Gamma prior for the variance 72 of the Gaussian random effects b, and

the variance 72

+ar Of the spatial effect (or an uniform prior on 7, and Tgpas, respectively).

The Bayesian model specification is completed by assuming that all priors for parameters are conditionally

independent, and that all priors are mutually independent.

3. MARKOV CHAIN MONTE CARLO INFERENCE

In what follows, let 3 = (3j, ..., 3},,) denote the vector of all regression coefficients in the generic notation
(6), v the vector of fixed effects, and 72 = (78, ..., 72) the vector of all variance components.

Full Bayesian inference is based on the entire posterior distribution

p(By v, T2 | data) o< L(By v, 7%) p(By ¥, T2).

Due to the (conditional) independence assumptions, the joint prior factorizes into

m
p(B,7,7) = [ pB; | 77)p(7}) ¢ p(7),
§=0
where the last factor can be omitted for diffuse fixed effect priors.

The likelihood L(B, v, 72) is given by inserting (3),(4) into (5), but the integral requires integration over all

terms depending on survival time ¢, i.e. terms of the form

t; p
I, = / exp | go(u) + Zgj(u)zij du,
0 °
7j=1

where ¢;(t) =3 BjmBm(t). Apart from B-splines B,, (t) of degree zero, i.e. random walk models, and linear

B splines, these integrals are not available in closed form. The first case leads to the piecewise exponential

12



model: The time axis is divided into a grid

0:£0<€l<---<§t71<£t<---<£s:tmama

and g;(¢) is assumed to be a piecewise constant function, i.e.
9;(t) = Bjt

in time interval (§—1,&],t = 1,...,s. In this case, the integral reduces to a sum, and, after some simple

calculations, the log-likelihood contribution of observation ¢ in the interval (&;_1,&] can be expressed as
lit = yunie — exp (8¢ + 1it)

where

_ 1 tie (&-1,&],0, =1
vt 0 else.

& —&i—1, &<ty
Ajp=1 ti—6&—1, &<t <&
0, 12>t

8i = logAyy (64 = —00 if Ay = 0).
This likelihood is proportional to a Poisson—likelihood, with the predictor 7;; containing an additional offset
term ¢;¢, see Fahrmeir and Tutz (2001, Section 9.1) or Ibrahim et al. (2001, Section 3.1) for details.
For linear B—splines, the integrals can still be solved analytically, but expressions are rather messy and the
computational effort is quite high, see Cai et al. (2002, Appendix). Following their suggestion, we use simple
numerical integration in form of the trapezoidal rule for linear B—splines as well as for the commonly used
cubic B—splines, where analytical integration is not possible anyway.
Full Bayesian inference via MCMC simulation is based on updating full conditionals of single parameters or
blocks of parameters, given the rest of the data.
For updating the parameter vectors B;, which correspond to the time-independent functions fi(z;), as

spat

well as spatial effects B3°P“", fixed effects v and random effects b, we use a slightly modified version of

an MH-algorithm based on iteratively weighted least squares (IWLS) proposals, developed for fixed and
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random effects by Gamerman (1997) and adapted to generalized additive mixed models in Brezger and Lang
(2003). More precisely, the goal is to approximate the posterior by a Gaussian distribution, obtained by
accomplishing one IWLS step in every iteration of the sampler. Then, random samples have to be drawn
from a high dimensional multivariate Gaussian distribution with precision matrix and mean

c 1 — AYEY o
P; = X'W(B5)X; + ﬁKj, m; = P; X W (85)(y — ).
J

Here, 5; = n;(t:) — fj(zi;), W(Bj) = diag(wy, ..., wy) is the weight matrix for IWVLS with weights
q
w; = €eXp Z f](wz]) + fspat(si) + ’U;"/ + bgi . Iz
j=1

obtained form the current state ,8;‘7. The working observations ¢; are given by

_ d;
gi = mi(ti) + — — L.

7

Random numbers from the high dimensional proposal distributions can be efficiently drawn by using matrix
operations for sparse matrices.

Suppose we want to update 8;, with current value ,8; of the chain. Then a new value 55 is proposed by
drawing a random vector from a (high—dimensional) multivariate Gaussian proposal distribution q(,@j, ,6;;7 ),
which is obtained from a quadratic approximation of the log likelihood by a second order Taylor expansion
with respect to B?, in analogy to IWLS iterations in generalized linear models. The proposed vector ,6]]”- is

accepted as the new state of the chain with probability

5,5 - (261 520

p(B5 | )a(B5, BY)

where p(3; | -) is the full conditional for 3; (i.e. the conditional distribution of 3; given all other parameters
and the data).

For a fast implementation, we use the fact that the precision matrices of the Gaussian proposal distributions
are banded, so that Cholesky decompositions can be performed efficiently.

For the parameters 3; corresponding to the functions go(t), ..., g,(t) depending on time ¢, the IWLS-MH

algorithm requires considerably more computational effort, because the integrals in the log likelihood as well
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as first and second derivatives are involved now. Therefore, we adopt a computationally faster MH—algorithm
based on conditional prior proposals, although IWLS-MH has better mixing properties. This algorithm was
first developed by Knorr—Held (1999) for state space models and extended for generalized additive mixed
models in Fahrmeir and Lang (2001). It requires only evaluation of the log-likelihood, not of derivatives.
However, draws are not performed for the entire vector B;, but iteratively for blocks of subvectors, see
Fahrmeir and Lang (2001) for details.

2

The full conditionals for the variance parameters 7 are inverse Gamma with parameters

1 1
a; =a; + 37 and b;- =0b; + Eﬂ;Kjr@j

for inverse Gamma, priors on sz and

=1 1
ay = 5 and b = 5,8;-Kj,8]-

for uniform priors on 7;. Updating can be done by simple Gibbs steps, drawing random numbers directly
from the inverse Gamma densities. In complete analogy, the full conditional for a variance component Tfpat

of the spatial effect and 77 of a random intercept or slope is again an inverse gamma distribution, and

updating is straightforward.

For model comparison we suggest to use the Deviance Information Criterion (DIC) developed in Spiegelhalter,

Best, Carlin and van der Linde (2002). It is given as

DIC = D(0) + 2pp = D(0) + pp,

where 0 is the vector of parameters, D(0) is the deviance of the model evaluated at the posterior mean
estimate 8, D(0) is the posterior mean of the deviance and pp = D(0) — D(0) is the effective number of
parameters. Since it is at least unclear, how the saturated model should be defined in the case of survival

data when the baseline hazard and other nonparametric functions are parameters of interest, we use the

unstandardized deviance D(0) = —2-log-likelihood instead of the saturated deviance.
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3.2 PROPRIETY OF POSTERIORS IN GEOADDITIVE SURVIVAL

MODELS

Consider a geoadditive survival model with predictor
N=Vy+Z.p1+ ...+ ZnB,, +ZoBy

in generic form, where Zy3, corresponds to an effect with prior
—ro L
Bo ~ 7y ° exp _F/BOKOIBO )
To

such that

dlm(ﬂo) = dO > dj, I‘&l’lk(KU) =T0 > Tj, ] = 1, ceey M.

This assumption is usually fulfilled for the spatial component or for a high—dimensional vector of group— or
individual specific uncorrelated random effects.
Denote by 1y, Vu, Zu = (Z1u, -+, Zimu), Zou the (sub ) predictor and sub design matrices corresponding
to uncensored observations. Assume that the following conditions hold:
(C1) rank(V,) = rank(V) = p = dim(~),

rank(Z;,) = rank(Z;) = d; = dim(B;), j=0,..,m

rank(Z,RZ, + K) =d

where d = dy + ... + d,, K =diag(K1,....,K,,), R=1-V,(V.,V,) 'V,

(C2) The priors p(77), j = 1, ..., m, are proper, and [ p(@)ry TP 4T

))d‘rg < 00,
where r =r1 + ... + 1.
Theorem: If conditions (C1), (C2) hold then the posterior p(v, B, By, 72, 7¢ | y), where 72 = (7,...,72)’

and 8 = (84,...,8,,), is proper.

Corollary: Assume proper inverse Gamma priors for sz with
aj>0, bj>0, ij,...,m,

and

ro—p—(d—r)—(dy —r9) > 0.

16



If condition (C1) holds, then the posterior p(v, 3, By, 72,76 | y) is proper.

Remark: Condition (C1) is equivalent to

ViV, V.zZ, .
rank< 7'V, Z.Z,+K ) =p+d

Proof: We first show that the conditions () , (+) of Lemma A2 (Appendix) are fulfilled for right—censored

survival data (t; =min(73;,U;),d;), @=1,...,n. The density of observation i is given by
filts | ma(ts)) = Na(t:)% Si(ta),
where
t;
Xi(t:) = exp(ni(ts)), Si(t;) =exp <—/ )\i(s)ds)
0

For censored observations (6; = 0), we have f;(¢; | n:(t;)) = Si(t;) < 1, so that condition (xx) of Lemma A2
holds.

For uncensored observations (§; = 1)
filti [ mi(t:)) = Ai(t:)Si(ti).
Setting n; := n;(t;), i := A\i(t;), we obtain
oo oo oo
/ fi(ti | mi)dn Z/ AiSi(ti) A dA Z/ Si(ti)dAi,
0 0 0
so that assumption (x) is equivalent to
[ee]
/ Sl(tz)d)\l < 0. (13)

0

We factorize the multiplicative hazard rate X;(¢) into
)\i (t) = Cili (t),

where ¢; > 0 is the time—constant part. Then

oo oo ti
/ S,' (ti)dAi = / exXp {—Ci/ lz (s)ds} d)\,
0 0 0

Consider first the case where 7);(t) is piecewise constant (on the intervals Iy, k = 1,2, ... defined by the knots
of B—splines of degree 0). Then

)\i(t) = ;N\ for t € I, k= 1,2, ...

17



For t; € I, say, we have \; = X\;(t;) = ¢; \ix, and
tq

oo o0 k—1
0 0 i
j=1

kE—1

x Ci/ exp(—c;(ti — &p—1) ik )dAir < 00,
0

for t; — &1 > 0, which is valid a.s. for continuous 7.

Consider now the case, where the time-varying part of 7);(t) is defined by B-splines of higher degree. Let
Aik = mintejkli(t) >0, k=1,2,..

be the minimum of the time—varying part of \;(¢) on I.

Then

IN

oo ti o'} 123
/ exp {Ci / li(s)ds} d)\z Ci / exXp § —¢; / )\ikd)\ik dAzk
0 0 0 Erk—1

o0
- G / exp(=ci(ts — 1) Mt )dAap < o0,
0

so that assumption (13) is fulfilled.

Remark: We have tacitly made the assumption that \;(¢) > 0 for any choice of covariates and parameters.

This is valid because of our parametrization

Ni(t) = exp(n;(t)).

4. SIMULATION STUDY

We investigate performance through a simulation study. Life times T;, ¢ = 1,...,1236, were generated

according to the hazard model

Ai(t) = Xo(t)exp(fi(zs) + fopat(si) + yvi)

= exp(log(3t?) + sin(x;) + sin(zs, - ys,) — 0.3v;). (14)

In this model, the baseline hazard rate \o(t) is set to 3t?, which is a Weibull hazard rate, so that go(t) =

log(3t?). The covariate v is binary, with the v; “s randomly drawn from a Bernoulli B(1;0.5) distribution,
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and the covariate x is continuous, with the x; s randomly drawn from a uniform U[-3,3] distribution.
The spatial covariate s; denotes one of the s = 1,...,S = 309 counties of the former Federal Republic of
Germany and z,, and y,, are the centered coordinates of the geographic center of county s;. We simulated
four observations per county. Censoring variables C;, i = 1, ..., 1236, were generated as i.i.d. draws from a
uniform U|0, 5] distribution, resulting in a proportion of 1520 % of censored observations.

Keeping the predictor fixed, 100 replications {T\"),C\") i = 1,...,1236} resp. {(t!",6"), i = 1,...,1236},
r =1,...,100 of censored survival times were generated.

The log baseline hazard go(t) was modelled by second order random walk priors, corresponding to a piecewise
exponential model (with grid length A = 0.1), and — alternatively — as a cubic P—spline, with 20 knots. A
cubic P—spline prior with 20 knots was chosen for f;(x) = sin(z). The spatial effect was modelled as a
MRF and alternatively as a two dimensional cubic P—spline with 12x12 knots. Hyperparameters of inverse
Gamma priors for variance components were set to a = 0.001, b = 0.001, the standard choice.

For each replication r = 1, ..., 100, we computed the mean square errors

1236
MSE:(90) = 7332 > @ (") — a0(t"))%,
1236
i=1
for the log—baseline hazard go(t),
| 1286
MSE (1) = Toz6 2 (7 (@) — fil:))*
i=1
for fi(z) = sin(z), and
| 1286

MSE,(fspat) = 1236 (fs;it(si) - fSpat(Si))Q
i=1

for the spatial effect fspai(s) = sin(z. - y.), where fq\g) and f,gr), k = 1, spat, are posterior mean estimates

for simulation run 7.

The MSE(vy) was computed in the usual way.

(% MSE;,)

5o as well as min,MSE, and

Table 1 summarizes the results, displaying meanMSE =
max,MSE, in each cell. As was to be expected, the P—spline model has smaller MSE’s for gy when
compared to the piecewise exponential model. Interestingly, the MSE’s for v = —0.3, fi(z) and fspat(s)

are more or less unaffected by the choice of the smoothness prior for the log—baseline go(t). Estimated

functions of replication r, with r chosen such that MSE, is the median of MSE}, ..., MSFEqo, for go(t),
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fi(z) and fgpai(s) are displayed in Figures 1-3.

In order to analyze the behavior of the Markov chains when a and b approach zero (and the prior for the
hyperparameters thus approaches the IG(0,0) distribution, that leads to an improper posterior), we exem-
plary single out the P—spline model with MRF-prior and alternatively set a = b = 0.0001, a = b = 0.00001
and ¢ = b = 0.00000001. We additionally run the simulation study with uniform priors on the standard
deviations 7, 71 and Tgpe: that act as smoothing parameters for the log-baseline, the nonlinear effect of x
and the spatial effect, respectively. We did not face problems with mixing or convergence of Markov chains
with any of these prior distributions. Figure 4 shows kernel density estimators of the posterior mean of the
variance parameters based on 7:;-2(r)7 r=1,...,100 for j = 0,1, spat. Obviously the different choices of the
hyperparameters a and b of the inverse Gamma prior do not seem to have much effect, whereas the uniform
prior on the standard deviations tends to result in larger estimates for the variance parameters and thus in
less smooth effects. The posterior distribution of the variance parameter of the spatial effect is less sensitive
to the different choices of priors, as the full conditional is dominated by the values of r; =rank(K ;) and
,BQ-K jB; at this. Table 2 summarizes the MSE’s, that are computed and displayed as before. While the
MSE’s are quite unaffected by the choice of the hyperparameters a and b of the inverse Gamma prior, the
uniform prior results in a slightly smaller MSFE for go(t), but a slightly bigger M SE for fi(x). Altogether

we come to the conclusion that (at least with this model) it does not seem to be crucial, which one of these

weakly informative priors is assumed for the variance parameters.

5. APPLICATION: WAITING TIMES TO CABG

We illustrate our methods by an application to data from a study in London and Essex that aims to analyze
the effects of area of residence and further individual specific covariates on waiting times to coronary artery
bypass graft (CABG). The data comprise observations for 3015 patients with definite coronary artery disease
who were referred to one cardiothoracic unit from five contiguous health authorities. Waiting times from
angiography to CABG are given in days. Covariates are, among others, sex, age (in years), number of

diseased vessels (1, 2, 3), and the area of residence (one of 488 electoral wards).
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The data were previously analyzed by Crook et al. (2003) who classified waiting times in months and applied
discrete—time survival methodology as described for example in Fahrmeir and Tutz (2001, chap. 9). They
analyzed and compared a hierarchy of models, with model comparison based on the deviance information
criterion (DIC), developed in Spiegelhalter et al. (2002). Here we apply continuous—time geoadditive survival
models, with waiting times given in days as in the original data set, and predictors based on models 8 and 12
in Crook et al. (2003), which were two of the best in terms of DIC. Model 8 corresponds to a continuous-time

model with hazard rate

A(t) = exp(go(t) + fage(age) + fspat(ward) + vy1sex + y2dv2 + y3dv3), (15)

where go(t) is the log-baseline rate, fqq4e(age) is the nonlinear effect of age and fypq¢(ward) is the structured
spatial effect. The remaining covariates are dummy—-coded: sex = 1 for female, and sex = 0 for male,
dv2 = 1 if the number of diseased vessels equals 2, dv2 = 0 else, and dv3 = 1 if the number of diseased
vessels equals 3, dv3 = 0 else. We did not add an unstructured spatial effect here, since the DIC would not
be improved substantially (compare model 10 in Crook et al. (2003)).

The (log—) baseline prior was assumed as a (log—) piecewise exponential model with grid length A = 50 days
and, alternatively, as a cubic P spline model with 20 knots. For f,4. we assumed a cubic P spline prior
with 20 knots. Since the distribution of the values of age is quite skew, it is an interesting alternative to
chose the knot positions according to quantiles, but we used equidistant knots here, which is our standard
choice. The spatial effect fgpq:(ward) is once modelled through a MRF prior and in the case of the P—spline
model through a GRF prior with 100 knots, alternatively. Since the data augmentation that has to be
accomplished for the p.e.m. results in an ”observation number” of more than 30000, a GRF prior would lead
to a computation time of several days, which is not very viable.

Model (16) is a modification of (15), where the fixed effects 75 and 3 of dv2 and dv3 are replaced by time

varying effects:

A(t) = exp(go(t) + fage(age) + fopat(ward) + y1sex + g1(t)dv2 + ga2(t)dv3). (16)

This model is a nonproportional hazard model and can be compared to the geoadditive proportional hazard

rate model (15).
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Table 3 contains estimation results for the fixed effects in model (15). While the effect of sex is nonsignificant,
the effects of two or three diseased vessels are clearly significant and show that waiting times are decreasing
with increasing number of vessels. These results correspond to the findings of Crook et al. (2003). The
baseline effects in Figure 5 show an initially high, but strongly decreasing chance of CABG immediately
after diagnosis, followed by a slow increase between 150 - 450 days. Later, the chance of being operated
decreases. The overall pattern is similar to the results in Crook et al. (2003), obtained with a discrete-time
model. However, with the P—spline prior we get a distinctly smoother curve. The effect of age (Figure 6) is
almost constant between 40 and 80 years and does not have significant influence on the waiting time. Also,
the estimates under a piecewise exponential and a cubic P—spline baseline prior are visually indistinguishable

- regardless of which prior is chosen for the structured spatial effect.

The maps in Figure 7 show the estimates for the structured spatial effects and give an impression of the
spatially varying chance of CABG with light (dark) areas indicating an increased (decreased) effect. Again,
the estimates under a piecewise exponential and a cubic P spline baseline prior are nearly visually indistin-
guishable in the case of a MRF prior. Predictably, the GRF prior results in a smoother estimated spatial
effect than the MRF prior does, but besides that the results are quite alike. Areas with increased chances
are Chelmsford and Malden in North Essex, while in areas around Harlow in North Essex and Walthamstow
and Chingford in North East London chances are lower, that means patients have to wait longer for surgery.
The maps in Figure 8 show posterior probabilities of these spatial effects. White (black) areas indicate that
at least 80 % of the sample estimates were positive (negative). Remaining grey areas are considered as

'nonsignificant’. Striped areas denote wards, where no patient was observed.

Model (16) with time—varying effects g;(t) and g2(t) of dv2 and dv3 can be interpreted as a model with three
separate baseline effects go(t), go(t) + g1(t), go(t) + g2(t) for patients with one, two or three diseased vessels,
respectively. The corresponding estimated curves are displayed in Figure 9 and indicate that the proportional
hazards assumption is violated, because the baseline effect of patients with three diseased vessels crosses the

two other curves.
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6. CONCLUSION

Spatial extensions of statistical models for analyzing survival and, more general, event history data, will
be of increasing relevance because spatial small area information is often available. Assessment of spatial
effects on hazard or survivor functions is not only of interest in its own but can be quite useful for detecting
unobserved covariates which carry spatial information. In this work, we have developed a flexible class of

nonparametric geoadditive survival models within a unified Bayesian framework for modelling and inference.

Several extensions could be considered in future research. More general event history models and censoring
mechanisms including spatial components can be embedded in the counting process framework (Andersen,
Borgan, Gill and Keiding 1993). Practical issues are the development of numerical alternatives for evaluating
the likelihood in the presence of time—varying effects of covariates and of low—rank kriging approximations

to improve computational efficiency of geostatistical approaches.
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Table 1: Summary of MSE s

p.e.m P—spline—model

MSE-type MRF  geospline MRF  geospline

meanM SE(go) 0.1564  0.155 0.126  0.127

minMSFE(go) 0.049  0.044 0.033  0.027

maxMSE(go) 0.497  0.496 0.450  0.453

meanMSE(f) 0.0068 0.0061 0.0070  0.0063

minMSE(f1) 0.0006  0.0006 0.0009  0.0006

maxMSE(f) 0.0193 0.0182 0.0209 0.0178

meanMSE(fopar) 0.042  0.022 0.043  0.022

minMSE( fspat) 0.028  0.010 0.029  0.010

marMSE(fsper)  0.068  0.039 0.071  0.039

meanMSE(y) 0.0045 0.0038 0.0046  0.0038

minMSE(7) ~0 ~0 ~ 0 ~ 0

maxMSFE(7) 0.0268 0.0197 0.0297  0.0202

Table 2: Summary of MSE s

prior I1G,a=b=0.001 IG,a=b=0.0001 IG,a=b=1e-05 IG,a=b=1e-08 uniform
meanMSE(go) 0.126 0.126 0.127 0.126 0.122
minMSE(go) 0.033 0.032 0.032 0.032 0.034
maxMSE(go) 0.450 0.451 0.455 0.452 0.451
mean M SE(f1) 0.0070 0.0071 0.0071 0.0070 0.0076
minMSE(f1) 0.0009 0.0008 0.0008 0.0009 0.0010
maxMSE(f;) 0.0209 0.0208 0.0212 0.0201 0.0213
mean M SE(fspqr) 0.043 0.043 0.043 0.043 0.044
minMSE(fspat) 0.029 0.028 0.029 0.028 0.029
marMSE(fspar)  0.071 0.068 0.070 0.070 0.070
meanM SE(v) 0.0046 0.0046 0.0046 0.0046 0.0047
minMSE(7y) ~ 0 ~ 0 ~0 ~ 0 ~0
maxMSFE(7) 0.0297 0.0269 0.0282 0.0282 0.0281

Table 3: Posterior mean estimates and standard deviations for the fixed effects on time to CABG

effect

P-spline model, GRF  P-spline model, MRF

p.em., MRF

sex
dv2
dv3

-0.041
1.479
1.793

(0.083)
(0.098)
(0.094)

-0.038
1.485
1.804

(0.085)
(0.099)
(0.093)

20.037  (0.082)
1.495  (0.099)
1.817  (0.094)
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Figure 1: (log—)Baseline effects for the various model specifications; displayed are posterior mean estimates and 95%
credible intervals of run r, with r chosen such that M SE, is the median of MSE1,..., MSFEi00 (solid line and grey
shaded area), and the true (log—)baseline effect (dashed line). a) p.e.m., MRF, r=59, MSE=0.138 b) p.e.m., geospline,

r=4, MSE=0.140 ¢) P-spline model, MRF, r=32, MSE=0.106 d) P—spline model, geospline, r=24, MSE=0.112

28



-15
-15
I

]
i
I

Figure 2: Nonparametric effects for the various model specifications; displayed are posterior mean estimates and

-15
I

95% credible intervals of run r, with r chosen such that M SE, is the median of MSE1,..., MSFE1go (solid line and
grey shaded area), and the true function (dashed line). a) p.e.m., MRF, r=9, MSE=0.0059 b) p.e.m., geospline,

r=70, MSE=0.0056 ¢) P—spline model, MRF, r=26, MSE=0.0061 d) P—spline model, geospline, r=74, MSE=0.0057
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Figure 3: Spatial effects for the various model specifications; displayed are posterior mean estimates of run r, with
r chosen such that MSE, is the median of MSE;,..., MSE g a) true function b) p.e.m., MRF, r=65, MSE=0.041
¢) p.e.m., geospline, r=83, MSE=0.021 d) P-spline model, MRF, r=67, MSE=0.042 ¢) P—spline model, geospline,

r=22, MSE=0.021
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P-spline model, MRF p.e.m.
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Figure 5: Posterior mean estimate for the (log-)baseline effect on time to CABG and 80% and 95% credible intervals
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P spline model, MRF
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Figure 6: Posterior mean estimates of the effect of age on time to CABG and 80% and 95% credible intervals
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Figure 7: Posterior mean estimates of the structured spatial effect on time to CABG; the estimates under the
p.e.m. with a MRF prior are visually indistinguishable from those of the P spline model with MRF prior, and are

therefore not shown here
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Figure 8: Posterior probabilities of the structured spatial effects, with white (black) areas indicating that at least

80% of the sample estimates were positive (negative)
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P—spline model p.e.m.
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Figure 9: (log—)baseline effects on time to CABG: posterior mean estimates for 1 diseased vessel (dvl), 2 diseased

vessels (dv2) and 3 diseased vessels (dv3)
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Appendix: Propriety of posteriors in mixed models

We first consider Gaussian linear mixed models
y=Va+2Z,81+..+ 2B, +¢ (17)

for observations y = (y1, ..., yn)’, with an additive predictor, and a Gaussian error vector € = (g1, ...,ep) ~
N(0,72I). For identifiability reasons, the predictor must not contain individual-specific uncorrelated random
effects in addition to €. The prior assumptions for the parameters v and 3;, j = 1,...,m, are the same as in

Section 2, i.e., a flat prior
p(y) =1 (18)
for the vector « of 'fixed’ effects, and
- 1,
p(B;) T; T €Xp _WﬂjKj/B_j ; (19)
J

with d; = dim(8;) and r; = rank(K). For r; < d;, the prior for B; is partially improper.

Priors for hyperparameters 72 = (77, ...,7)" are p(7°) = [[]_, p(77). An important special case are inverse

Gamma priors

which are proper for a; > 0, b; > 0.

Defining Z = (Z,,...,Zm) and B = (B}, .., 3,,)’, the model (17) is
y=Vy+2ZB+e.
Further, with X = (V, Z), let (’A)/',[ABI)’ = (X’'X)~ X'y be the least squares estimator, and
SSE =y'(I — X(X'X)~X")y

be the sum of squared errors, which is invariant for any choice of the generalized inverse (X’X)~.
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Lemma Al
Consider the Gaussian mixed model defined by (17), (18) and (19), and assume that the following conditions

hold:

(i) rank(V)=p, rank(Z’RZ + K)=d

where p = dim(y), d =d; + ... + d,,, = dim(8), K = diag(K1,.... Km), R=1 -V (V'V)~1V".

(ii) the priors p(sz), j =1,...,m are proper, and

n—p—(d—r SSE
/p(Tg)TO (n=p—(d=m)) exp (——2 >d7‘§ < 00,
273
where r =r1 + ... + 7.

Then the posterior distribution p(vy, 3,72 | y) is proper.

Corollary Al
For a linear mixed model (17) with prior (18) and (20), the posterior p(v, 3,72 | y) is proper if condition
(i) of Lemma A1 and

a; >0,b; >0, j=1,..,m,
n—p—(d—r)+2a >0, SSE+2by>0

hold.

Remark: Condition (i) of Lemma Al is equivalent to

v'v Vv'Z
rank( ZV Z'Z+ K ) =p-+d.

Proof of Lemma A1 and Corollary A1l
The proof extends arguments in Sun, Tsutakawa and Speckman (1999), see also Speckman and Sun (2003),

using a theorem on eigenvalues in Magnus and Neudecker (1991). From the model assumptions we have

—n_—r —r (y_Vﬂy_ ZIB),(y_VPy_ZIB) " B,KJIBJ
(s By T2 | y) o7 M T exp § - 278 _;JQ? p(1?)

Following Sun et al. (1999), we rewrite

(y—Vy—2ZB)(y—Vy—2B)=SSE+(vy—4—c1)'V'V(y—4—c1) + (B—B)Z'RZ(B - B),
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where ¢; = (V'V)~1V'Z(3 — B).

Integrating the right hand side with respect to v, we get

[ ot )i CorP\ VIV IR <_ SSE (8= B)Z'RZ(B~P)

n—p rym Tj 2 2
To Hj:l T; 275 275

where K> = diag (K1/78, ... Km /T2,).

- %ﬂ'l@ﬂ) p(r?),

Define Ry= 7, 2Z'RZ + K,2. Then for any Tj2 >0,7=0,..,m, Rl_1 exists by assumption (i) of Lemma

Al. Set
¢2 = m Ri'Z'RZp
R, = Z'RZ-1,°Z'RZR;'Z'RZ.
Then
(B — ﬁ)Z’T?Z(B - B +B'K,28=(8—c3)Ri(B — c2) + B'%zﬁ

Integrating out 3, we get

o) PHN)/2 | VIV -5 | Ry | % SSE + B'R2f3
[ v6r,8.77 | y)aap L L -exp{——ﬂ B4 p(r2).

T ez
Since Ry is nonnegative definite, the second factor is bounded by exp {—SSE/(273)}.
For an upper bound of the first factor, we first derive a lower bound for | R; |, applying Theorem 9 in

Magnus and Neudecker (1991, ch. 11, p. 208) to the eigenvalues of
Ry =1,>Z'"RZ + K.

Note that the d — r smallest eigenvalues of K and K.z are zero, while the eigenvalues \|(K,z2),l=d —r+

1,...,r, are positive. Application of the theorem to the positive eigenvalues of Ry gives

N(702Z'RZ + K.2) > M(K.2) = MK;)1; 2 > N7, 2,

i el

where A\(Kj;) is a positive eigenvalue of one of the precision matrices K; and A; > 0 is the smallest positive
eigenvalue of Kj.

Application of the theorem to the eigenvalues \(K,2) =0, =1,...,d — r, of K, 2 gives

M(T02Z'RZ + K,2) > N(17°Z'RZ) > 15 o,
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where )\g > 0 is the smallest eigenvalue of Z'RZ.

Taken together, we get

m

| R |= H)‘I(Rl >y 2(d—r) H —2r5
l j=1

where L = X" [T, A}/ > 0, and

12
‘R| /—L1/20 H

Inserting in (21), we obtain

1 SSE
/ (78,0 | y)dvdB < CW eXP{ }Hp

27'0

Thus, if condition (ii) in Lemma A1 holds, the posterior p(v, 3, 72 | y) is proper.

Corollary A1 follows immediately, because then

L [SSEY 1 f b _ 1 oo [ _SSE/2+bo
@) xp 2r2 [ (72)aot xp 72 _T(;lfpf(dfr)+2(a0+l) xp 2 '

We recognize a proper inverse Gamma density for (n —p — (d —r))/2+ ag > 0 and SSE/2 + by > 0.

Propriety of the posterior for generalized (geo—) additive models

The following Lemma A2 gives sufficient conditions for the propriety of the posterior in generalized linear
and additive mixed models. The lemma and its proof rest heavily on Theorem 4 in Sun et al. (1998),
who considered models with densities f;(y; | 7;) for the observations y; given a predictor n; and predictors
N= (11, ey i -+, ) Eiven by

n=V~y+ 2,61 +s,

with partially improper prior for (1, and individual specific random effects e= (e1,...,64,...,ep) ~
N(0,73I). We extend their theorem in two directions: First, we allow for several random effects with
different degree and type of smoothness priors, and, second, we do not necessarily assume that individual—
specific random effects ¢; are included in the predictor.

We consider models with predictor

0=V + ZaBs+ o+ ZonBn + Zobo, @2)
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where v, B4, ..., 3,,, have priors as in (18) and (19). The term Z,3,, represents a random effect with a n x dy

design matrix Zg, with rank(Zg) = dy = dim(8,), and a (possibly partially improper) prior

§B0) 757 exp (- 2B KBy (23)

0

with g = rank(K), such that

doZdj, 7‘02’!‘3', j:l,...,m.

Setting Zo = I, B, = &€ ~ N(0,72I), the predictor (22) also covers the case of individual-specific random
effects ZoB, = €. In geoadditive models Z3, will usually represent a spatial effect with a MRF or kriging

prior, or an unstructured spatial effect.

Lemma A2
Consider a generalized linear mixed model with observation densities f;(y; | 7:), predictor (22), and priors

(18), (19), (23). Suppose that (after a reordering of observations)
(%) /fi(yi | i)dn; < oo
holds for observations i = 1, ...,n*, and
() filyi |m) <M, i=n"+1,...,n

holds for the remaining observations.
Denote the corresponding submatrices of V, Z and Z, by V*, Z* = (Z], ..., Z},), Z;,, and assume:
(iii) rank(Z) = do,
the rank conditions (i) in Lemma A1 hold for V*, Z*,
condition (ii) in Lemma A1 holds with rq replacing n and SSFE replaced by SSE*.
2

Then the posterior p(v, Bos B1s s Bms Tas s T2, | Y) is proper.

The following corollary is easier to check.

Corollary A2

Assume that conditions (x), (%) and the rank conditions for V*, Z*, Zy* in Lemma A2 hold, and that
ro—p—(d—r)>0
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withd=do+ ... + dppy, ¥ =70 + .. + 74, and
aj >0, bj>0, 7j=0,...m

hold for the inverse Gamma priors (23).

Then the posterior p(v, Bgs B, s By Tas -, T2, | Y) is proper.
Proofs: We consider first the simpler case of individual-specific random effects Bo=e~ N(0,73I). Using

the one-to-one relation n= Vv + Z3 + & between n and €, we consider propriety of p(n,~, 3,73, 72 | y)

instead of p(e, v, 3,72, 7% | y). Proceeding as in Sun et al. (1998), one starts from

(7, 8,75, 7 | y) < ply | mp(n | v, B)p(B)p(13)p(T?).

Using (xx) and integrating out n** = (9y» 41, ..., 7n ), One arrives at

p(n* 78,75, 7 |y) o Hfi(yilm){p(n* | v, B)p(B)p(3)p(7?)}

o[£ | n)p(y, B, 75,7 [ 07)}-

i=1

Applying Lemma A1l (or Corollary A1) to
n"=Vy+Z'B+e", e ~N(0.71),
gives
pn* ) o [ filws | mo),
i=1

and propriety follows from (k) .

For the general case n = Vv 4+ ZB + ZyB3,, with prior (23) for B,, we first decompose B, into a

dy — ro)~dimensional subvector B{' with flat prior 1y = 1 and a ro—dimensional subvector BE" with a
0 p PPy 0

proper prior 35" ~ N(0,731):

L afl
Bo= 2484 + 25 By,

where the dg X (dg — rg) matrix Z {;l contains a basis of the nullspace of K. The matrix Z {;l is the identity

vector 1 for P—splines with first—order random walk prior, Markov-random fields and 2d—P-splines with
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MRF prior for the coefficients. For P—splines with second—order random walk prior it is a two column
matrix whose first column is the identity vector and the second column is composed of the (equidistant)
knots of the spline.

The dy x 9 matrix Z§" is given by

Z' = L(L'L) ",
where L = §/A1/2 is obtained from the spectral decomposition Ky = SAS’ of K. It follows that
By ~ N(0,71).
Defining V = (V, ZOZgl), 7 = (v, Bgl)’, Zy = ZyZ"", we can rewrite the predictor as
n=Vy+ZB+ZBY.
For identifiability reasons, the columns of Z¢Z (’;l are not contained in the (dg — rg) column space of V', so
that rank(V) = p + (do — o). Defining &g = Zo35", we have an additive mixed model
n=Vi+ZB+eo (24)
for the predictor n, with singular covariance matrix cov(gg) = ZOZ:)TOQ of the ’error term’ gy. Let
SAS =27,z

be the spectral decomposition of ZOZ:), with A = diag(Aq, ..., Ar,) containing the rg positive eigenvalues,
and set

~—1/2

T=A 8.

Multiplying equation (24) by T', we obtain the reduced model
N=TVA+TZB+e, e~ N(0,721),

where 17 = T'np and € = T'ey have dimension rg.
Altogether, we obtain a (linear) one—to—one transformation between 85" and 7, and proving propriety of
(v, B, By, 72,78 | y) is equivalent to proving propriety of p(7,, 8, 72,78 | y).

Thus, we can repeat the arguments of the first part of the proof, replacing n by 1, V' by TV, Z by TZ,
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and n by rg.

From Magnus, Neudecker (1991, p. 273) it follows that

rank(TV) = rank(V) = p + do — 70,

rank(TZ ;) = rank(Z;) = r;.

Applying now Lemma A1l (or Corollary Al) to the model for 7, we obtain Lemma A2 and Corollary A2.
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