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Abstract

In the context of binary classification with continuous predictors, we proove two prop-

erties concerning the connections between Partial Least Squares (PLS) dimension reduc-

tion and between-group PCA, and between linear discriminant analysis and between-group

PCA. Such methods are of great interest for the analysis of high-dimensional data with

continuous predictors, such as microarray gene expression data.
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1 Introduction

Classification, i.e. prediction of a categorical variable using predictor variables is an important

field of applied statistics. Suppose we have ap × 1 random vectorx = (X1, . . . , Xp)
T , where

X1, . . . , Xp are continuous predictor variables.Y is a categorical response variable and can

take values1, . . . , K (K ≥ 2). It can also be denoted as group membership. Many dimension

reduction and classification methods are based on linear transformations of the random vector

x of the type

Z = aTx, (1)

wherea is ap×1 vector. In linear dimension reduction, the focus is on the linear transformations

themselves, whereas linear classification methods aim to predict the response variableY via

linear transformations ofx. However, both approaches are strongly connected, since the linear

transformations which are output by dimension reduction methods can sometimes be used as

new predictor variables for classification. In this short note, we study the connection between

some well-known dimension reduction and classification methods.

Principal component analysis (PCA) consists to find uncorrelated linear transformations of

the random vectorx which have high variance. The same analysis can be performed on the

variableE(x|Y ) instead ofx. In this paper, this approach is denoted as between-group PCA

and examined in section 2. An alternative approach for linear dimension reduction is Partial

Least Squares (PLS), which aims to find linear transformations which have high covariance

with the responseY . In section 3, the PLS approach is briefly presented and a connection

between between-group PCA and the first PLS component is shown for the caseK = 2.

If one assumes thatx has a multivariate normal distribution within each group and that



the within-group covariance matrix is the same for all the groups, decision theory tells us that

the optimal decision function is a linear transformation ofx. This approach is called linear

discriminant analysis. An overview of discriminant analysis can be found in Hastie et al. (2001).

ForK = 2, we show in section 4 that under a stronger assumption, the linear transformation of

x obtained in linear discriminant analysis is the same as in between-group PCA.

In the whole paper,µ denotes the mean of the random vectorx andΣ its covariance. For

k = 1, . . . , K, µk denotes the within-group mean vector ofx andΣk the within-group covari-

ance matrix for groupk. In addition, we assumeµi 6= µj, ∀i 6= j. xi = (xi1, . . . , xip)
T for

i = 1, . . . , n denote independent identically distributed realizations of the random vectorx and

Yi denotes the group membership of theith realization.µ̂1, . . . , µ̂K are the sample within-group

mean vectors calculated from the data set(xi, Yi)i=1,...,n.

2 Between-group PCA

2.1 Definition

Linear dimension reduction consists to define new random variablesZ1, . . . , Zm as linear com-

binations ofX1, . . . , Xp, wherem is the number of new variables. Forj = 1, . . . ,m, Zj has

the form

Zj = aT
j x,

whereaj is a p × 1 vector. In Principal Component Analysis (PCA),a1, . . . , am ∈ Rp are

defined successively as follows.

Definition 1 . Principal Components.



a1 is thep × 1 vector maximizingV AR(aTx) = aTΣa under the constraintaT
1 a1 = 1. For

j = 2, . . . ,m, aj is thep × 1 vector maximizingV AR(aTx) under the constraintsaT
j aj = 1

andaT
j ai = 0 for i = 1, . . . , j − 1.

The vectorsa1, . . . , am defined in definition 1 are the (normalized) eigenvectors of the matrixΣ.

The number of eigenvectors with strictly positive eigenvalues equalsrank(Σ), which isp − 1

if X1, . . . , Xp are linearly independent.a1 is the eigenvector ofΣ with the greatest eigenvalue,

a2 is the eigenvector ofΣ with the second greatest eigenvalue, and so on. For an extensive

overview of PCA, see e.g. Jolliffe (1986).

In PCA, the new variablesZ1, . . . , Zm are built indepently ofY and the number of new

variablesm is at mostp− 1. If one wants to build new variables which contain information on

the categorical response variableY , an alternative to PCA is to look for linear combinations of

x which maximizeV AR(E(aTx|Y )) instead ofV AR(aTx). In the following, this approach is

denoted as between-group PCA.ΣB denotes the between-group covariance matrix:

ΣB = COV (E(x|Y )). (2)

In between-group PCA,a1, . . . , am are defined as follows.

Definition 2 . Between-group Principal Components.

a1 is thep× 1 vector maximizingV AR(E(aTx|Y )) = aTΣBa under the constraintaT
1 a1 = 1.

For j = 2, . . . ,m, aj is the p × 1 vector maximizingV AR(aTx|Y ) under the constraints

aT
j aj = 1 andaT

j ai = 0 for i = 1, . . . , j − 1.

The vectorsa1, . . . , am defined in definition 2 are the eigenvectors of the matrixΣB. Since

ΣB is of rank at mostK−1, there are at mostK−1 eigenvectors with strictly positive eigenval-



ues. SinceE(aTx|Y ) = aT E(x|Y ), between-group PCA can be seen as PCA performed on the

random vectorE(x|Y ) instead ofx. In the next section, the special caseK = 2 is examined.

2.2 A special case:K = 2

If K = 2, ΣB has only one eigenvector with strictly positive eigenvalue. This eigenvector is

denoted asaB. aB can be derived from simple computations onΣB.

ΣB = p1(µ1 − µ)(µ1 − µ)T + p2(µ2 − µ)(µ2 − µ)T

= p1(µ1 − p1µ1 − p2µ2)(µ1 − p1µ1 − p2µ2)
T

+p2(µ2 − p1µ1 − p2µ2)(µ2 − p1µ1 − p2µ2)
T

= p1p
2
2(µ1 − µ2)(µ1 − µ2)

T + p2p
2
1(µ1 − µ2)(µ1 − µ2)

T

= p1p2(µ1 − µ2)(µ1 − µ2)
T

ΣB(µ1 − µ2) = p1p2(µ1 − µ2)(µ1 − µ2)
T (µ1 − µ2).

Since

p1p2(µ1 − µ2)
T (µ1 − µ2) > 0, (3)

(µ1 − µ2) is an eigenvector ofΣB with strictly positive eigenvalue. SinceaB has to satisfy

aT
BaB = 1, we obtain

aB = (µ1 − µ2)/||µ1 − µ2||. (4)

In practice,µ1 andµ2 are often unknown and must be estimated from the available data set

(xi, Yi)i=1,...,n. aB may be estimated by replacingµ1 andµ2 by µ̂1 andµ̂2 in equation (4):

âB = (µ̂1 − µ̂2)/||µ̂1 − µ̂2||. (5)

Between-group PCA is applied by Culhane et al. (2002) in the context of high-dimensional

microarray data. However, Culhane et al. (2002) formulate the method as a data matrix decom-



position (singular value decomposition) and do not define the between-group principal compo-

nents theoretically. In the following section, we examine the connection between-group PCA

and Partial Least Squares.

3 A connection between PLS dimension reduction and between-

group PCA

3.1 Introduction to PLS dimension reduction

Partial Least Squares (PLS) dimension reduction is another linear dimension reduction method.

It is especially appropriate to construct new components which are linked to the response vari-

ableY . Studies of the PLS approach from the point of view of statisticians can be found in

e.g. Stone & Brooks (1990); Frank & Friedman (1993); Garthwaite (1994). In the PLS frame-

work, Z1, . . . , Zm are not random variables which are theoretically defined and then estimated

from a data set: their definition is based on a specific data set. Here, we focus on the binary

case (Y = 1, 2), although the PLS approach can be generalized to multicategorical response

variables (de Jong, 1993). For the data set(xi, Yi)i=1,...,n, the vectorsa1, . . . , am are defined as

follows (Stone & Brooks, 1990).

Definition 3 . PLS components

Let ˆCOV denote the sample covariance computed from(xi, Yi)i=1,...,n. a1 is thep × 1 vector

maximizing ˆCOV (aT
1 x, Y ) under the constraintaT

1 a1 = 1. For j = 2, . . . ,m, aj is thep × 1

vector maximizing ˆCOV (aTx, Y ) under the constraintsaT
j aj = 1 and ˆCOV (aT

j x, aT
i x) = 0

for i = 1, . . . , j − 1.



In the following, the vectora1 defined in definition 3 is denoted asaPLS. An exact algorithm

to compute the PLS components can be found in Martens & Naes (1989). Here, we study the

connection between the first PLS component and the first between-group principal component.

Proposition 1 .

For a given data set(xi, Yi)i=1,...,n, the first PLS component equals the first between-group

principal component:

aPLS = âB.

Proof. For alla ∈ Rp,

ˆCOV (aTx, Y ) = aT ˆCOV (x, Y )

ˆCOV (x, Y ) = 1
n

∑n
i=1 xiYi − 1

n2 (
∑n

i=1 xi)(
∑n

i=1 Yi)

= 1
n
(n1µ̂1 + 2n2µ̂2)− 1

n2 (n1µ̂1 + n2µ̂2)(n1 + 2n2)

= 1
n2 (nn1µ̂1 + 2nn2µ̂2 − n2

1µ̂1 − 2n1n2µ̂1 − n1n2µ̂2 − 2n2
2µ̂2)

= n1n2(µ̂2 − µ̂1)/n
2

The only unit vector maximizingn1n2a
T (µ̂2 − µ̂1)/n

2 is

aPLS = (µ̂2 − µ̂1)/||µ̂2 − µ̂1||

= âB

2

Thus, the first component obtained by PLS dimension reduction is the same as the first com-

ponent obtained by between-group PCA. This is an argument to support the (controversal) use

of PLS dimension reduction in the context of binary classification. The connection between

between-group PCA and linear discriminant analysis is examined in the next section.



4 A connection between LDA and between-group PCA

4.1 Linear discriminant analysis

In this section, linear discriminant analysis is briefly introduced. The connection to between-

group PCA is examined in section 4.2.

If x is assumed to have a multivariate normal distribution with meanµk and covariance

matrixΣk within classk,

P (Y = k|x) = pk · f(x|Y = k)/f(x)

ln P (Y = k|x) = ln pk − ln f(x)− ln(
√

2π|Σk|1/2)− 1
2
(x− µk)

TΣ
−1/2
k (x− µk).

The Bayes classification rule predicts the class of an observationx0 as

C(x0) = arg maxk P (Y = k|x)

= arg maxk(ln pk − ln(
√

2π|Σk|1/2)− 1
2
(x− µk)

TΣ
−1/2
k (x− µk)).

ForK = 2, the discriminant functiond12 is

d12(x) = ln P (Y = 1|x)− ln P (Y = 2|x)

= −1
2
(x− µ1)

TΣ
−1/2
1 (x− µ1) + (x− µ2)

TΣ
−1/2
2 (x− µ2)

+ ln p1 − ln p2 − ln(
√

2π|Σ1|1/2) + ln(
√

2π|Σ2|1/2)

If one assumesΣ1 = Σ2 = Σ, d12 is a linear function ofx (hence the term linear discriminant

analysis):

d12(x) = (x− µ1+µ2

2
)TΣ−1/2(µ1 − µ2) + ln p1 − ln p2

= aT
LDAx + b,



where

aLDA = Σ−1/2(µ1 − µ2) (6)

and

b = −1

2
(µ1 + µ2)

TΣ−1/2(µ1 − µ2) + ln p1 − ln p2. (7)

4.2 A property

Proposition 2 .

If Σ is assumed to be of the formΣ = σ2Ip, whereIp is the identity matrix of dimensionsp× p

andσ is a scalar,aLDA andaB are collinear.

Proof. The proof follows from equations (4) and (6). 2

Thus, we showed the strong connection between linear discriminant analysis and between-

group PCA in the caseK = 2. In practice,aB is estimated bŷaB andaLDA is estimated

by âLDA = 2(µ̂1 − µ̂2)/σ̂, whereσ̂ is an estimator ofσ. Thus,âB andâLDA are also collinear.

The assumption about the structure ofΣ is quite strong. However, such an assumption can

be wise in practice when the available data set contains a large number of variablesp and a small

number of observationsn. If p > n, which often occurs in practice (for instance in microarray

data analysis),̂Σ can not be inverted, since it has rank at mostn−1 and dimensionsp×p. In this

case, it is sensible to make strong assumptions onΣ. Proposition 2 tells us that between-group

PCA takes only between-group correlations into account, not within-group correlations.



5 Discussion

We showed the strong connection between PLS dimension reduction for classification, between-

group PCA and linear discriminant analysis for the caseK = 2. PCA and PLS are useful

techniques in practice, especially when the number of observationsn is smaller than the number

of variablesp, for instance in the context of microarray data analysis (Nguyen & Rocke, 2002).

The connection between PLS and between-group PCA can also justify the use of PLS dimension

reduction in the classification framework. In future work, one could examine the connection

between the three approaches for multicategorical response variables.
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