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Abstract

In the context of binary classification with continuous predictors, we proove two prop-
erties concerning the connections between Partial Least Squares (PLS) dimension reduc-
tion and between-group PCA, and between linear discriminant analysis and between-group
PCA. Such methods are of great interest for the analysis of high-dimensional data with

continuous predictors, such as microarray gene expression data.



1 Introduction

Classification, i.e. prediction of a categorical variable using predictor variables is an important
field of applied statistics. Suppose we have:a 1 random vectok = (X1, ..., X,)?, where
Xi,...,X, are continuous predictor variable¥’ is a categorical response variable and can
take valued, ..., K (K > 2). It can also be denoted as group membership. Many dimension
reduction and classification methods are based on linear transformations of the random vectol
x of the type

7 =a'x, (1)

wherea is ap x 1 vector. In linear dimension reduction, the focus is on the linear transformations
themselves, whereas linear classification methods aim to predict the response Janadble
linear transformations at. However, both approaches are strongly connected, since the linear
transformations which are output by dimension reduction methods can sometimes be used a:
new predictor variables for classification. In this short note, we study the connection between
some well-known dimension reduction and classification methods.

Principal component analysis (PCA) consists to find uncorrelated linear transformations of
the random vectok which have high variance. The same analysis can be performed on the
variable £'(x|Y") instead ofx. In this paper, this approach is denoted as between-group PCA
and examined in sectigr} 2. An alternative approach for linear dimension reduction is Partial
Least Squares (PLS), which aims to find linear transformations which have high covariance
with the responsé”. In section B, the PLS approach is briefly presented and a connection
between between-group PCA and the first PLS component is shown for th& caske

If one assumes that has a multivariate normal distribution within each group and that



the within-group covariance matrix is the same for all the groups, decision theory tells us that
the optimal decision function is a linear transformationxof This approach is called linear
discriminant analysis. An overview of discriminant analysis can be found in Hastig|et all (2001).
For K = 2, we show in sectiop]4 that under a stronger assumption, the linear transformation of
x obtained in linear discriminant analysis is the same as in between-group PCA.

In the whole papen: denotes the mean of the random vectand X its covariance. For
k=1,..., K, u, denotes the within-group mean vectorsodnd;. the within-group covari-
ance matrix for grougk. In addition, we assumg,; # p;, Vi # j. X; = (Ti1, ..., z;p)" for
i =1,...,n denote independent identically distributed realizations of the random veetod
Y; denotes the group membership of itterealization.fi,, . . . , f1;; are the sample within-group

mean vectors calculated from the data(sgtY;),—1 _n.

2 Between-group PCA

2.1 Definition

Linear dimension reduction consists to define new random variahles. , Z,, as linear com-
binations ofXj, ..., X,, wherem is the number of new variables. Fpr=1,...,m, Z; has

the form

_ T

wherea; is ap x 1 vector. In Principal Component Analysis (PCA),,...,a,, € RP are

defined successively as follows.

Definition 1 . Principal Components.



a; is thep x 1 vector maximizing/ AR(a”x) = a”Xa under the constraina’a; = 1. For
j =2,...,m, a; is thep x 1 vector maximizing’ AR(a”x) under the constrainta’a; = 1

andaja; =0fori=1,...,5 — 1.

The vectorsy, . . ., a,, defined in definition |1 are the (normalized) eigenvectors of the ma&itrix
The number of eigenvectors with strictly positive eigenvalues equalg(X), which isp — 1

if X1,...,X, are linearly independend, is the eigenvector aE with the greatest eigenvalue,

a, is the eigenvector ok with the second greatest eigenvalue, and so on. For an extensive
overview of PCA, see e.g. Jolliife (1986).

In PCA, the new variableg, ..., Z,, are built indepently off” and the number of new
variablesm is at mosty — 1. If one wants to build new variables which contain information on
the categorical response variablean alternative to PCA is to look for linear combinations of
x which maximizeV AR(E(a”x|Y")) instead ofi” AR(a”x). In the following, this approach is

denoted as between-group PCAg denotes the between-group covariance matrix:
X =COV(EX|Y)). (2)
In between-group PCAa,, .. ., a,, are defined as follows.

Definition 2 . Between-group Principal Components
a; is thep x 1 vector maximizing’ AR(E(a’x|Y)) = a’ X za under the constraira? a; = 1.
For j = 2,...,m, a; is thep x 1 vector maximizing/ AR(a”x|Y") under the constraints

a?aj:1anda?ai:0f0ri:1,...,j—1.

The vectors, . . ., a,, defined in definition 2 are the eigenvectors of the maitjx Since

Y g is of rank at mosf — 1, there are at mogt’ — 1 eigenvectors with strictly positive eigenval-



ues. SinceZ(a’x|Y) = al E(x|Y’), between-group PCA can be seen as PCA performed on the

random vecto”(x|Y") instead ofk. In the next section, the special case= 2 is examined.

2.2 Aspecial caseK =2

If K = 2, X3 has only one eigenvector with strictly positive eigenvalue. This eigenvector is
denoted aag. ag can be derived from simple computations¥p.

)P = pr(py — ) (g — )" + oy — ) (g — p)"

= iy — prpsy — Patss) (4 — Pipty — Papta)”

+pa(fy — priey — papa) (Mg — prisy — Paprs)”
= P13y — o) (g — po)™ + papi (g — o) (py — py)”
= pipa(p — po) (g — )"

Sy — o) = pipa(py — pho)(py — H2)T(N1 — Hy).

Since
pipa(y — o)™ (g — pg) > 0, )
(ny, — po) is an eigenvector ok with strictly positive eigenvalue. Sincgs has to satisfy
aLap = 1, we obtain
ap = (K — po) /|1y — pol- (4)

In practice,u, and u, are often unknown and must be estimated from the available data set

éB = (ﬂ1 - ﬂ2)/”ﬂ1 - 112" (5)

Between-group PCA is applied by Culhane €t/al. (2002) in the context of high-dimensional

microarray data. However, Culhane et al. (2002) formulate the method as a data matrix decom-



position (singular value decomposition) and do not define the between-group principal compo-
nents theoretically. In the following section, we examine the connection between-group PCA

and Partial Least Squares.

3 A connection between PLS dimension reduction and between-

group PCA

3.1 Introduction to PLS dimension reduction

Partial Least Squares (PLS) dimension reduction is another linear dimension reduction method.
It is especially appropriate to construct new components which are linked to the response vari-
ableY. Studies of the PLS approach from the point of view of statisticians can be found in
e.g.| Stone & Brooks (1990); Frank & Friedman (1993); Garthwaite (1994). In the PLS frame-
work, 71, ..., Z,, are not random variables which are theoretically defined and then estimated
from a data set: their definition is based on a specific data set. Here, we focus on the binary
case ¥ = 1,2), although the PLS approach can be generalized to multicategorical response

variables|(de Jong, 1993). For the data(sgtY;);—1...., the vectorsy, ..., a,, are defined as

-----

follows (Stone & Brooks, 1990).

Definition 3 . PLS components
maximizingCOV (a'x, Y') under the constraina’a; = 1. For j = 2,...,m, a; is thep x 1
vector maximizing”OV (a”x, Y') under the constrainta’a; = 1 andCOV (aTx,alx) = 0

fori=1,...,7—1.



In the following, the vectorn; defined in definitior [3 is denoted ag.s. An exact algorithm
to compute the PLS components can be found in Martens &|Naes|(1989). Here, we study the

connection between the first PLS component and the first between-group principal component.

Proposition 1 .

For a given data setx;, Y;);—1. ., the first PLS component equals the first between-group

.....

principal component:

aprLs = ag.
Proof. For alla € RP?,
COV(a’x,Y) = aTCOV(x,Y)
COV(}Q Y) = % Do XY — ?12(2?:1 xi) (D iy Vi)

= p(mfey + 2nafsy) — o5 (nafiy 4 nafty) (01 + 2ns)
= (nnifiy + 2nnafty — nify — 2ninafly — nanafly — 2n3fL,)
= nang(fay — f1,)/n’

The only unit vector maximizing,nsa® (f1, — f1,)/n*is

aprs = (Mg - ﬂ1)/||ﬂ2 - ﬂ1“

A~

Thus, the first component obtained by PLS dimension reduction is the same as the first com-
ponent obtained by between-group PCA. This is an argument to support the (controversal) use
of PLS dimension reduction in the context of binary classification. The connection between

between-group PCA and linear discriminant analysis is examined in the next section.



4 A connection between LDA and between-group PCA

4.1 Linear discriminant analysis

In this section, linear discriminant analysis is briefly introduced. The connection to between-
group PCA is examined in sectipn §.2.
If x is assumed to have a multivariate normal distribution with mgarand covariance

matrix X3;, within classk,

PY=klx) = p- f(x]Y =k)/f(x)
I P(Y =k[x) = Inp;—In f(x) — In(v27|S|"2) — §(x — ) 752 (x — py).
The Bayes classification rule predicts the class of an observagian
C(x9) = argmaxy P(Y = k|x)
— argmax;(In py, — In(v2r |k /%) = 3 (x = )T, x — ).

For K = 2, the discriminant functiow,, is

di2(x) = InP(Y =1]x) —InP(Y = 2|x)
= = )T P ) (= )T, P (x — )

+Inpy — Inpy — In(v27[3,["?) + In(v/27| 2| "/?)

If one assumeXl; = 3, = 3, dy5 is a linear function ok (hence the term linear discriminant

analysis):

dip(x) = (x = #522)TS72 () — py) +Inpy — Inpy

_ T
= ajpsXx+0b,



where

appa = X73(

Ky — o) (6)
and

1 .
b= =5+ ) " ET (g = pay) + Inpy — Inpy. 0

4.2 A property

Proposition 2 .
If 3 is assumed to be of the forfh= 021, wherel,, is the identity matrix of dimensionsx p

ando is a scalararp4 andag are collinear.

Proof. The proof follows from equation§|(4) ar{d (6). O

Thus, we showed the strong connection between linear discriminant analysis and between-
group PCA in the cas& = 2. In practice,ag is estimated byaz anda;p, is estimated
byarpa = 2(fs; — p5)/6, Wheres is an estimator of. Thus,ap anda,pa are also collinear.

The assumption about the structuredofs quite strong. However, such an assumption can
be wise in practice when the available data set contains a large number of variabtea small
number of observations. If p > n, which often occurs in practice (for instance in microarray
data analysis)¥ can not be inverted, since it has rank at mostl and dimensiong x p. In this
case, it is sensible to make strong assumptionX oRroposition P tells us that between-group

PCA takes only between-group correlations into account, not within-group correlations.



5 Discussion

We showed the strong connection between PLS dimension reduction for classification, between-
group PCA and linear discriminant analysis for the caSe= 2. PCA and PLS are useful
techniques in practice, especially when the number of observatisrsmaller than the number

of variablesp, for instance in the context of microarray data analysis (Nguyen & Rocke| 2002).
The connection between PLS and between-group PCA can also justify the use of PLS dimension
reduction in the classification framework. In future work, one could examine the connection

between the three approaches for multicategorical response variables.
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