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Abstract

On the basis of integral representations we propose fast numerical
methods to solve the Cauchy problem for the stochastic wave equation
without boundaries and with the Dirichlet boundary conditions. The
algorithms are exact in a probabilistic sense.

1 Statement of the problem and integral rep-
resentations

Consider the stochastic wave equation

yXu ) ,0°X
— Tr)—a
o2 Ox?

with random initial conditions, where W is a Gaussian white noise on the
plane. We give shortly the precise statement of the problem. The aim of

(t,z) =g(t,x)+ f(t,z)dW (t,x) (1)
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the paper is to construct numerical algorithms in order to solve the Cauchy
problem for equation (1) without boundaries and with the Dirichlet boundary
conditions, i.e., to simulate realizations of the random field X.

First, we present the necessary formalism for the stochastic wave equation
and integral representations for the solutions that underlay our numerical
methods. The details can be found in [5], [1] and [2].

Let (2, F, IP) be a complete probability space, W be an isonormal process
indexed by L*(Ry xR, B(R; xR), \) and {F;; t € R, } be a nullset augmented
filtration which satisfies

— W(14) is Fi-measurable whenever A € B([0,t] x R)
with A(A) < oo;

— W (1,4) is independent of F, whenever A € B((t,00) x R)
with A(A4) < oo.

Moreover, let F' = {F(z); x € R} and H = {H(z); € R} be almost surely
continuous and F-measurable processes such that [, E{|F(x)]*}¢(z) dz and
Jo E{|H (®)|*}¢(x) dz are finite for any smooth ¢ with compact support.
Finally, assume f and g to be real valued functions on R, x R such that
fe is square integrable and gy is integrable for any smooth ¢ with compact
support, respectively.

Similar to the deterministic case, the solution of equation (1) with initial
conditions (F, H) on R, x R can be represented in terms of Green’s function
G, (hereafter a > 0),

L o ifo<s<tand|z—y| <a(t—s)
_ 2a - . -
Ga(t>$a S, y) { 0 otherwise.

The solution is given by

~—

X(t,x) =up(t,z) + /R /RGa(t,:E,s,y)g(s,y)dyds (2
o [ Gutts) fs,m W (s,

where ug(t, r) = (F(z — at) + F(z +at))/2 + [77% H(y)/2a dy.

Remark 1.1 We require the integrability conditions on F' and H to have
first and second moments for the random field X. An example for a homo-
geneous wave equation with random initial conditions is studied in [4].
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Remark 1.2 The stochastic integral in (2) is defined by
[ s awis.g) =wan
R: JR

for any h € L*(R; x R, B(R, x R),\) and we use the integral notation for
convenience.

Remark 1.3 It holds X(0,-) = F almost surely, and for f = 0 we have
0X/0t(0,-) = H. However, for f # 0 the last equation has only formal
meaning, because the random field X is not differentiable.

For the Cauchy problem on R, x [0, 1] with Dirichlet boundary conditions
Green’s function X, has the following form

Zga(t,x,s,y) = Z[Ga(tax+2k737y)1[0,l](y)
k

_Ga(ta —T + 2k7 S, y)l[O,l] (y)] )
and instead of ug we consider

1
uo.p(t,z) = 5 Z [F(x + 2k — at)1oq)(z + 2k — at)
P

+  F(z+42k+at)lgq(z + 2k + at)
- F(=x+2k —at)lo(—z + 2k — at)

— F(—a+ 2+ at) Lo~z + 2%k + at)|
1 (z+2k+at)Al (—a+2k+at)Al
e 1 ) dy — [ H(y) dy).
k

2a z+2k—at)V0 —z+2k—at)V0

In this case the solution of (1) with initial conditions (F, H) is
1
X(to) = o) + [ [ Saltospgendds @)
r: Jo

N /R + /O S (5. f(5.0) AW (5.9).

In both cases the solutions are Gaussian random fields and the integral rep-
resentations give the basis to construct “exact” numerical solutions.
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2 Numerical algorithms

A realization of the solution will be simulated on a grid
g= {(tjv'rk> = (]haakh)}

with j € {0,1/2,1,3/2,...}, k € {...,—1,—1/2,0,1/2,1,...}, where h is
a time step, ah is a spatial step and for a grid point the indices j, k are
simultaneously either integers or fractional numbers.

In addition to the values X/ = X (jh,akh) on the grid G the algorithm
operates with the values 1, on an “adjacent” grid G* = {(t;, z1) = (jh, akh)}
with the same sets of indices, but one of the indices is always integer while the
other is fractional. Moreover, yi is given by ] = ffk"faa:/éz H;(y) dy, where
H;(y) is the second part of the initial conditions for the Cauchy problem at
time t; (see Remark 1.3).

2.1 Cauchy problem without boundaries

The algorithm uses the Markov property of X with respect to time, i.e. the
values for the next time level depend only on the values obtained at the
previous time level. Therefore the complexity of the algorithm is linear.
Initialisation. Set j = 0. The values X} are taken from the initial
condition, i.e. X = F(akh) = X(0,akh) = X (to,x1). Moreover, set p) =

zi+ah/2
fm:—ah/Q H<y) dy
Step 1. Equation (3) gives an explicit rule to calculate X7+1/2;
(1o . 1 . +1/2
X1 = <§ (X7 + Xi) + %N?@H/z) + &) (4)

where

i1/2 tit1/2 [T+
§k+1/2 - / / G&(tj+1/27xk+1/27S7y)g(87y) dde
t; Tk

livi/2  [Tk+1
+ / / Ga(tj+1/2>xk+l/27Say)f(s7y) dW(Say)
tj Tk
is a Gaussian random variable with mean
tit1/2 Th+t1
/ / Ga(tj+1/2a Tk+1/2, S, y)9(s,y) dy ds
t; Ty

and variance

tit1i/2  LTht1 ) )
/ / Ga<tj+1/2axk+1/273ay)f (S,y) dy ds.
tj Tk
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Step 2 The next step is to calculate ,uf;ill/ ®. To this end, one observes

that X ,Jg +1 can be expressed in two different ways,

. 1 1 . .
1 +1/2 +1/2 +1/2 1
XL o= (5 (XJ+1;2 + Xli+3;2) + %Ni—i-l/ > +&4 (5)
and
XJ+1 _ 1 X] X 1 J J 6
S (X7 + Xip0) + % Priiyz t Hiysyo (6)
i+1/2 +1/2 +1
+ <§i+1§2 + §i+3§2 k+1 + fiH) )
where
) tit1/2  fTr+1ta(s— t]
c%“ = / (s,y)dyds (7)
Th41— a(s— t
tit1/2  frre1ta(s—t;)
+ / (s,9) dW (s,y)
Th41— a(s— t

is a Gaussian random varlable with mean given by the first double integral
in (7) and variance

( ) /]+1/2 /$k+1+a s—tj)
f2(s,y) dyds.
2CL Th41 a(s— t

A combination of (5) and (6) yields
LI LS L j
Py = 205 (Xi+ k+2) 2 (Uk+1/2 + Uk+3/2> (8)

11/2 | ejt1/2 1 1172 i11/2
+ (5i+1/z + 5i+3/2> + 640 — B <lec+1/2 + Xli+3/2>} :

Thus, at step two the values /ﬁ:kll/ ? are simulated according to expression (8).

is1> are defined at
the previous steps of the algorithm, and the random variable ff:ﬁ} appears
in (5) and (6) but cancels out in (8).

Cycling. Set j = j + 1/2 and go back to step 1.

Note, that all the components of the expression, except 67

Proposition 2.1 The sequence (X;) on the grid G fulfils X;, = X (t;, k)
with probability one.

Proof. On the grid G Green’s function G, can be decomposed into triangles
with corners given by the grid points. Thus induction on the time level ¢;
gives the assertion. a
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2.2 Cauchy problem with boundary conditions

This algorithm is a modification of the previous one. As ah is a step size in
space, here we assume that N = 1/ah is an integer.

Initialisation. Set j = 0 and determine X} for k € {0,..., N} and
o +1/2 for k € {0,..., N —1} by the initial conditions F' and H, respectively.

Step 1. The values X,ij:g for k € {0,..., N—1} are calculated according
to equation (4).

Step 2. The values /L?J_ll/ *for k € {0,..., N =2} are calculated according
to equation (8). .

Step 3. The values X{]CH for k € {1,..., N —1} are calculated according
to equation (4) while X" and X fVH are defined by the boundary conditions,
e, X{M'=X{" =0 '

Step 4. Now, the values Ni;-i have to be calculated. For k € { 2

: ' 35991 3
equation (8) is used. To find ,ujJQl and ,ug\;r_ll /o the boundary conditions should

1 3 N-=5

be applied. The value Xf;gg/ ? can be expressed in two different ways (note
that X" = 0),

379 1 . . 1 . i13/9
X = (_(Xg+1+X{+1)+—J+1 +&y

2 241172
_ lXjJrl n iMjJrl gty
541 5g 172 1/2
w32 (1 i+1/2 +1/2 Iy
Xf/z - (5 (_X{/z + Xg/z ) + %Mi )

i+1 | +1/2 | i+3/2
+ <5{ T 010" & ) :
From these two representations we obtain the formula for simulation,

: 1 . . 1 .
+1 +1/2 +1/2 +1/2
i = o 5 (O ) ¢ g ()

. : 1 .
CWETHEEEE ]}

Similarly, for ,uf\;r_ll o We have
. 1 . , 1 A
+1 _ +1/2 +1/2 +1/2
'ug\f—l/Q = 2a {5 (XJJV—3/2 - X]]V—1/2> + % <M§v—1 )
: . 1 ,
1 +1/2 +1
() + R - 5 (XA

Cycling. Set 7 = j 4+ 1 and go back to Step 1.
The sequence (X ) fulfils X, , = X (¢;, z5) with probability one as before.
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2.3 Results of simulation

Results of numerical simulations are presented in Figs. 1 and 2. In addition,
in Fig. 3 we present an example of the sample size dependence of the empir-
ical correlation between two points of the solution for the Cauchy problem
without boundaries.
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Figure 1: Realization of the solution of the Cauchy problem without bound-
aries; zero initial conditions and harmonic initial conditions.
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Figure 2: Realization of the solution of the Cauchy problem with Dirichlet
boundary conditions; zero initial conditions and harmonic initial conditions.

3 Conclusion

The two proposed methods are “exact” in the sense that the finite-dimensional
distributions of the field X on the grid G coincide with the finite-dimensional
distributions of the numerical solution. Moreover, the complexity of the al-
gorithms is linear and they are therefore attractive for numerical simulations.

Remark 3.1 “Exact” algorithms to solve the stochastic Klein-Gordon equa-
tion
O’X /ot (t,x) — O X/0x*(t,x) = aX(t,x) + dW (L, z)
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Figure 3: Empirical correlations with confidence intervals of level 0.95 via
the sample size; exact correlation is equal to 0.25.

were discussed in [3]. But the algorithms proposed in that paper don’t have
the Markov property and, practically, result in a general simulation of Gaus-
sian random vectors with correlated components. Because of this fact, it can
turn out that the algorithms are not feasible for large grids.
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