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Abstract

On the basis of integral representations we propose fast numerical
methods to solve the Cauchy problem for the stochastic wave equation
without boundaries and with the Dirichlet boundary conditions. The
algorithms are exact in a probabilistic sense.

1 Statement of the problem and integral rep-

resentations

Consider the stochastic wave equation

∂2X

∂t2
(t, x)− a2∂2X

∂x2 (t, x) = g(t, x) + f(t, x) dW (t, x) (1)

with random initial conditions, where W is a Gaussian white noise on the
plane. We give shortly the precise statement of the problem. The aim of
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the paper is to construct numerical algorithms in order to solve the Cauchy
problem for equation (1) without boundaries and with the Dirichlet boundary
conditions, i.e., to simulate realizations of the random field X.

First, we present the necessary formalism for the stochastic wave equation
and integral representations for the solutions that underlay our numerical
methods. The details can be found in [5], [1] and [2].

Let (Ω, F , P) be a complete probability space, W be an isonormal process
indexed by L2(R+×R,B(R+×R), λ) and {Ft; t ∈ R+} be a nullset augmented
filtration which satisfies

– W (1A) is Ft-measurable whenever A ∈ B([0, t]× R)
with λ(A) < ∞;

– W (1A) is independent of Ft whenever A ∈ B((t,∞)× R)
with λ(A) < ∞.

Moreover, let F = {F (x); x ∈ R} and H = {H(x); x ∈ R} be almost surely
continuous and F -measurable processes such that

∫
R E{|F (x)|2}ϕ(x) dx and∫

R E{|H(x)|2}ϕ(x) dx are finite for any smooth ϕ with compact support.
Finally, assume f and g to be real valued functions on R+ × R such that
fϕ is square integrable and gϕ is integrable for any smooth ϕ with compact
support, respectively.

Similar to the deterministic case, the solution of equation (1) with initial
conditions (F, H) on R+×R can be represented in terms of Green’s function
Ga (hereafter a > 0),

Ga(t, x, s, y) =

{
1
2a

if 0 ≤ s ≤ t and |x− y| ≤ a(t− s)
0 otherwise.

The solution is given by

X(t, x) = u0(t, x) +

∫
R+

∫
R

Ga(t, x, s, y)g(s, y) dy ds (2)

+

∫
R+

∫
R

Ga(t, x, s, y)f(s, y) dW (s, y),

where u0(t, x) = (F (x− at) + F (x + at))/2 +
∫ x+at

x−at
H(y)/2a dy.

Remark 1.1 We require the integrability conditions on F and H to have
first and second moments for the random field X. An example for a homo-
geneous wave equation with random initial conditions is studied in [4].
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Remark 1.2 The stochastic integral in (2) is defined by∫
R+

∫
R

h(s, y) dW (s, y) := W (h)

for any h ∈ L2(R+ × R,B(R+ × R), λ) and we use the integral notation for
convenience.

Remark 1.3 It holds X(0, ·) = F almost surely, and for f = 0 we have
∂X/∂t(0, ·) = H. However, for f 6= 0 the last equation has only formal
meaning, because the random field X is not differentiable.

For the Cauchy problem on R+ × [0, 1] with Dirichlet boundary conditions
Green’s function ΣGa has the following form

ΣGa(t, x, s, y) =
∑

k

[
Ga(t, x + 2k; s, y)1[0,1](y)

−Ga(t,−x + 2k; s, y)1[0,1](y)
]
,

and instead of u0 we consider

u0,D(t, x) =
1

2

∑
k

[
F (x + 2k − at)1(0,1)(x + 2k − at)

+ F (x + 2k + at)1(0,1)(x + 2k + at)

− F (−x + 2k − at)1(0,1)(−x + 2k − at)

− F (−x + 2k + at)1(0,1)(−x + 2k + at)
]

+
1

2a

∑
k

[ ∫ (x+2k+at)∧1

(x+2k−at)∨0

H(y) dy −
∫ (−x+2k+at)∧1

(−x+2k−at)∨0

H(y) dy
]
.

In this case the solution of (1) with initial conditions (F, H) is

X(t, x) = u0,D(t, x) +

∫
R+

∫ 1

0

ΣGa(t, x, s, y)g(s, y) dy ds (3)

+

∫
R+

∫ 1

0

ΣGa(t, x, s, y)f(s, y) dW (s, y).

In both cases the solutions are Gaussian random fields and the integral rep-
resentations give the basis to construct “exact” numerical solutions.
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2 Numerical algorithms

A realization of the solution will be simulated on a grid

G = {(tj, xk) = (jh, akh)}

with j ∈ {0, 1/2, 1, 3/2, . . .}, k ∈ {. . . ,−1,−1/2, 0, 1/2, 1, . . .}, where h is
a time step, ah is a spatial step and for a grid point the indices j, k are
simultaneously either integers or fractional numbers.

In addition to the values Xj
k = X(jh, akh) on the grid G the algorithm

operates with the values µj
k on an “adjacent” grid G∗ = {(tj, xk) = (jh, akh)}

with the same sets of indices, but one of the indices is always integer while the

other is fractional. Moreover, µj
k is given by µj

k =
∫ xk+ah/2

xk−ah/2
Hj(y) dy, where

Hj(y) is the second part of the initial conditions for the Cauchy problem at
time tj (see Remark 1.3).

2.1 Cauchy problem without boundaries

The algorithm uses the Markov property of X with respect to time, i.e. the
values for the next time level depend only on the values obtained at the
previous time level. Therefore the complexity of the algorithm is linear.

Initialisation. Set j = 0. The values X0
k are taken from the initial

condition, i.e. X0
k = F (akh) = X(0, akh) = X(t0, xk). Moreover, set µ0

k =∫ xk+ah/2

xk−ah/2
H(y) dy.

Step 1. Equation (3) gives an explicit rule to calculate Xj+1/2:

X
j+1/2
k+1/2 =

(
1

2

(
Xj

k + Xj
k+1

)
+

1

2a
µj

k+1/2

)
+ ξ

j+1/2
k+1/2, (4)

where

ξ
j+1/2
k+1/2 =

∫ tj+1/2

tj

∫ xk+1

xk

Ga(tj+1/2, xk+1/2, s, y)g(s, y) dy ds

+

∫ tj+1/2

tj

∫ xk+1

xk

Ga(tj+1/2, xk+1/2, s, y)f(s, y) dW (s, y)

is a Gaussian random variable with mean∫ tj+1/2

tj

∫ xk+1

xk

Ga(tj+1/2, xk+1/2, s, y)g(s, y) dy ds

and variance∫ tj+1/2

tj

∫ xk+1

xk

G2
a(tj+1/2, xk+1/2, s, y)f 2(s, y) dy ds.
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Step 2. The next step is to calculate µ
j+1/2
k+1 . To this end, one observes

that Xj+1
k+1 can be expressed in two different ways,

Xj+1
k+1 =

(
1

2

(
X

j+1/2
k+1/2 + X

j+1/2
k+3/2

)
+

1

2a
µ

j+1/2
k+1

)
+ ξj+1

k+1 (5)

and

Xj+1
k+1 =

(
1

2

(
Xj

k + Xj
k+2

)
+

1

2a

(
µj

k+1/2 + µj
k+3/2

))
(6)

+
(
ξ

j+1/2
k+1/2 + ξ

j+1/2
k+3/2 + δj

k+1 + ξj+1
k+1

)
,

where

δj
k+1 =

1

2a

∫ tj+1/2

tj

∫ xk+1+a(s−tj)

xk+1−a(s−tj)

g(s, y) dy ds (7)

+
1

2a

∫ tj+1/2

tj

∫ xk+1+a(s−tj)

xk+1−a(s−tj)

f(s, y) dW (s, y)

is a Gaussian random variable with mean given by the first double integral
in (7) and variance(

1

2a

)2 ∫ tj+1/2

tj

∫ xk+1+a(s−tj)

xk+1−a(s−tj)

f 2(s, y) dy ds.

A combination of (5) and (6) yields

µ
j+1/2
k+1 = 2a

[
1

2

(
Xj

k + Xj
k+2

)
+

1

2a

(
µj

k+1/2 + µj
k+3/2

)
(8)

+
(
ξ

j+1/2
k+1/2 + ξ

j+1/2
k+3/2

)
+ δj

k+1 −
1

2

(
X

j+1/2
k+1/2 + X

j+1/2
k+3/2

)]
.

Thus, at step two the values µ
j+1/2
k+1 are simulated according to expression (8).

Note, that all the components of the expression, except δj
k+1, are defined at

the previous steps of the algorithm, and the random variable ξj+1
k+1 appears

in (5) and (6) but cancels out in (8).
Cycling. Set j = j + 1/2 and go back to step 1.

Proposition 2.1 The sequence (Xj,k) on the grid G fulfils Xj,k = X(tj, xk)
with probability one.

Proof. On the grid G Green’s function Gα can be decomposed into triangles
with corners given by the grid points. Thus induction on the time level tj
gives the assertion. 2
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2.2 Cauchy problem with boundary conditions

This algorithm is a modification of the previous one. As ah is a step size in
space, here we assume that N = 1/ah is an integer.

Initialisation. Set j = 0 and determine X0
k for k ∈ {0, . . . , N} and

µ0
k+1/2 for k ∈ {0, . . . , N −1} by the initial conditions F and H, respectively.

Step 1. The values X
j+1/2
k+1/2 for k ∈ {0, . . . , N−1} are calculated according

to equation (4).

Step 2. The values µ
j+1/2
k+1 for k ∈ {0, . . . , N−2} are calculated according

to equation (8).
Step 3. The values Xj+1

k for k ∈ {1, . . . , N −1} are calculated according
to equation (4) while Xj+1

0 and Xj+1
N are defined by the boundary conditions,

i.e., Xj+1
0 = Xj+1

N = 0.
Step 4. Now, the values µj+1

k+1 have to be calculated. For k ∈ {1
2
, 3

2
, . . . , N−5

2
}

equation (8) is used. To find µj+1
1/2 and µj+1

N−1/2 the boundary conditions should

be applied. The value X
j+3/2
1/2 can be expressed in two different ways (note

that Xj+1
0 = 0),

X
j+3/2
1/2 =

(
1

2

(
Xj+1

0 + Xj+1
1

)
+

1

2a
µj+1

1/2

)
+ ξ

j+3/2
1/2

=

(
1

2
Xj+1

1 +
1

2a
µj+1

1/2

)
+ ξ

j+3/2
1/2 ,

X
j+3/2
1/2 =

(
1

2

(
−X

j+1/2
1/2 + X

j+1/2
3/2

)
+

1

2a
µ

j+1/2
1

)
+

(
ξj+1
1 + δ

j+1/2
1/2 + ξ

j+3/2
1/2

)
.

From these two representations we obtain the formula for simulation,

µj+1
1/2 = 2a

[
1

2

(
−X

j+1/2
1/2 + X

j+1/2
3/2

)
+

1

2a

(
µ

j+1/2
1

)
+

(
ξj+1
1

)
+ δ

j+1/2
1/2 − 1

2

(
Xj+1

1

)]
.

Similarly, for µj+1
N−1/2 we have

µj+1
N−1/2 = 2a

[
1

2

(
X

j+1/2
N−3/2 −X

j+1/2
N−1/2

)
+

1

2a

(
µ

j+1/2
N−1

)
+

(
ξj+1
N−1

)
+ δ

j+1/2
N−1/2 −

1

2

(
Xj+1

N−1

)]
.

Cycling. Set j = j + 1 and go back to Step 1.
The sequence (Xj,k) fulfils Xj,k = X(tj, xk) with probability one as before.
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2.3 Results of simulation

Results of numerical simulations are presented in Figs. 1 and 2. In addition,
in Fig. 3 we present an example of the sample size dependence of the empir-
ical correlation between two points of the solution for the Cauchy problem
without boundaries.

Figure 1: Realization of the solution of the Cauchy problem without bound-
aries; zero initial conditions and harmonic initial conditions.

Figure 2: Realization of the solution of the Cauchy problem with Dirichlet
boundary conditions; zero initial conditions and harmonic initial conditions.

3 Conclusion

The two proposed methods are “exact” in the sense that the finite-dimensional
distributions of the field X on the grid G coincide with the finite-dimensional
distributions of the numerical solution. Moreover, the complexity of the al-
gorithms is linear and they are therefore attractive for numerical simulations.

Remark 3.1 “Exact” algorithms to solve the stochastic Klein-Gordon equa-
tion

∂2X/∂t2(t, x)− ∂2X/∂x2(t, x) = αX(t, x) + dW (t, x)
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Figure 3: Empirical correlations with confidence intervals of level 0.95 via
the sample size; exact correlation is equal to 0.25.

were discussed in [3]. But the algorithms proposed in that paper don’t have
the Markov property and, practically, result in a general simulation of Gaus-
sian random vectors with correlated components. Because of this fact, it can
turn out that the algorithms are not feasible for large grids.
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