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ABSTRACT

Generalized additive models have become a widely used instrument for flexible regression
analysis. In many practical situations, however, it is desirable to restrict the flexibility of
nonparametric estimation in order to accommodate a presumed monotonic relationship
between a covariate and the response variable. For example, consumers usually will buy
less of a brand if its price increases, and therefore one expects a brand’s unit sales to
be a decreasing function in own price. We follow a Bayesian approach using penalized B-
splines and incorporate the assumption of monotonicity in a natural way by an appropriate
specification of the respective prior distributions. We illustrate the methodology in an
empirical application modeling demand for a brand of orange juice and show that imposing
monotonicity constraints for own- and cross-item price effects improves the predictive
validity of the estimated sales response function considerably.
Key words: Generalized Additive Model, Markov Chain Monte Carlo, Sales Promotion,
Own- and Cross-Item Price Effects, Asymmetric Quality Tier Competition

1. INTRODUCTION

Generalized additive models (GAM) are a powerful tool for modeling possibly nonlinear
effects of multiple covariates. For continuous covariates, the variety of different approaches
for nonlinear modeling comprises, for example, smoothing splines (e.g., Hastie and Tibshi-
rani 1990), regression splines (e.g., Friedman and Silverman 1989; Friedman 1991; Stone,
Hansen, Kooperberg and Truong 1997), local methods (e.g., Fan and Gijbels 1996) as well
as P-splines (Eilers and Marx 1996; Marx and Eilers 1998). Bayesian nonparametric ap-
proaches make use of adaptive knot selection (e.g., Smith and Kohn 1996; Denison, Mallick
and Smith 1998; Biller 2000; Di Matteo, Genovese and Kass 2001; Biller and Fahrmeir
2001; Hansen and Kooperberg 2002) or smoothness priors (Hastie and Tibshirani 2000;
Fahrmeir and Lang 2001a,b). Lang and Brezger (2004) have adopted the frequentist P-
splines of Eilers and Marx (1996) for a Bayesian framework for additive models and Brezger
and Lang (2003) have extended their work to GAMs.
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While strictly parametric modeling is too restrictive in many cases, the flexibility of non-
and semiparametric approaches may lead to implausible results on the other hand. Clearly,
the problem of overfitting can be addressed by penalization of too rough functions or by
adaptive knot selection. Much less discussed in the literature on nonparametric estimation
is, however, the important case when theory and/or empirical evidence strongly suggest
a monotonic relationship between a covariate and a response variable. For example, con-
sumers usually will buy less of a brand as its price increases, and therefore one expects
a brand’s unit sales or market share to decrease monotonically in price. The downward
slope of own price response functions is in accordance with economic theory (e.g., Rao
1993), and there is strong empirical support that own-price elasticities are negative and
elastic (e.g., Tellis 1988, Hanssens, Parsons and Schultz 2001). Similarly, we generally
expect cross-price effects on competitive items (i.e., brand substitutes) to be positive or
at least nonnegative, implying that a price cut by a brand may decrease but by no means
will increase the unit sales of competitive brands (Sethuraman, Srinivasan and Kim 1999).
Examples for presumed monotonic relationships can also be found in disciplines other than
business and economics, as it is the case for many dose-response relationships in medicine.
For instance, the concentration of dust and the duration of exposition to it at working
places is assumed to affect the occurrence of certain lung diseases in a monotonic way
(Ulm and Salanti 2003). Monotonic effects are also referred to as isotonic if the respective
function is nondecreasing, and antitonic if a function is nonincreasing.
The topic of monotonic regression has already been addressed in Ulm and Salanti (2003)
and Salanti and Ulm (2003) in a frequentist setting. Dunson and Neelon (2003) and Holmes
and Heard (2003) have presented Bayesian approaches to monotonic regression. The
former, however, have considered only GLMs and modeling has been based on piecewise
constant functions, while the latter have dealt with only a small number of level sets
obtained from a categorization of continuous covariates.
In this paper, we propose to use Bayesian P-splines of an arbitrary degree and enforce
monotonicity in a straightforward way by an additional restriction of the prior distri-
bution via indicator functions. This restriction may be imposed either for one or an
arbitrary number of the additive terms in the model, whereas other terms may be mod-
eled unrestricted. MCMC inference involves sampling from multivariate truncated normal
distributions. This is accomplished by an ”internal” Gibbs sampler in each iteration, i.e.,
we employ a short Gibbs sampler in order to draw from the proposal density. In the non-
Gaussian case, this procedure is used to draw from an iteratively weighted least squares
(IWLS) proposal density in a Metropolis-Hastings step. Our methodology is implemented
in the public domain software package BayesX (Brezger, Lang and Kneib 2003) and it is
possible to combine monotonic regression with all types of response distributions supported
by BayesX. These are the most common one dimensional distributions like Gaussian, Bi-
nomial, Poisson, Gamma and Negative Binomial, and multinomial logit and cumulative
probit models for multivariate responses. BayesX also supports the use of random effects
to account for unobserved heterogeneity, Gaussian Markov random field (GMRF) priors
for spatial covariates, varying coefficient terms and surface smoothing for interactions of
covariates.
The remainder of the paper is organized as follows: Section 2 briefly reviews GAMs
and (Bayesian) P-splines, whereas section 3 provides details on the MCMC techniques
employed. In section 4, we apply the proposed methodology to weekly store-level scanner
data to relate unit sales of a particular brand of orange juice in a major supermarket
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chain to own and competing brands’ promotional instruments. Using a log-normal
model and a Gamma model, we illustrate for both Gaussian and non-Gaussian responses
that imposing monotonicity constraints on the nonparametric terms for own-item and
cross-item price effects improves the predictive validity of the estimated sales response
functions considerably. We conclude with a summary of the most important contents and
key findings in section 5.

2. MODEL ASSUMPTIONS

2.1 Generalized additive models and P-splines

Suppose we are given N observations (yn, xn, vn), n = 1, . . . , N , where yn is a response
variable, xn = (xn1, . . . , xnp)′ is a vector of continuous covariates and vn = (vn1, . . . , vnq)′

is a vector of additional covariates. GAMs assume that, given xn and vn, the response
yn follows an exponential family distribution (Hastie and Tibshirani 1990; Fahrmeir and
Tutz 2001)

p(yn|xn, vn) = c(yn, θn) exp
{

ynθn − b(θn)
φ

}
and that the mean µn = E(yn|xn, vn) is linked to a semiparametric additive predictor ηn

via a known link function g:

g(µn) = ηn, ηn = f1(xn1) + . . . + fp(xnp) + v′nγ. (1)

f1, . . . , fp are unknown smooth functions of the continuous covariates and v′nγ represents
the parametric part of the predictor.
For modeling the unknown functions fj , j = 1, . . . , p, we follow Lang and Brezger (2004),
who proposed a Bayesian version of the P-splines approach introduced in a frequentist
setting by Eilers and Marx (1996). Accordingly, we assume that the unknown functions
can be approximated by a polynomial spline of degree l and with k + 1 equally spaced
knots

xj,min = ζj0 < ζj1 < · · · < ζj,k−1 < ζjk = xj,max

over the domain of xj . The spline can be written in terms of a linear combination of
Ψ = k + l B-spline basis functions (De Boor 1978). Figure 1 gives an illustration of B-
spline basis functions of degree three, which are also referred to as cubic splines. Note
that except at the boundaries each basis function overlaps with 2 · l neighboring B-splines.
Denoting the ψ-th basis function by Bjψ, we obtain

fj(xj) =
Ψ∑

ψ=1

βjψBjψ(xj).

To keep notation simple, we assume an equal number of basis functions Ψ for all functions
fj . By defining the N × Ψ design matrices Xj where the element in row n and column ψ
is given by Xj(n, ψ) = Bjψ(xnj), we can rewrite the predictor (1) in matrix notation as

η = X1β1 + · · · + Xpβp + V γ. (2)

Here βj = (βj1, . . . , βjΦ)′, j = 1, . . . , p corresponds to the vector of unknown regression
coefficients. The matrix V is the usual design matrix for fixed effects. To overcome the
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difficulties in determining the position and the number of the knots involved with regression
splines, Eilers and Marx (1996) suggest a relatively large number of knots (usually between
20 to 40) to ensure sufficient flexibility, and to introduce a roughness penalty of first or
second order differences on adjacent regression coefficients to avoid overfitting. These
penalized B-splines have also become known as P-splines. In our Bayesian approach,
we replace first or second order differences used in this frequentist approach with their
stochastic analogues, i.e., first or second order random walks defined by

βjψ = βj,ψ−1 + ujψ, or βjψ = 2βj,ψ−1 − βj,ψ−2 + ujψ (3)

with Gaussian errors ujψ ∼ N(0, τ2
j ) and diffuse priors βj1 ∝ const, or βj1 and βj2 ∝

const, for initial values, respectively. The amount of smoothness is controlled by the
variance parameter τ2

j which corresponds to the inverse of the smoothing parameter in the
frequentist approach. The amount of smoothness can be estimated simultaneously with
the regression coefficients by defining an additional hyperprior for the variance parameters
τ2
j .

We assign the conjugate prior for τ2
j (and for the scale parameter σ2 in the Gaussian case)

which is an inverse Gamma distribution

τ2
j ∼ IG(aj , bj)

with hyperparameters aj and bj . A common choice for aj and bj leading to almost diffuse
priors is aj = bj , e.g. aj = bj = 0.001, which is also our default choice. Alternatively, we
may set aj = 1 and bj small, e.g. bj = 0.005 or bj = 0.0005. We estimated all models
discussed in this paper with alternative settings for the hyperparameters. The results
proofed to be almost insensitive regarding the specific choice of hyperparameters. All
results presented in the remainder of the paper are obtained by the default choice.
Defining a penalty matrix Kδ corresponding to a random walk of order δ enables us to
formulate the prior for a P-spline term as a joint prior distribution for βj :

p(βj) ∝ exp
{
−0.5

1
τ2
j

β′
jK

δ
j βj

}
, (4)

see Lang and Brezger (2004) for details. For example for δ = 1 we have

K1 =




1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2 −1

−1 1




with zero elements outside the first off-diagonals.

2.2 Monotonicity constraints

To obtain monotonicity, i.e., f ′
j(x) ≥ 0 or f ′

j(x) ≤ 0, it is sufficient to guarantee that
subsequent parameters are ordered, such that

βj1 ≤ · · · ≤ βjΨ or βj1 ≥ · · · ≥ βjΨ,
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respectively. A proof can be found in the appendix. In our approach, these constraints are
imposed by introducing indicator functions to truncate the prior appropriately to obtain
the desired support. This leads to

p(βj) = c1(βj) exp
{
−0.5

1
τ2
j

β′
jK

δ
j βj

} Ψ∏
ψ=2

1(βjψ ≥ βjψ−1) (5)

for nondecreasing functions (isotonic case) and

p(βj) = c1(βj) exp
{
−0.5

1
τ2
j

β′
jK

δ
j βj

} Ψ∏
ψ=2

1(βjψ ≤ βjψ−1)

for nonincreasing functions (antitonic case), respectively, where c1(βj) is a normalizing
function depending on βj .

2.3 Extensions

Various extensions regarding the additive predictor (1) are possible. In order to account
for unobserved heterogeneity between different groups or clusters of units, we may add an
unstructured group-specific random effect. Suppose we are given a grouping variable that
can take values in {1, . . . , G}. Then, we can extend (1) to

ηn = f1(xn1) + . . . + fp(xnp) + v′nγ + frandom(gn)

and assume

frandom(g) = bg ∼ N(0, τ2
b ), g = 1, . . . , G, (6)

where frandom(gn) = frandom(g) if observation n belongs to group g. Using the penalty
matrix Kb = I, we can write (6) in the general form

p(bg|τ2
b ) ∝ exp

{−1
2
b′gK

bbg

}
.

If we would presume a spatial correlation between groups, we may additionally introduce
a spatial correlated GMRF. Further possible extensions are varying coefficient terms and
interactions of covariates (see Brezger and Lang 2003; Lang and Brezger 2004). In the
remainder, we focus on models with random effects.

3. MCMC INFERENCE

Let α be the vector of all parameters to be estimated in the model. Bayesian inference is
based on the posterior distribution

p(α|y) ∝ L(y, β1, . . . , βp, γ, bg, φ)
p∏

j=1

(
p(βj |τ2

j )p(τ2
j )

)
p(bg|τ2

b )p(τ2
b )p(γ)p(φ) (7)
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where L(·) consists of the product of all individual likelihood contributions. φ and p(φ)
have to be omitted for response distributions without a scale parameter. Because (7) is
analytically intractable in all but the most simple cases, we employ Markov Chain Monte
Carlo (MCMC) techniques to obtain estimates for the parameters of interest. More specif-
ically, we implement a block move, i.e. we subsequently draw from the full conditionals
p(βj |·), j = 1, . . . , p, p(γ|·) and p(bg|·) of the blocks of parameters βj , j = 1, . . . , p, γ and
bg. For Gaussian responses, these blocks can be updated by block move Gibbs sampling
steps. In binary probit and cumulative probit models, we can rely on the same sampling
scheme as building block, see Chen and Dey (2000) or Brezger and Lang (2003) for details.
In all other cases, we use Metropolis-Hastings steps with iteratively weighted least squares
(IWLS) proposals. The variance parameters τ2

1 , . . . , τ2
p , τ2

b (and the scale parameter σ2 in
the Gaussian case) are updated by single move Gibbs sampling steps.
For posterior inference, we discard the draws from an initial burn-in period and take
only every rth draw thereafter in order to minimize the autocorrelation of the samples.
The formulas and algorithms in the following subsections are formulated with respect to
isotonic constraints. The adjustments for antitonic constraints are straightforward.

3.1 Gaussian Response

For Gaussian response, the posterior distribution for βj is given by

p(βj |·) ∝ c1(βj) exp
{−0.5(βj − mj)′Pj(βj − mj)

} Ψ∏
ψ=2

1(βjψ ≥ βj,ψ−1), (8)

and

Pj =
1
σ2

X ′
jXj +

1
τ2
j

Kδ
j

mj =
1
σ2

P−1
j X ′

j(y − η + Xjβ
c
j )

where βc
j is the current state of βj .

In order to sample from this Ψ-dimensional truncated Gaussian distribution (8), we adopt
the method of Robert (1995) and run an extra (short) single move Gibbs sampler in each
MCMC iteration. The algorithm is as follows:

(i) Set β(0) = βc
j .

(ii) For t = 1, . . . , T , successively draw from the one-dimensional truncated Gaussian
distributions

1. β
(t)
1 ∼ N(µ1, σ

2
1,−∞, β

(t−1)
2 )

2. β
(t)
2 ∼ N(µ2, σ

2
2, β

(t)
1 , β

(t−1)
3 )

3. β
(t)
3 ∼ N(µ3, σ

2
3, β

(t)
2 , β

(t−1)
4 )

...

Ψ. β
(t)
Ψ ∼ N(µΨ, σ2

Ψ, β
(t)
Ψ−1,∞)
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where N(µ, σ2, µl, µr) denotes a Gaussian distribution with mean µ, variance σ2 and
with left truncation point µl and right truncation point µr, respectively. The trunca-
tion points in the algorithm above are the current states of the adjacent parameters.
Therefore, we have only right truncation for β

(t)
1 and left truncation for β

(t)
Ψ . The

parameters µψ and σ2
ψ, ψ = 1, . . . ,Ψ, are the conditional means and variances of

the (nontruncated) posterior (8):

µψ =
1

pψψ

{∑
ρ<ψ

(β(t)
ρ − mρ) · pψρ +

∑
ρ>ψ

(β(t−1)
ρ − mρ) · pψρ

}

σ2
ψ =

1
pψψ

where mρ is the ρ-th element of mj and pψρ is the element in row ψ and column
ρ of the precision matrix Pj in (8). Note that the subscript j is suppressed in the
formulae above.

(iii) Take β(T ) = (β(T )
1 , . . . , β

(T )
Ψ )′ as a random sample from (8).

Usually, convergence is reached after 10-20 cycles. To reach convergence with considerable
certainty, we set T = 100. Computation is very fast, as the mean mj and the precision
matrix Pj have to be computed only once. Moreover, mj is obtained by sparse matrix
operations exploiting the band structure of Pj . This involves a Cholesky decomposition
and avoids expensive matrix inversions (compare Rue 2001).
Regarding the fixed effects we obtain a normal distribution with precision matrix and
mean

Pγ =
1
σ2

V ′V, mγ = (V ′V )−1V ′(y − η + V γ)

as full conditional.
The full conditionals for the variance parameters τ2

j , j = 1, . . . , p, τ2
b and the scale pa-

rameter σ2 are all inverse Gamma distributions with parameters

a′j = aj +
rank(Kj)

2
and b′j = bj +

1
2
β′

jKjβj

for τ2
j , j = 1, . . . , p, τ2

b and

a′σ2 = aσ2 +
N

2
and b′σ2 = bσ2 +

1
2
ε′ε

for σ2, where ε is the usual vector of residuals.

3.2 Non-Gaussian Response

For non-Gaussian response, the posterior p(βj |·) is

p(βj |·) ∝ c(yn, θn) exp
{

ynθn − b(θn)
φ

}
c1(βj) exp

{
−0.5

1
τ2
j

β′
jK

δ
j βj

} Ψ∏
ψ=2

1(βjψ ≥ βj,ψ−1),
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which has no longer standard form. Thus, we use a Metropolis-Hastings step with an IWLS
proposal to update βj . An IWLS proposal is obtained by a quadratic approximation of the
likelihood via Taylor expansion around the current state βc

j of βj , compare Brezger and
Lang (2003) or, in the mixed model context, Gamerman (1997). This leads to a truncated
multivariate Gaussian proposal

q(βj) ∝ c1(βj) exp
{−0.5(βj − m(βc

j ))
′P (βc

j )(βj − m(βc
j ))

} Ψ∏
ψ=2

1(βjψ ≥ βjψ−1) (9)

where

P (βc
j ) = X ′

jW (βc
j )Xj +

1
τ2
j

Kδ
j

m(βc
j ) = P (βc

j )
−1X ′

jW (βc
j )ỹ(βc

j )
W (βc

j ) = diag(w1, . . . , wN )
ỹ(βc

j ) = (y − µ)g′(µ) + Xjβ
c
j

with w−1
n = b′′(θn){g′(µn)}2. Alternatively, we could also use the current mode of p(βj |·)

rather than βc
j to perform the Taylor expansion, which would simplify the calculation of the

acceptance probability, compare Brezger and Lang (2003). Generating a proposed value
βp

j from (9) is again accomplished by an extra Gibbs sampler as described in subsection
3.1. It has been our experience that convergence in the non-Gaussian case is slower than
in the Gaussian case. We therefore set the number of iterations for the single move Gibbs
sampler to T = 250 (as opposed to T = 100 for Gaussian response) to ensure convergence,
which implies that we take the 250th sample as a random sample from (9). The main
difference to the Gaussian sampling scheme is that this sample can only be accepted with
probability

α(βc
j , β

p
j ) = min

{
1,

L(βp
j )p(βp

j )q(βp
j , βc

j )
L(βc

j )p(βc
j )q(β

c
j , β

p
j )

}

as the new state of βj . Note that the normalizing functions c1(·) cancel out and we have
the same acceptance probability as in the unrestricted case.
The full conditionals for the variance parameters τ2

j , j = 1, . . . , p and τ2
b are again

inverse Gamma distributions and therefore updated via Gibbs sampling. Fixed effects
are updated by Metropolis-Hastings steps.

4. EMPIRICAL APPLICATION: ESTIMATING PRICE
RESPONSE FROM STORE-LEVEL SCANNER DATA

4.1 Background

It is important for both manufacturers and retailers to know how sales respond to price
promotions. For example, if a brand’s sales response to own price cuts shows increasing
returns to scale, a firm will run deeper price discounts for the brand than in case of
decreasing returns to scale. In the following, we apply the monotonic regression approach
to estimating promotional price response functions from store-level scanner data.
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It is well documented that sales promotions, especially in the form of temporary price
reductions, substantially increase sales of promoted brands (e.g., Wilkinson, Mason and
Paksoy 1982; Blattberg and Neslin 1990; Bemmaor and Mouchoux 1991, Blattberg, Briesch
and Fox 1995). There is also empirical evidence that a temporary price cut by a brand
may decrease sales of competitive items significantly (e.g., Mulherne and Leone 1991;
Blattberg and Wisniewski 1989, Bemmaor and Mouchoux 1991). Cross-item price effects,
however, are usually much lower than own-item price effects, see Hanssens et al. (2001)
for an overview of empirical findings. In addition, there is strong empirical support that
cross-promotional effects are asymmetric, implying that promoting higher-priced/higher
quality brands generates more switching from lower-priced/lower quality brands than does
the reverse (e.g., see Blattberg and Wisniewski 1989; Allenby and Rossi 1991, Blattberg et
al. 1995). This phenomenon has also become known as asymmetric quality tier competition
(e.g., Sivakumar and Raj 1997). Moreover, a recent meta-analysis of cross-price elasticity
estimates revealed strong neighborhood price effects, indicating that brands that are closer
to each other in price have larger cross-price effects than brands priced farther apart
(Sethuraman et al. 1999).
Despite the wealth of empirical findings on own- and cross-price effects, little was known
about the shape of the promotional price response function until recently. Most studies
addressing this issue employed strictly parametric functions, and came to different re-
sults from model comparisons. For example, Wisniewski and Blattberg (1983) found the
own-item price effect curve to be modelled best by an s-shaped function, while Blattberg
and Wisniewski (1987) found the curve to show increasing returns with deeper price dis-
counts. The former, however, estimated own price response functions at the category level
rather than the individual brand level, while the latter analyzed a limited range of price
discounts. Today, multiplicative (log-log), exponential (semi-log) and log-reciprocal func-
tional forms are the most widely used parametric specifications to represent nonlinearities
in sales response to promotional instruments (e.g., see Blattberg and Wisniewski 1989;
Blattberg and George 1991; Montgomery 1997; Kopalle, Mela and Marsh 1999; Foekens,
Leeflang and Wittink 1999, van Heerde, Leeflang and Wittink 2002). These functional
forms are inherently monotonic (decreasing for own-price and increasing for cross-price ef-
fects) and all use a logarithmic transformation of brand sales to normalize the distribution
of the dependent variable which typically is markedly skewed with promotional data (e.g.,
Mulherne and Leone 1991). However, there does not seem to exist a ”best” parametric
functional form generalizable across product categories or even across brands within a
category. Therefore, nonparametric regression methods seem to be highly promising to
explore the shape of the promotional price response curve more flexibly.
van Heerde et al. (2001) proposed a kernel-based semiparametric approach in which a
brand’s unit sales is modelled as a nonparametric function of own- and cross-item price
variables and a parametric function of other predictors. The model can also accommo-
date flexible interaction effects between price cuts of different brands but may suffer from
the curse of dimensionality as the number of competing items increases. van Heerde et
al. (2001) obtained superior performance for the semiparametric model in both fit and
predictive validity relative to two benchmark parametric models. Their results based on
store-level scanner data for three product categories (tuna, beverage and a third packaged
food product) indicate threshold and/or saturation effects for both own- and cross-item
price cuts. Threshold effects are present if consumers do not change their purchase in-
tentions unless a promotional price cut exceeds a certain threshold level, say, e.g., 15%
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(Gupta and Cooper 1992). A common argument for the existence of saturation effects is
based on the belief that consumers can stockpile and/or consume only limited amounts of
a promoted good, e.g., due to inventory constraints or perishability (Blattberg et al. 1995;
van Heerde, Leeflang and Wittink 2001). About two-third of the nonparametric own-
item and cross-item price response curves estimated by van Heerde et al. (2001) showed
a (reverse) s-shape reflecting both threshold and saturation effects, with a wide range of
different saturation points across brands. Some curves revealed a (reverse) L-shape with
a strong kink at a certain level of price cut, while other curves do not show a threshold
nor a saturation effect. These different results across individual brands strongly support
the use of nonparametric estimators to let the data determine the shape of price response
functions. However, two own-item price response curves indicated a decrease in unit sales
as price discounts become very deep. Clearly, this nonmonotonicity is difficult to interpret
from an economic point of view. One explanation may be that consumers associate a loss
in quality with very deep price cuts, but this argument seems at least questionable with
frequently purchased consumer nondurables.
In contrast to van Heerde et al. (2001), Kalyanam and Shively (1998) proposed a stochastic
spline regression approach (Wahba 1978) in the context of a hierarchical Bayes model
(Wong and Kohn 1996) and found much stronger irregularities in own-price response for
some of the brands (tuna, margarine) examined. Especially, although overall downward
sloping, the respective curves show local upturns and downturns with spikes at certain
price points resulting in less smooth and nonmonotonic shapes. Kalyanam and Shively
(1998) illustrated that these nonmonotonicities may be associated with odd pricing or a
complex convolution of odd pricing with other effects like, e.g., the existence of segments
with distinct reservation prices. Odd pricing refers to the practice of setting prices ending
in odd numbers or just below a round number (e.g., 0.99 cents instead of 1.00 dollar). On
the other hand, the curve plots also revealed that the estimates at the very strongest local
sales peaks were based only on one or a few data points (see, e.g., the results for the Starkist
brand in Kalyanam and Shively 1998, p. 26). Kalyanam and Shively (1998) themselves
point out that in case of an insufficient number of data points, the estimated functions
may show irregularities where none exist. This problem also applies to another tuna brand
(Bumble Bee) where the estimated curve indicated a (monotonic) increase in unit sales
with increasing own-price beyond a certain price point (i.e., for higher price levels). This
latter irregularity is not in accordance with economic theory and, as a consequence, would
suggest an optimal price at infinity.
Besides the problem of inaccurate estimation due to sparse data in some cases, the findings
of Kalyanam and Shively (1998) agree with those of van Heerde et al. (2001) with respect
to the existence of threshold effects for several brands, i.e., flat own-price response around
prices at the upper bound of the range of observed prices. In comparison to a parametric
semilog specification, Kalyanam and Shively (1998) obtained a superior fit of their spline
model in terms of adjusted R2 values for each of the brands analyzed. Unfortunately, no
model validation results were reported.
The monotonic nonparametric regression approach as proposed in this paper is our answer
to resolve the problem whether nonmonotonic effects indeed exist when theory and/or
empirical experience would rather suggest not. Our perspective is that an unconstrained
estimation allowing for nonmonotonicities should be preferred only if it outperforms
a constrained estimation in validation samples. Otherwise, nonmonotonic effects are
likely to represent an artefact caused by sparse data or merely by too much flexibility of
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the nonparametric estimator. Importantly, imposing monotonicity constraints does not
preclude the estimation of irregular pricing effects like steps and kinks at certain price
points or threshold and saturation effects at the extremes of the observed price/price cut
ranges.

4.2 An Illustration

For illustration, we use weekly store-level scanner data from Dominick’s Finer Foods, a
major supermarket chain in the Chicago metropolitan area. The data set includes unit
sales, retail price and a deal code indicating the use of an in-store display for 11 brands
of refrigerated orange juice (64 oz). The sample covers individual brand sales in 81 stores
(s = 1, . . . , 81) of the chain over a time span of 89 weeks (t = 1, . . . , 89). Table 1 provides
summary statistics pooled across the stores for average weekly prices, market shares and
unit sales of the brands.
As table 1 reveals, the brands can be classified into three price-quality tiers: the premium
brands (made from freshly squeezed oranges), the national brands (reconstituted from
frozen orange juice concentrate) and the store brand (Dominick’s private label brand).
The differences in quality across the tiers are well represented by higher (lower) average
prices for higher (lower) quality tier brands. Average weekly prices and market shares of
all brands vary considerably reflecting the frequent use of promotions.
We now illustrate the usefulness of imposing monotonicity constraints to estimate price
response functions considering as example the brand Florida Gold. We focus on two
distributional models, namely a log-normal model

salesst ∼ LN(ηst, σ
2),

which can be equivalently written in terms of the assumption of a Gaussian distribution
for the natural logarithm of the response as

log(salesst) ∼ N(ηst, σ
2),

and a Gamma model
salesst ∼ G(exp(ηst), ν),

where salesst denotes the unit sales of Florida Gold in store s and week t. Note that the
exponential function is the so called natural link function for a Gamma model. The scale
parameter ν is supplied with a Gamma prior with parameters aν = 0.001, bν = 0.001 and
estimated in a Metropolis-Hastings step.
As mentioned above, the use of a log-normal model is the standard approach in marketing
to relate brand sales to promotional instruments. The Gamma model, on the other hand,
provides high flexibility with respect to the shape of the distribution (e.g., it can take on a
highly skewed distribution) and is used to demonstrate the applicability of our method in
the non-Gaussian case. Like Kalyanam and Shively (1998) and van Heerde et al. (2001),
we choose a semiparametric additive predictor to model sales response: with nonparamet-
ric terms for own- and cross-price effects as well as weekly effects, and parametric terms
for own and competitive display and store-specific effects. According to economic theory
and the empirical findings discussed in section 3.1, we expect the unit sales of Florida Gold
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to be an antitonic function in own promotional price and an isotonic function in compet-
itive items’ promotional prices rather than to show a nonmonotonic shape, respectively.
Specifically, we estimate three variants of the semiparametric additive predictor for both
the log-normal and the Gamma model:

η
(1)
st = fRW1

1 antitonic(pricest) + fRW1
2 isotonic(price premiumst) + fRW1

3 isotonic(price nationalst)
+ fRW1

4 isotonic(price Dominicksst) + fRW2
5 (week) + frandom(store)

+ displayst + display premiumst + display nationalst + display Dominicksst

η
(2)
st = fRW2

1 antitonic(pricest) + fRW2
2 isotonic(price premiumst) + fRW2

3 isotonic(price nationalst)
+ fRW2

4 isotonic(price Dominicksst) + fRW2
5 (week) + frandom(store)

+ displayst + display premiumst + display nationalst + display Dominicksst

and

η
(3)
st = fRW2

1 (pricest) + fRW2
2 (price premiumst) + fRW2

3 (price nationalst)
+ fRW2

4 (price Dominicksst) + fRW2
5 (week) + frandom(store)

+ displayst + display premiumst + display nationalst + display Dominicksst

The three variants differ in the specification of the unknown smooth functions f1 to f4 for
own- and cross-price effects. These are estimated either by P-splines with monotonicity
constraints, with first order random walk prior (η(1)) or second order random walk prior
(η(2)), respectively, or by unconstrained P-splines with second order random walk prior
(η(3)) as a reference. The choice of the reference specification is based on a study con-
ducted by Lang and Brezger (2004) who report superior results for P-splines with second
order rather than first order random walk priors in the unrestricted case. price denotes
Florida Gold’s actual price in store s and week t, and display is an indicator variable repre-
senting the usage (1) or nonusage (0) of an in-store display for Florida Gold in store s and
week t. Similar to Blattberg and George (1991), we capture cross price effects in a more
parsimonious way through the use of competitive variables at the tier level rather than the
individual brand level: price premiumst and price nationalst indicate the minimum price
for competing brands within the premium brand and the national brand tier in store s and
week t, respectively, whereas price Dominicksst is the actual price of Dominick’s private
label brand in store s and week t. It is important to note that the price of Florida Gold
(which itself is a national brand) is excluded from computing price nationalst. Accord-
ingly, the indicator variables display premiumst and display nationalst take the value ’1’
if a display is used for at least one brand within the respective tier in store s and week
t, and ’0’ otherwise. display Dominicksst is the corresponding fixed effect for the private
label brand.
The week covariate is incorporated to capture seasonal and missing variable (e.g.,
manufacturer advertising) effects, and the store covariate to accommodate differences
in base sales of Florida Gold across the stores, e.g., due to their spatial location.
The effect of week is modelled as a P-spline with second order random walk prior
and store is incorporated as a random effect. We use cubic splines with 20 knots for
all P-spline terms, except for the week effect, where we use 40 knots to be able to
account for possibly strong time variability. The specification with 40 knots for the
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time effect, however, is still much less costly in terms of degrees of freedom lost than if
we were to use weekly indicator variables. Finally, the hyperparameters σ2 and ν are
supplied with inverse Gamma priors σ2 ∼ IG(0.001, 0.001) and ν ∼ IG(0.001, 0.001),
respectively, and are estimated simultaneously with the regression parameters. The
resulting models are referred to as LN1-LN3 for the log-normal variants and G1-G3
for the Gamma model variants in the following. With regard to the sampling process,
we store every 10th sample of a Markov chain of length 10,000 (after the burn-in pe-
riod) to obtain 1,000 draws for each parameter and take the means as parameter estimates.

4.3 Model evaluation and interpretation of results

We evaluate the different models in terms of the Average Mean Squared Error (AMSE)
in validation samples (also compare van Heerde et al. 2001). Specifically, we randomly
split the data into nine equally-sized subsets and performed nine-fold cross-validation. For
each subset, we fitted the respective model to the remaining eight subsets making up the
estimation sample and calculated the squared prediction errors of the fitted model when
applied to the observations in this holdout subset (Efron and Tibshirani 1998). Let N
denote the number of observations of the entire data set, and k(n) the holdout subset

containing observation n. Let further ̂sales
−k(n)

n indicate the fitted value of observation n
computed from the estimation sample without subset k(n), then the AMSE of prediction
is:

AMSE =
1
N

N∑
n=1

(
salesn − ̂sales

−k(n)

n

)2
.

Because we are interested in unit sales rather than log unit sales of Florida Gold, condi-
tional mean predictions from the estimated log-normal models were obtained as follows
(Goldberger 1968; Greene 1997):

̂sales
−k(n)

st =
1

1000

1000∑
i=1

exp{ηsti + σ2
i /2}, (10)

where ηsti is the additive predictor for store s, week t and stored iteration i and σ2
i denotes

the residual variance of the respective log-normal model in iteration i. For the Gamma
model, no correction factor σ2

i /2 is required for the conditional mean predictions.
The validation results are displayed in table 2. Under both the log-normal and the Gamma
distribution, the models with monotonicity constraints (LN1, LN2, G1, G2) clearly out-
perform the respective model without monotonicity constraints (LN3, G3). Interestingly,
whereas in the unrestricted case the log-normal model (LN3) yields a smaller AMSE com-
pared to the Gamma model (G3), the restricted Gamma models G1 and G2 provided the
highest predictive validity. Furthermore, the differences between restricted models with
first order and second order random walk priors for the nonparametric terms are virtu-
ally negligible. These results indicate that imposing monotonicity constraints on own- and
cross-item price effects can substantially improve the predictive validity of a sales response
model.
Figures 2 and 3 show the nonparametrically estimated own- and cross price effects for
Florida Gold resulting from the log-normal models (LN1-LN3) and the Gamma models
(G1-G3), respectively. Shown are the posterior means as well as 80% and 95% pointwise
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credible intervals. To ensure identifiability, the functions are centered to have mean zero,
i.e. 1/range(xj)

∫
fj(xj) dxj = 0. The subtracted means are added to an intercept term,

which is not displayed here. As can be seen, the effects are very similar for corresponding
model versions (LN1|G1, LN2|G2 and LN3|G3), except for the own price effect which re-
veals a stronger increase in unit sales for very low prices under the Gamma distribution.
Probably, this difference in own-price response is responsible for the higher predictive va-
lidity of the Gamma models. As already indicated by the AMSE values, there is also
not much difference in own- and cross-price effects between the restricted Gamma models
G1 and G2. We therefore focus in the following on Gamma model G2, the model with
the highest predictive validity, for interpretation of results. Importantly, the unrestricted
models LN3 and G3 which are inferior in predictive validity show strong local nonmono-
tonicities in both own- and cross price effects which indicates too much flexibility (strong
overfitting) of an unconstrained estimation.
Our results are similar to the findings of van Heerde et al. (2001) with respect to the shape
of price response functions. Specifically, the own price response curve for Florida Gold
shows a reverse s-shape with an additional increase in sales for extremely low prices. This
strong sales spike can be attributed to an odd pricing effect at 99 cents, the lowest observed
price of Florida Gold (compare table 1). The cross-price response curve with respect to
the premium tier brands reveals a reverse L-shape and a threshold effect for competitive
prices over two dollars. In other words, only if one of the premium brands is priced lower
than two dollars, unit sales of Florida Gold significantly decrease and consumers switch up
to the low-priced premium brand. The cross price effect with respect to the national brand
tier (the tier of Florida Gold) is s-shaped but by far less strong than the premium tier
effect, which contradicts the hypothesis that brands which are priced closer to each other
(like Florida Gold and the other national brands) are more competitive than brands priced
farther apart (like Florida Gold and the premium brands). Finally, the cross price effect
of Dominick’s private label brand on Florida Gold’s sales is almost negligible. Comparing
the three cross price effects in magnitude, our results confirm previous empirical findings
of asymmetric quality tier competition. Specifically, a price cut by a premium brand may
draw substantial sales from Florida Gold, whereas a price cut by a private label brand
does not. As expected, the own-price effect is much stronger than each of the cross-price
effects.
Tables 3 and 4 provide parameter estimates for the display effects and the corresponding
multiplier effects (Leeflang, Wittink, Wedel and Naert 2000). The multiplier effects are
obtained from the transformation

1
1000

1000∑
i=1

exp{γji}, j = 1, . . . , 4.

Shown are the posterior means, posterior standard deviations and the corresponding 2.5%
and 97.5% quantiles, respectively. Multipliers with values larger (smaller) than 1 indicate
a positive (negative) effect on unit sales of Florida Gold. γ1i denotes the own display
effect of Florida Gold, and γ2i to γ4i refer to the tier-specific competitive display effects.
i denotes the ith stored sample for the respective parameter. Except for the cross display
effect of Dominick’s private label brand, the display multipliers show the expected impact.
For example, if a display is used for Florida Gold, its unit sales increase on average by a
factor of 1.36, whereas a display for a premium brand causes a decrease in Florida Gold’s
unit sales of about 11% on average. The display effect with respect to the brands in the
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national tier (except Florida Gold) is not significant. One possible explanation for the
positive cross display effect of Dominick’s private label could be that promotion activities
of Dominick’s for its own store brand are especially distinct and not only stimulate own
brand sales but also sales of some other brands in the category. As expected, the own
display effect is much stronger than competitive display effects.
Finally, figure 4 shows estimated results for the store-specific random effect. The store
effect is portrayed with a spatial map which represents the store locations of Dominick’s
Finer Foods in the Chicago metropolitan area. There is a noticeable difference in base
sales across stores, with an apparent drop from the coastline in the east, where we have a
high concentration of stores, to the interior region in the west. We found (weak) positive
correlations between the store effect and the percentage of the population under age nine
(0.28) and the percentage of households with three or more members (0.24). Hence, one
possible explanation for the east-west drop of base sales may be that more households
with little children live in the east part of the Chicago area, and people buy more orange
juice there because they are concerned with their childrens health. We abstain from
depicting the estimated effect for the time covariate week, because it does not reveal any
seasonal pattern nor a trend.

5. DISCUSSION

We proposed a methodology to incorporate specific prior knowledge of a monotonic rela-
tionship between a response variable and one or more continuous covariates into (Bayesian)
generalized additive models. Unlike other approaches to monotonic regression, our method
offers the possibility of nonparametric monotonic modeling by penalized splines of arbi-
trary degree. Sampling is accomplished by block updates of nonparametric effects. An
internal Gibbs sampler is employed for drawing random numbers from truncated multi-
variate normal densities. Convergence of the internal Gibbs sampler is fast in the Gaussian
case, but might be improved for other response distributions. Our approach can also ac-
commodate additional covariates modelled by appropriate other specifications, like fixed
effects, unrestricted P-splines, random effects or spatial effects as well as varying coefficient
terms and interactions of covariates. We illustrated the methodology and its practical rel-
evance in an empirical application estimating sales response for a brand of refrigerated
orange juice from store-level scanner data. Our results show that imposing monotonicity
constraints for own- and cross-item price effects can considerably improve the predictive
validity of a sales response model. The methodology is implemented in the public domain
software package BayesX.
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APPENDIX: CONDITIONS FOR MONOTONICITY

To ensure that f ′
j(x) ≥ 0 or f ′

j(x) ≤ 0, it is sufficient to guarantee that subsequent
parameters are ordered, such that

βj1 ≤ · · · ≤ βjΨ or βj1 ≥ · · · ≥ βjΨ, (11)

respectively.
Proof: Letting the superscript l − 1 denote basis functions of degree l − 1, we can write
f ′

j(x) in terms of

f ′
j(x) =

1
h

Ψ∑
ψ=1

βjψ

(
Bl−1

jψ (x) − Bl−1
j,ψ+1(x)

)

=
1
h

Ψ∑
ψ=2

(βjψ − βj,ψ−1)Bl−1
jψ (x), (12)

where h denotes the distance between two adjacent knots. The second equivalence in
(12) holds, because Bl−1

j1 (x) = 0 and Bl−1
j,Ψ+1(x) = 0 for x ∈ [xj,min, xj,max]. Since h > 0

and Bl−1
jψ (x) ≥ 0, it follows that f ′

j(x) ≥ 0 if βjψ − βj,ψ−1 ≥ 0 for all ψ ∈ {2, . . . ,Ψ}.
Correspondingly, from βjψ − βj,ψ−1 ≤ 0 for all ψ ∈ {2, . . . ,Ψ} if follows that f ′

j(x) ≤ 0.
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Table 2: Evaluation of models in terms of AMSE.
Model specification log-normal Gamma

η
(1)
st (restricted/RW1) 6239.05 6194.83

η
(2)
st (restricted/RW2) 6253.44 6169.00

η
(3)
st (unrestricted) 6347.70 6522.69

Table 3: Estimation results for the display effects (Model G2).
effect posterior mean 2.5%-quantile 97.5%-quantile

γ1 (display) 0.30 (0.04) 0.24 0.38
γ2 (display premium) -0.12 (0.04) -0.19 -0.05
γ3 (display national) -0.02 (0.05) -0.11 0.08
γ4 (display Dominicks) 0.07 (0.03) 0.00 0.14

Table 4: Estimation results for the display multiplier effects (Model G2).
effect posterior mean 2.5%-quantile 97.5%-quantile

γ1 (display) 1.36 (0.05) 1.27 1.45
γ2 (display premium) 0.89 (0.03) 0.83 0.95
γ3 (display national) 0.98 (0.05) 0.90 1.08
γ4 (display Dominicks) 1.07 (0.04) 1.00 1.15
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Figure 1: B-spline basis functions of degree three covering the interval [a, b].
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Figure 2: Estimated curves for own-price (price) and tier-specific cross-price
(price premium, price national, price Dominicks) effects on unit sales of Florida Gold.
Columns 1-3 show the effects for the models LN1-LN3. Shown are the posterior means as
well as 80% and 95% pointwise credible intervals.
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Figure 3: Estimated curves for own-price (price) and tier-specific cross-price
(price premium, price national, price Dominicks) effects on unit sales of Florida Gold.
Columns 1-3 show the effects for the models G1-G3. Shown are the posterior means as
well as 80% and 95% pointwise credible intervals.
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