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Abstract

Statistical parametric mapping (SPM), relying on the general linear model and clas-
sical hypothesis testing, is a benchmark tool for assessing human brain activity using
data from fMRI experiments. Friston et al. (2002a) discuss some limitations of this
frequentist approach and point out promising Bayesian perspectives. In particular,
a Bayesian formulation allows explicit modeling and estimation of activation prob-
abilities. In this paper, we directly address this issue and develop a new regression
based approach using spatial Bayesian variable selection. Our method has several
advantages. First, spatial correlation is directly modeled for activation probabilities
and indirectly for activation amplitudes. As a consequence, there is no need for
spatial adjustment in a post-processing step. Second, anatomical prior information,
such as the distribution of grey matter or expert knowledge, can be included as part
of the model. Third, the method has superior edge-preservation properties as well
as being fast to compute. When applied to data from a simple visual experiment,
the results demonstrate improved sensitivity for detecting activated cortical areas
and for better preserving details of activated structures.
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1 Introduction

Functional magnetic resonance imaging (fMRI) has evolved into a powerful
tool to non-invasively assess the functionality of neuronal networks. A crucial
part in these studies is the reliable distinction of activated from non-activated
voxels based on the statistical analysis of a functional time series. Standard
validated models exist to perform group analysis for neuroscientific applica-
tions aimed at reducing false-positive activations. However, assessing focal
brain activity individually is much more demanding and may require a focus
on the reduction of false-negative voxel assignment, as in presurgical map-
ping tasks. The statistical power of such fMRI studies in single neurosurgical
cases is further reduced by the typically older age compared to volunteers for
neuropsychological studies in view of the known age-dependent reduction in
blood oxygenation (or BOLD) response; see Huettel (2001) for a discussion of
this issue. To overcome these limitations it would be desirable to increase the
sensitivity of the analysis over standard procedures.

Interestingly, standard statistical analysis of fMRI data does not exploit in-
dividual anatomic information nor functional neuroanatomic knowledge, both
of which may usefully complement the information provided by the functional
time series. Local physiological responses upon neuronal activation is known
to be restricted to cortical and subcortical neuronal assemblies. Thus, the spa-
tial information about the distribution of cortical and subcortical gray matter
(as opposed to white matter and cerebro-spinal fluid structures which both do
not show BOLD-responses to neuronal activation) may be helpful.

The package ‘Statistical Parametric Mapping’ (SPM) is in common use as
a standard tool for assessing human brain activity using data from fMRI
experiments. SPM relies on the parametric general linear model and on the
principles of classical statistics as outlined by Friston et al. (1995). It calculates
t-values for activation effects separately for all voxels within a slice. The theory
of stationary Gaussian random fields provides a way to account for spatial
correlation between voxels and to adjust the corresponding ¢-values in a post-
processing step. Inferences about regionally specific effects are then based on
the resulting spatially smoothed map of ¢-statistics.

Friston et al. (2002b) discuss some limitations of this classical approach and
ways in which Bayesian inference can be used to improve the analysis. A fun-
damental issue is “that the [frequentist] p-value does not reflect the likelihood
that the effect is present, but simply the probability of getting the observed
data in the effect’s absence.” This implies several shortcomings described in
Friston et al. (2002b, pp 466). For example, the alternative hypothesis that
an activation has not occurred cannot be rejected because the probability for
this event is zero. Furthermore, given enough repeated observations, one can



always find a false-positive effect at every voxel. However, in comparison a
Bayesian formulation allows the explicit modeling of the probability that a
voxel has been activated. After the collection of the data, this probability of
activation can be calculated using modern computational techniques as the
marginal posterior probability of activation at each voxel.

In this paper, we directly address this question and suggest a new regression
based approach using spatial Bayesian variable selection and model averaging.
For each voxel, a binary indicator variable explicitly parameterizes whether
the voxel is ‘active’ or ‘inactive’. That is, whether the corresponding effect
in a regression model is non-zero or zero, respectively. Spatial correlation is
introduced into the model by an Ising prior for the set of binary indicator
variables. As noted in computational physics (see Swendsen and Wang (1987)
and references therein), the model encourages the formation of clusters of like-
valued binary variables. Bayesian posterior analysis using a carefully tailored
Markov chain Monte Carlo (MCMC) algorithm allows direct calculation of
parameters and features of interest, and in particular the marginal posterior
probability of activation at each voxel.

In comparison to previous methods, this approach has several significant ad-
vantages. First, spatial correlation is directly modeled for the activation prob-
abilities themselves and the activation amplitudes only indirectly. This is in
contrast to approaches which model spatial correlation directly in the activa-
tion amplitudes, and indirectly in the probabilities of activation; for examples
see Gossl et al. (2001a; 2001b). Second, because the posterior distribution in-
corporates the spatial structure of the Ising prior, there is no need for spatial
adjustments in a post-processing step. Third, an extremely useful property is
that prior information about likely areas of activation can be incorporated in a
natural and straightforward way through the ‘external field’ of the Ising prior.
This can include anatomical information, such as the distribution of grey mat-
ter, or expert knowledge regarding likely areas of activation in response to an
experiment. Fourth, the Ising model on the binary activation indicators has
substantially improved edge preservation for spatial smoothing of activation
probabilities in comparison to approaches that induce probabilities indirectly
after spatial smoothing of activation amplitudes. Last, the method proves to
be computationally very efficient and fast, providing full processing of slices
in under a minute on Pentium III based PCs.

The paper is organized as follows. In section 2 we outline our Bayesian ap-
proach in detail. In particular, we discuss regression modeling of fMRI data
and how spatial Bayesian variable selection can be applied to such regression
models to obtain posterior activation and amplitude maps. We also highlight
how expert prior knowledge or anatomical information can used to inform the
maps. In section 3 we demonstrate the features of the method and improved
sensitivity of the resulting analysis by applying the results to data from a sim-



ple visual experiment. In section 4 we conclude the paper with a discussion of
our Bayesian method in relation to alternative methods of analysis for fMRI
data that are current in the literature.

2 Methods

Regression modeling of fMRI data

Let {yi,t = 1,...,T} denote the MR signal time series at voxel i, for i =
1,..., N. All regression based approaches assume an additive model of the
form

Yit = it + fit + €, 1=1,...,N;t=1,...,T,

where {a;,t = 1,...,T} is a baseline trend at voxel i, {fy,t = 1,...,T} is
the activation profile and {e;,t = 1,...,T} is the measurement noise. Var-
ious models differ in the way these three components are specified and how
spatial correlation is taken into account. Conventional parametric voxel-wise
regression analysis, such as that in Friston et al. (1995), assumes a linear model

Yit = Wiy + zitfi + it - (1)

The baseline trend a; = wja; is usually modeled as a linear combination
of a few simple basis functions w;, such as the lower frequency terms of a
Fourier expansion or piecewise continuous polynomials, with coefficients o; =
(1, - - -, asm)". The activation profile, f; = z;0;, is defined as the product
of a scalar activation effect or ‘amplitude’ B; with a transformed stimulus
{zi,t =1,...,T}. This is a delayed and continuously modified version of the
original binary valued ‘boxcar’ stimulus {z;,¢t = 1,...,T}. The transformation
is motivated by the fact that blood oxygenation is delayed by a short time
lag d; and has a smooth unimodal distribution over time, rather than the
distribution of the original boxcar untransformed stimulus.

The transformation is often described by a convolution with a density function,
such as a Poisson or gamma density A(-, );), so that

t—d;

Zit = Z h(s, \i)Ti—g;—s- (2)

s=0

Here, the lags {di,...,dy} and the transformation parameters {\;,..., Ay}
are usually estimated in a pre-processing step.



Other approaches which incorporate estimation of the transformation of the
stimulus jointly with the regression model have also been proposed— see Gossl
et al. (2001b). In addition, more flexible nonparametric fitting of the baseline
trends a;; and time-varying activation amplitudes can also be performed with
additive regression models; see Genovese (2000) and Gossl et al. (2000). While
these approaches provide a more complete statistical solution to the model-
ing of fMRI data, they are not necessarily so attractive to the practitioner
for two reasons. First, increased model flexibility in these areas does not ap-
pear to substantially improve empirical estimates of activation maps. Second,
the prompt processing of each fMRI acquisition is important for diagnostic
purposes. There is a trade-off between model complexity and computational
feasibility, and introducing flexibility in these areas substantially increases
processing time. Therefore, we use the parametric regression model (1) as a
basic ingredient of our spatial Bayesian variable selection and model averaging
approach, and work with pre-processed transformed stimuli.

Spatial Bayesian variable selection

Defining the vectors y; = (Y1, - - -, Yir), 2i = (2i1, -y 2ir)', € = (i1, - - -, &)’
of fMRI signals, transformed stimuli, and errors at voxel 7, respectively, and
the design matrix W = (wy,...,wr)" for the baseline trend, model (1) with
time-constant activation amplitude is given by

vi = Wa, + 28 + €, g; ~ N(0,071). (3)

We define a spatial Bayesian model by introducing binary indicator variables

1 if voxel 7 is activated
Vi =
0 if voxel 7 is not activated ,

so that the activation amplitude

Bi# 0 iff v =1,
The vector of binary indicators v = (7y1,...,7n)" then represents an activa-
tion surface, while 8 = (84,...,n)" is a vector of corresponding activation

amplitudes. We process each slice of an fMRI scan separately, so that these
vectors are defined over a regular lattice.



Spatial correlation and anatomical or expert prior information is introduced
through an Ising prior for the activation vector +. Ising priors are commonly
used as a Markov random field (MRF) prior in image analysis with binary
valued pixels, such as analysis of black and white images; see Higdon (1998)
and Swendsen and Wang (1987) and references therein for examples. This is
of particular advantage in fMRI analysis because it allows one to incorpo-
rate spatial correlation directly on the probabilities of activation. In addition,
anatomical or expert prior information on activation of voxels may be incor-
porated through the ‘external field’ of the Ising prior.

The prior is defined as

p(7) o exp {Z 67 + 0> wil(y; = ’Yj)} ) (4)

i=1 invj

where I(A) = 1if A is true, and I(A) = 0 if A is false. The sum Y, &;; is the
external field, while the interaction term 6 3=, ; w;;I(v; = 7;) models spatial
correlation. The sum over i ~ j is notation for summation over all neighboring
voxels, while the w;; are pre-specified constants that weight the interaction
between neighboring locations 7 and 7 on the lattice. Here, the neighborhood
of 7 is defined to contain the directly adjacent vertical and horizontal voxels j
with weights w;; = 1, and the directly adjacent diagonal voxels j with weights
w;; =1/ v/2. The parameter 6 controls the amount of spatial smoothing, with
the elements of v being independent if § = 0. Note that while this prior
directly introduces spatial smoothing for the binary activation indicators, it
also indirectly introduces spatial smoothing for the activation amplitudes.

To complete the Bayesian model, priors are required for all the remaining pa-
rameters in the model. ;From the definition of the indicators, §; = 0|y; = 0 and
a prior is only required for the conditional distribution of §;|v; = 1. Following
extensive discussion in the statistical literature (see Smith and Kohn (1996),
George and McCulloch (1997) and references therein) a proper prior must be
assigned to the non-zero coefficients to undertake variable selection and model
averaging. Following Kohn et al. (2001), we define a proper conditional prior
by setting

p(Bilvi = 1, a4, 02, 4i) o< p(yil Biy i = 1, s, o) /7. (5)

The prior in (5) is a fractional conditional prior, which uses a fraction 1/7T of
the data to give a proper prior and is uninformative relative to the likelihood.



For the remaining parameters o; = (1, - - ., Qi) and o2, ..., 0% We assume
standard independent non-informative priors, so that

N
plog,...,an,00,...,0%) Hl/af.
i=1

Incorporating anatomical prior information

To incorporate anatomical prior information, define a grey matter indicator
g; = 1 if voxel i is grey matter, and g; = 0 otherwise, with p(g; = 1) as the
grey matter prior obtained from segmentation. Assume also that the grey mat-
ter indicators are a priori independent across voxels, so that p(g1,...,9n8) =
[1Y, p(g:)- Then it is known that p(y; = 1|g; = 0) = 0 because activation
cannot occur outside grey matter, and that p(y; = 1|g; = 1) = a, where for
the visual experiment in our empirical application we assume a = 0.1. Note
that this is a reasonable assumption, because it is known a priori that only
five to ten percent of grey matter is likely to be activated by this experiment.
Then

p(vi=1) =p(yi=1lgi=plgi=1) = p(gi = 1)a = c.

We match the marginal prior probabilities ¢; to the external field of the Ising
prior when there is no spatial correlation, so that § = 0. In this case the joint
density is p(7y) o< exp{X; d;7:}, with marginals

p(vi =1) =exp(d;)/(exp(d;) +1) =¢; fori=1,..., N.

Therefore, solving for ¢;, an anatomically informed Ising prior is given by
equation (4) with ¢; = log(¢;/(1 — ¢;)).

Posterior Inference

Bayesian model estimation and inference is based on posterior quantities; that
is, inference conditional on the data y collected. In the case of fMRI analysis
the quantities of immediate interest are the marginal posterior probabilities
of activation p(y; = 1|y) and marginal posterior expectations of the activation
amplitudes E(S;|y) for all the voxels i = 1,2,..., N in a scan. Closed form
calculation of these quantities is not possible because it involves high order
integration out of nuisance parameters. However, if a Monte Carlo sample
{1 AR 41 is available from the joint posterior distribution p(vy|y),
then it is possible to estimate these two posterior quantities as



k
P =1ly) = [ PO = 10 PP Oaly) i ~ Zp i =10),
E —E =1 = 1|y)~ E(Bi|y = LS o = 14
(Bily) = EBilvi = Lyi)p(vi = 1y) = E(Bilvi = 1, v:) jzp(%—llwﬁ,y) :
k=1

These are Monte Carlo mixture estimates and are in common usage in compu-
tational statistics— see Tanner (1996) p.51. We label the two estimates when
calculated for the N voxels of an fMRI slice as an ‘activation map’ and an
‘amplitude map’, respectively.

To obtain the Monte Carlo sample, we use a Markov chain Monte Carlo
(MCMC) sampling scheme. Such sampling schemes have become the most
widely used computational approach in modern statistics. MCMC techniques
are based on repeated sampling from conditional posterior distributions, defin-
ing a Markov chain with the target distribution as its stationary distribution;
see Gamerman (1997) and references therein for an introduction to MCMC
schemes. We outline a very efficient and fast MCMC sampling in the Appendix
A.2, which produces the required sample from the target distribution p(7v|y).

To calibrate the activation maps with maps from the frequentist approach

found in SPM, we follow Raftery (1996) and note that —2log ((1 — p(v; = 1ly))/p(vi = 1|y))
is on the same scale as a likelihood ratio statistic and is approximately dis-

tributed x%(1). A p-value of 0.05 gives a critical value of 3.841, so that solving

for the posterior probability p(v; = 1|y) = 0.8722 at this critical value. There-

fore, a Bayesian classification rule calibrated to the frequentist p-value of 0.05

is to classify all voxels with p(y; = 1|y) > 0.8722 as active, and inactive

otherwise.

Data

MR data were acquired on a clinical 1.5T scanner (GE Medical Systems)
from five healthy male volunteers (age 21-37 years). For each subject a func-
tional time series was obtained for a visual stimulus paradigm (8 Hz alternating
black and white checkerboard) and a 3D whole brain anatomical data set were
acquired. For the functional acquisition an EPI sequence was employed to ob-
tain 23 contiguous slices with TR=4s, TE=60 ms and a spatial resolution of
2.19%2.19x5mm?3. The paradigm consisted of an on—off block design with 9
epochs (5 off, 4 on) lasting 7 images each.

All data sets were post-processed using SPM99. The images of each time se-
ries were realigned (motion corrected) and normalized to a template in MNI
standard space retaining the original spatial resolution. Activation maps were
calculated on these data sets with additional spatial smoothing using SPM’s



Gaussian field correction at a threshold of 0.05. Grey matter prior informa-
tion (g;) was obtained from an SPM segmentation of the first image of each
functional data set.

3 Results

To explore the effect of the Ising prior at equation (4), we analyze a single
slice of the scan from individual A using the spatial Bayesian variable selection
procedure (SpBVS) with four different values for the hyperparameters. The
four Ising priors used are given in table A.1. Figures A.1 and A.2 provide the
Monte Carlo estimates of the marginal posterior probabilities of activation
p(7; = 1ly) and corresponding marginal posterior means of the amplitudes
E(Bi|y). These are calculated for all voxels in the slice and when plotted over
the lattice, they form posterior activation and amplitude maps, respectively.
In figure A.1, voxels classified as activated (that is, with estimates of p(y; =
1ly) > 0.8772) are plotted in white. The anatomically informed grey matter
prior is plotted in the background in grey. In figure A.2 the amplitude map is
thresholded, so that only the amplitudes of the activated voxels are shown.

—TABLE A.1 ABOUT HERE—

Ising model (a) involves no spatial smoothing and no anatomical prior in-
formation. The resulting posterior activation map has many false-positives
(voxels incorrectly identified as activated), including voxels in areas which
have low probability of being grey matter. Ising model (b) involves no spatial
smoothing, but incorporates the anatomically informed grey matter prior from
automated SPM segmentation using signal intensity and prior knowledge from
the template. The anatomical prior reduces the false-positives in the posterior
activation map in areas of the brain that have low probability of being grey
matter from the segmentation data. Moreover, in areas outside the skull which
have zero prior probability of being grey matter, both the marginal prior (and
therefore posterior) probability of activation is zero.

Models (c¢) and (d) involve positive spatial smoothing with # = 0.6, which
thins out many of what are likely to be incorrectly identified activated voxels
and bolsters regions of multiple activated voxels. Model (d) also incorporates
the grey matter prior and trims the activation profile down to the observed
anatomy of the brain. This latter model is the one recommended for anal-
ysis, and we note that the maps suggest that there is indeed an acoustic
co-activation in response to the visual experiment for this individual. This co-
activation is not identified in either the default SPM analysis or using contin-
uous MRF priors on the amplitudes as in Fahrmeir et al. (2002). Nevertheless,
the acoustic activation does not appear to be a false-positive, with the am-



plitude map at figure A.2(d) identifying these voxels as possessing very high
amplitudes. To confirm this analysis, the raw time series from these acoustic
voxels were examined and found to display strong reaction to the stimulus.

—FIGURES A.1 AND A.2 ABOUT HERE—

Figure A.3 shows the activation maps resulting from applying the SpBVS
procedure to eight contiguous slices from a scan of individual B. This subject
possesses a large visual cortex area, and there is a clear activation with little
evidence of false-positives. Note that in slice 10 the small lateral geniculate
nucleus regions are clearly identified as activate. This activation is unlikely to
be a false-positive, given that this is a visual experiment. Figure A.4 contains
the corresponding maps resulting from an SPM analysis of the same data. The
SPM analysis corresponds to the default smoothing and an applied corrected
threshold of p < 0.05. Comparing the results, we can see that that the de-
tection sensitivity is lower, best noted in the extrastriatal visual cortex and
the loss of structural details within activated areas. In particular, in the SPM
analysis the lateral geniculate nucleus is not identified as active, which is a
result of the spatial over-smoothing of the method of Friston et al. (1995).

—FIGURES A.3 AND A.4 ABOUT HERE—

The edge-preserving properties of the SpBVS methodology result in a spatial
smoothing procedure that is more reliable in identifying small areas of acti-
vation. To examine this, we investigate whether, or not, the method identifies
activation of the lateral geniculate nucleus (LGN) regions in the five individ-
uals. For each individual, the slice that most corresponds to the LGN region
was selected and the corresponding SpBVS posterior activation maps plotted
in figure A.5. Clear activation of the LGN region was detected for individuals
A and B, weak activation for individual D and no activation for individuals C
and E. The corresponding SPM maps did not show any geniculate activation
in any of the five subjects.

—FIGURE A.5 ABOUT HERE—

For the three individuals without clear activation of the LGN, additional
expert prior knowledge was employed to enhance the map. In each of the
three slices a neuroradiologist (DPA) identified a 10 x 10 voxel region R
which is likely to contain the LGN. In these areas the prior probability of
activation, conditional on the voxel being grey matter, is increased so that
p(vi = 1lgi = 1) = 0.5, for i € R. For the remaining voxels, we maintained
the conditional prior probability, so that p(y; = 1|g; = 1) = 0.1 for i € R.
The Ising prior employed is therefore as outlined in row (d) of table A.1, but

10



where

log (w) forie R

1-0.5p(gi=1)

log (w) for i ¢ R.

1=0.1p(gi=1)

Figure A.6 contains the resulting enhanced activation maps for individuals D
and E. The anatomically informed prior with enhanced region R is plotted
in the background. Note that when 6 = 0 the prior p(y; = 1) < 0.1 for i & R,
while p(¢g; = 1) < 0.5 for 7 € R. In the figure, prior values in the range 0.1 <
p(7: = 1) < 0.5 are painted in shades of red, while prior values p(y; = 1) < 0.1
are in greyscale. As before, the voxels with marginal posterior probabilities of
activation p(vy; = 1|y) > 0.8772 are painted over with white. A comparison
with the posterior activation maps in figure A.5 shows that for individual E
activation in the LGN region has been enhanced. For individual D weak partial
activation is now detected, whereas without the enhanced anatomical prior no
activation is detected. However, for individual C no activation was detected
even with the enhanced prior.

—FIGURE A.6 ABOUT HERE—

4 Discussion

Overall, the application of the SpBVS approach to the fMRI data from a simple
visual experiment shows an increased sensitivity in detecting activated cortical
areas when compared to the calibrated SPM99 spatially smoothed analysis.
In particular, the proposed approach better preserves anatomical details of
activated structures. This increased sensitivity is an important advantage in
some fMRI applications. For example, in presurgical brain mapping in tumor
patients great emphasis is put on avoiding spatial misregistration of activated
regions and detecting any cortical activation in the vicinity of the surgical
target. However, compared to the SPM analysis, we observe more isolated
pixels suggestive of false-positive activation.

Another important feature of the method is the ability to use prior infor-
mation to inform the activation and amplitude maps. This is undertaken in
a structured way using a prior distribution which, when combined with the
information in the data in the form of the likelihood, informs the resulting
posterior probabilities of activation. For the simple visual experiment, analy-
sis was based on grey matter priors obtained from segmenting the brain under
study, as well as on additional expert knowledge to enhance the grey matter
priors in a specific region of interest. Another possibility would be to use infor-

11



mation from previous multi-subject studies to define anatomically informed
priors for a new subject. This flexibility in assigning prior probabilities for
activation is a distinct advantage of our Bayesian method that is hard to
replicate in non-Bayesian paradigms.

Recently, several alternative Bayesian spatial and spatio-temporal models for
analyzing fMRI data have been proposed. Mostly, spatial or spatio-temporal
priors are imposed on activation amplitudes, but not on activation indicators.
Therefore, the focus is on deriving posterior distributions of the amplitudes,
and less on direct calculation of posterior probabilities of activation or non-
activation of voxels.

Gossl et al. (2001a) developed a hierarchy of Bayesian models, increasing in
complexity from simple spatial models for time-constant activation amplitudes
to flexible semiparametric spatio-temporal models allowing for time-space in-
teractions. Corresponding spatial or spatio-temporal Gaussian Markov ran-
dom field (GMRF) priors are assumed for activation amplitudes, but without
incorporation of anatomical prior knowledge. A concern with such anatomi-
cally noninformed Gaussian priors is the tendency of oversmoothing in regions
with high spatial curvature, for example at borders between high and low ac-
tivation, or to smooth away biologically meaningful small local area effects.
Therefore, Fahrmeir et al. (2002) replace GMRF priors by more robust and lo-
cally adaptive MRF priors. Although some improvement compared to GMRF
priors is achieved, the potential to detect small local area effects remains lim-
ited. Moreover, in both cases, the Markov chain Monte Carlo algorithms used
to estimate the models prove to be substantially slower than that used to
estimate the model proposed in the current paper.

A different approach to specify spatial or spatio-temporal models for fMRI
data incorporating anatomical prior knowledge has been developed by Kiebel
et al. (2000), and adapted to multi-subject studies in Kiebel and Friston
(2002). The basic idea is as follows: First, an approximate reconstruction of
the grey matter surface is calculated. In a second step, this surface is projected
onto a plane producing a flattened version of the grey matter surface. Gaus-
sian isotropic basis functions are then defined with centers on a spatial grid of
the flattened surface, and transformed back onto the original grey matter sur-
face. The resulting basis functions are non-Gaussian, anisotropic, and locally
adaptive through the anatomical information employed in their construction.
Finally, spatially smoothed activation maps are obtained as regularized least
squares fits, with the design matrix determined by these anatomically informed
basis functions.

Based on this work, Friston et al. (2002a) recently suggested a hierarchical

spatio-temporal Bayesian model which incorporates anatomical prior infor-
mation. They impose a Gaussian prior on activation effects that is obtained

12



by modulating the covariance matrix of a stationary Gaussian random field
using a grey matter prior. At least in current implementations, a problem with
this approach is that it can only be applied to a restricted search volume. To
avoid this computational problem, they combine principal component analy-
sis and the use of anatomically informed basis functions developed in Kiebel
et al. (2000). However, in contrast to our approach the prior probability of
activation of a voxel is not part of the model, so that the posterior probability
of activation is not directly available through the Bayesian paradigm. How-
ever, conceptually it seems possible to combine these approaches with spatial
Bayesian variable selection.

To our knowledge, models which assign prior probabilities directly to indica-
tors for activation or non-activation of voxels have been proposed only in a
somewhat different and more restricted context. Based on the ideas of Everitt
and Bullmore (1999), Hartvig and Jensen (2000) propose a spatial mixture
model for the map of voxelwise t-values of activation effects estimated by clas-
sical SPM regression in a post-processing step. For each voxel ¢, a latent binary
indicator +; is introduced, and the (marginal) distribution of its ¢-values ¢; is
specified by a mixture distribution 7 f(t;|y; = 1) + (1 — ) f (|7 = 0). Here, 7
is the fraction of activated voxels, or is obtained through more complex mix-
ture models. Spatial correlations are modeled by priors for activation profiles.
Again, this approach is applied only to smaller search volumes, and it is not
integrated into a complete spatio-temporal model.

A Appendix

A.1  The fractional conditional prior

We provide some details on the posterior distributions used in the sampling
scheme. Note first that the fractional conditional prior in (5) is Gaussian

5z'|%’ = 1,ai,0¢2,yi ~ N(,ui,afﬂ-),

where .
2y — W) T

A.2  Sampling activation probabilities

To draw the sample {y!!1,... 41} from the joint posterior p(7y|y) of activation
binary indicators, we construct a ‘single site’ sampler which repeatedly draws

13



from the full conditional posteriors p(y; = 1|7, y), where y_; is the vector vy
without 7;. These conditional posteriors are available in closed form as

p(vi = 1lv=i,y) = 1/(1 + h),
where

h:exp{—5i+€i+9 Z wi(1 —2%)} ,

kEK;
and k; = {k|k ~ i} is the set of neighbors of voxel i. The value of ¢; can be
calculated from

S\ T2 (WMWY ,
— k23 A A | T + 1)/2
4 log{(sﬁ wwy ) VT

where

Sio=vly; — yW(W'W)~"'W'y;,
Si = yiMyy; — yiM;W (W' M;W) " 'W' My,
M;=1— zz2l/(z2),

and m = dim(a;).
Proof:
The conditional posterior is obtained by considering

p(Yilv=iyy) x p(Y|V=i, vi)P(Yilv—i) < A(7i),

calculating A(y; = 1) and A(7y; = 0) and normalizing to find p(y; = 1|y_;,y) =
1/(1 + h), where h = A(y; = 0)/A(v; = 1).

For the case when v; = 1,

(i = 1y-i,y) x ///p(yim =1,8i,07,0)pBilvi = 1,07, a;)p(c})d(Bs, o7, i) p(vi = 1]y-s)

(2r) T+1/2/// S(TE3)/2 (12

exp {— 12 [(yz —Wai; — 2i8:) (yi — Weu — 2i8) + Tl(@ - Nz‘)z] } d(Bi, 07, ai)p(vi = 17-4)-

20; 4
The coefficient 5; can be integrated out by recognizing a N (u;, T le)) density.
Therefore,
P = y-5,y) oc (2m) 772 [[(02) T2 (1) 12 (i (T + 1))

14



oxp { oz (0= W (= W) + “?—u(T“)]}dw?,ai)p(%=1|v_z->

T

oc (2m) T2(T +1)1/? // —(T+2)/

exp {—2}72 [<yi W) (3 — Wo) —

i

L (e W) 2! (s — Wcm] } d(0?, )l = 17)

Ziz;
The parameter «; is integrated out by recognizing a multivariate normal den—
sity with mean & = (W' M;W)~'W'M,y; and variance Q; = o2(W'M;W)~!
with M; = I — ——(z2}). Therefore,

P = y-5y) oc (2m) T AT 1) 72 [(02) T2 2

1 1 1 )
exp {—203 lyz{yi - 7 Yiziz; yz] §(§§Qi 1@-)} dolp(vi = 1|v-:)

S
— (27-[-)7('1—'7771)/2(T+1)71/2|W1Miw‘*1/2 /(U?)*(Tfm+2)/2 exp (_2 12> do-?p(fyz = 1|77’L)
g
where S;; is defined as above. The parameter o2 is integrated out as an inverse
gamma IG(15™, 5it) density, so that

p(vi = 1y=i,y)
N\ —(T-m)/2
) @1y v (5

For the case when v; = 0,
m%=m1%wa//mm%=0mawmwbaﬁ¢mm%=oww.

Integrating out a normal density in «; and an inverse gamma in o2

manner as above,

in a similar

p(vi = 0ly=i, )
T _ S\ "2 T
(2m) w2 (50 (F57) ol =01y -4) = Al = 0).

2

Normalizing the results, we get that

p(yi = 0]y)
p(vi = 1v-i)

( _0:’7 )

—eXp{IZ} Pi=T)

= exp{ti} >

15



Evaluating the joint prior defined in equation (4) for v, = 1 and y; = 0 and
simplifying, the formula for p(v; = 1|y_;, y) is obtained.

Computational Note:

Repeated sampling from the conditional posteriors above in a Markov chain
Monte Carlo sampling scheme is reasonably fast. First, only the sum =, .. w;;(1—
27,) requires repeated computation each sweep of the sampling scheme. This
sum involves only a handful of floating point operations, given the small 8-
neighborhood structure used in this paper. Second, the component ¢; — §;
requires calculation only once for each location 7 on the lattice. Last, some
matrix computations, such as (WW'W)~!, need only be evaluated once in the
entire estimation procedure. Overall, we find that when coded efficiently in a
low level language these computations can be undertaken quickly. For exam-
ple, even with a conservative Monte Carlo sampling period of 8000 sweeps,
the entire posterior activation map for a single slice can be computed in less
than one minute on a Pentium III processor.
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Prior Hyperparameter Values Form of Ising Prior

(a) 0 =0,6; =1log(0.1/0.9) p(y) = fv1{ 0.1)7%(0.9)0—%)}
() | 0=0,8 =Tog (7259=L) | py) = [T, {0-1p(gi = 1)) (1 = 0.1p(gi = 1)) 7}
© | 0=065=10501/09) | pl) exp{ T, b+ 0.6 iy =)}

(d) | 6=06,6; = log (%) p(7) x exp {Zizl 87 +0.6 3,5 wigl (vi = ’Yj)}

Table A.1
The four Ising priors corresponding to the posterior activation and amplitude maps
in figures 1 and 2.

(a) a=Flat, 6=0 (b) a=Grey, 6=0

(c) a=Flat, 6=0.6 (d) a=Grey, 6=0.6

Fig. A.1. Posterior activation maps for individual A using the four Ising priors in ta-
ble 1. The grey matter prior is plotted in grey on the background, with lighter values
corresponding to higher prior probabilities of activation and black corresponding to
very low, or zero, prior probabilities of activation. Voxels with estimated posterior
probabilities of activation p(y; = 1|y) > 0.8772 are classified as active and painted
over in white.
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Fig. A.2. Posterior amplitude maps corresponding to figure 1, using the four Ising
priors in table 1. The Monte Carlo estimates of the marginal posterior means E(3;|y)
are plotted in color, but only for those voxels that are classified as active in figure 1.
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Fig. A.3. Posterior activation maps for eight contiguous slices for individual B. The
grey matter prior is plotted in grey in the background and voxels classified as active
using the posterior probabilities of activation are painted over in white.
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Fig. A.4. Activation maps for individual B produced by SPM99 corresponding to
those found in figure 3. The method uses spatial smoothing of t-values with a
significance level of p = 0.05. Areas of statistically significant activation are shown
in color.
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Ind A, Slice 9

Fig. A.5. Posterior activation maps for the slice that most corresponds to the LGN
for each of the five individuals in our study. Clear activation of the LGN can be
observed for individuals A and B, weak activation for individual D and no activation
for individuals C and E.



Enhanced LGN Activation Map, Indiv. D, Slice 7
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Fig. A.6. Enhanced posterior activation maps for the slices found in figure 5 for
individuals E and D. Voxels classified as active are painted over in white. The
enhanced prior is plotted in the background in greyscale for prior probabilities less
than 0.1 and in shades of red for prior probabilities between 0.1 and 0.5.



