LUDWIG-

MAXIMILIANS- | | INSTITUT FUR STATISTIK
ol SONDERFORSCHUNGSBEREICH 386

Holmes, Knorr-Held:

Efficient simulation of Bayesian logisfic regression
models

Sonderforschungsbereich 386, Paper 306 (2003)

Online unter: http://epub.ub.uni-muenchen.de/

Projektpartner

MAX-FLANCK-CESELLECHAFT


https://core.ac.uk/display/12162734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.stat.uni-muenchen.de/
http://www.gsf.de/
http://www.mpg.de/
http://www.tum.de/

EFFICIENT SIMULATION OF BAYESIAN LOGISTIC

REGRESSION MODELS

BY CHRIS C HOLMES

Imperial College London

LEONHARD KNORR-HELD

Ludwig-Maximilians-University Munich

SUMMARY

In this paper we highlight a data augmentation approach to inference in the Bayesian
logistic regression model. We demonstrate that the resulting conditional likelihood of
the regression coefficients is multivariate normal, equivalent to a standard Bayesian linear
regression, which allows for efficient simulation using a block Gibbs sampler. We illustrate
that the method is particularly suited to problems in covariate set uncertainty and random

effects models.
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1. INTRODUCTION

Binary regression using Generalised Linear Models (GLMs) is a widely used tech-
nique in applied statistics and the Bayesian approach to this subject is well documented,
e.g. Dey, Gosh and Mallick (1999). However, inference in Bayesian GLMs is complicated
by the fact that no conjugate prior exists for the parameters in the model, other than for
normal regression, and this makes simulation difficult. In a seminal paper, with over 200
citations at time of writing, Albert & Chib (1993) demonstrated a data augmentation

approach for binary probit regression models which renders the conditional distributions



of the model parameters equivalent to those under the Bayesian linear regression model
with Gaussian noise. Hence, conjugate priors are available to the conditional likelihood
and the block Gibbs sampler can then be used to great effect. In this paper we demon-
strate that this is also possible for logistic regression, by using a scale mixture of normals
representation and additional auxiliary variables. This is an important discovery as typ-
ically the logit link is the method of choice for most statistical applications, due to the
strong interpretation of the regression coefficients in terms of the change to the log-odds
of one class over another for unit change in the associated covariate. In addition, the logit
link avoids the need for a table look up, as in the cumulative normal (probit link) which
is known to be sensitive to evaluation in the tails of the link function.

In §2 we present the method and algorithms for sampling from a Bayesian logistic
regression model. The approach is also well suited to generalisations of the standard
logistic model and in §3, §4 we describe two such applications, namely, in covariate set
uncertainty and random effect models. Finally, in §5 we offer a brief discussion, contrasting

the approach to existing methods and pointing to possible extensions.
2. A DATA AUGMENTATION APPROACH TO THE LOGISTIC REGRESSION MODEL

To begin, consider the Bayesian logistic regression model,

y; ~ Bernoulli (g‘l(m))

n = x,0

B ~ w(B) (1)
where y; € {0,1},7 = 1,...,n is a binary response variable for a collection of n objects
with associated p covariate measurements ; = (1, - .., Zip), g(u) = log(u/(1 —u)) is the

logistic link function, 7); is the linear predictor and 3 represents a (p x 1) column vector
of regression coefficients which a priori are from some distribution 7(-).

The logistic model in (1) has an equivalent representation using auxiliary variables,

Y =
0 otherwise

zZ; = iBi,B+€i
€& ~ 7(€)

B ~ w(B) (2)

where y; is now deterministic conditional on the sign of the stochastic auxiliary variable

z; and 7(¢;) is the standard logistic distribution. Under independence of ¢;, i =1,...,n,



the marginal distribution of y in model (2), having integrated out z and ¢, is the same as
in (1). In what follows, we shall introduce a further set of variables, A;, i =1,...,n, and

note the additional representation

Y =
0 otherwise

zZ; = iBi,B+€i

€ ~ N(Oa )\’L)

A= (24)°

Yi ~ KS

B ~ =(B) (3)
where N (0, \;) is a mean zero normal distribution with variance A; and ¢;, i = 1,...,n,

are independent random variables following the Kolmogorov-Smirnov (KS) distribution,
e.g. Devroye (1986). In this case, ¢; has a scale mixture of normal form with a marginal
logistic distribution (Andrews & Mallows, 1974), so that the marginal distributions 7(3|y)
for models (3), (2) and (1) are equivalent.

The advantage of working with representation (3) is that, for judicious choice of 7(3),
it lends itself to efficient simulation using the block Gibbs sampler. In particular, in the

case of a normal prior on 3, 7(8) = N(m,v), the full conditional distribution of 3 is still

normal,
Blz. Ay ~ N(BV)
B = V' 'm+az'W2)
Vo= (v +2' W),
W = diag(\Y ..., 00, (4)
here ¢ = (x, ), ..., z])’, while the full conditional for z; is truncated normal,

Zz|/65 Liy Yiy )\z X
N(z;3, \i) I(z <0) otherwise,

which is simple to sample from, see for example Robert (1995).

The conditional distribution of the variance parameter A\; does not have a standard
form though updating is conveniently achieved through a Metropolis-Hastings proposal
from the prior distribution 7();). This involves sampling from the KS distribution for

which efficient and exact algorithms exist (Devroye, 1986). The Metropolis-Hastings



acceptance ratio will then be

@) o) e

where J; is the current and A} the proposed new value. Note that sampling from the prior

avoids the evaluation of the KS density using a table look up, as it is known only as an
infinite series.

Alternatively we can easily construct a joint proposal for A\; and z; by first sampling A’
from the prior, as above, then generating z; from the truncated normal (5), conditional
on A, and then accept-reject \] and z; jointly. The acceptance ratio is in this case
11_;((”7;//1/}_;)) ity =1 (7)

@(ni/\/X;)

Bavmy Y= 0,

here ® denotes the cumulative distribution function of the standard normal distribution.

In this way, the formulas (4), (5), (6) or (7), provide the basis of efficient sampling
from the Bayesian logistic regression model. The approach is easy to incorporate into
statistical software and we believe it to be highly efficient compared to current sampling
techniques. Furthermore, in the next two sections we highlight two generalisations of
the standard logistic regression model where the auxiliary variable representation (3) is
especially useful, namely in situations of covariate set uncertainty and for random effects

models.
3. COVARIATE SET UNCERTAINTY

It is often the case that the statistical analyst may suspect that some of the available
covariates are irrelevant to the regression task. A convenient approach to this problem
is to adopt a prior distribution on the covariate matrix 7(x) that places mass on the
2P possible sub-models made up of differing covariates or columns of x. In particular,
consider the covariate indicator vector v = {v,...,%}, 7% € {0,1}, i = 1,...,p, such
that v; = 1 if the ¢th covariate is present in the model and ~; = 0 if it is not. A prior
on the model space can be specified via a prior on the covariate indicator, 7w(v). The
parameter vector 7 can then be included in the model specification and updated as part
of the simulation.

Bayesian analysis of models of random dimension have become extremely popular fol-
lowing the introduction of sampling techniques such as Green (1995). However, simulation
of variable dimensional models can be problematic as a change to the model structure

typically causes a large change to the likelihood of the current parameter values in the
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model, see Brooks et al. (2002). A key advantage of using model (3) is that when up-
dating the covariate set defined by v we can condition on z and jointly update the 3’s as
well, from their full conditional distribution given the new model structure. The vector
z retains information about the likelihood which allows for optimal updates to be made
to B3, given a change in the covariate set. Updating the 3 vector jointly with ~ is ex-
tremely important as typically, when the covariates are non-orthogonal, there is strong
linear dependence between the regression coefficients.

To sample from the posterior model space, we suggest a Metropolis-Hastings step to

update the current covariate set, defined by =, with a joint update to 3 as well,

q(v",B87) = n(B*17", 2, W) q(v"),

where ¢() denotes a proposal distribution, 7(3*|v*, z, W) is the conditional multivariate
normal posterior distribution (4) given the covariate set defined by 4*, and ¢(v*) is a,
possibly symmetric, Metropolis-Hastings proposal density that may, or may not, be based
on the current covariate set «. In this case, some straightforward algebra leads to the

acceptance probability of the move as,

V.«
« = min 1,| 7
Vs

20, [V exp(=0.58,- V- BLe) 7 (v)a(y]v) } »

V2o V2 exp(—0.58,V,18,) TV |7)

where a denotes the acceptance probability of the proposal and {,37, V,} are defined in
(4), where the subscripts indicate that they are conditioned on the covariate set defined
by 7. Note that the realised (drawn) values of {3, 3"} do not appear in the acceptance
probability (8), which resembles the Bayes factor of a standard Bayesian linear model.
This implicit marginalisation of 3 in the proposal step leads to efficient dimension sam-
pling, as the @’s are being updated from their full conditional distributions given the
change to the covariate set.

To illustrate the approach we consider a binary classification problem taken from
Ripley (1996). The regression task is to predict whether patients will test positive or
negative for diabetes using a set of seven covariate measurements, observed on a group
of adult females of Pima Indian heritage. There are 532 records, selected from a larger
data set, with the following predictor variables: number of pregnancies (NP); plasma
glucose concentration (Gl); distolic blood pressure (BP); triceps skin fold thickness (TST);
body mass index (BMI); diabetes pedigree function (DP); and, age (Ag). We obtained
the data from the web site www.stats.ox.ac.uk/~ripley/PRbook/. In Ripley (1996)

they used a classical (non-Bayesian) logistic regression model and noted that some of



Covariates NP Gl Bp TST BMI DP Ag
Elvi] 0.925 0.998 0.009 0.034 0.992 0.946 0.131
MCMC Std | 0.087 0.001 0.009 0.013 0.001 0.034 0.111

Table 1: Row 1, lists the covariate acronyms for the Pima Indian data set example
in Section 3: (NP), number of pregnancies; (Gl), plasma glucose concentration; (BP),
distolic blood pressure; (TST), triceps skin fold thickness; (BMI), body mass index; (DP),
diabetes pedigree function; and, (Ag), age. Row 2, lists the posterior probabilities of
covariate selection. In row 3, we report the MCMC standard deviations of the estimates
(7 = 1ly), taken across nine consecutive post burn-in regions of size 1,000 MCMC
samples.

the covariates appeared irrelevant. Ripley (1996) went on to perform stepwise variable
selection using an AIC model choice criteria and found that the covariates blood pressure
and skin thickness were dropped from the final model. We performed a Bayesian analysis
using independent priors on the covariates and regression coefficients as, 7(vy) = [[, 7(7:),
with 7(y; = 1) = 0.5 for i = 1,...,p and 7n(8) = N(0,1001,). Updates to A; were made
using (6). Updates to the covariate set were made using a Metropolis proposal as follows.

We select a covariate at random and propose v = 1, if the current v, = 0, 7 = 0

T(v*)a(v1v*)
> w(y)g(r* )

We performed a simulation of 10,000 iterations and discarded the first 1,000 as a burn-

otherwise. This results in the final term , in (8) being one.

in. In Table 1, we show the estimates of the posterior probabilities, 7(y; = 1|y), for the
seven covariates, along with the standard deviations in these MCMC estimates taken from
nine consecutive regions of the post burn-in MCMC samples, {(1001, 3000), ..., (9001, 10000)}.
The chain appears to be mixing well under the data augmentation approach. The overall
acceptance rate of the covariate update proposals was around 4% which is good when con-
sidering the posterior probabilities 7(+;|y) shown in Table 1. The estimates of w(v; = 1|y)

are in accordance with the observations of Ripley (1996) though we find there also appears

to be some doubt as to the relevance of age.
4. RANDOM EFFECTS MODELS

The proposed auxiliary variable approach is also well tailored to hierarchical logis-
tic regression models, where latent random effects follow a Gaussian distribution. The
effects may be conditionally independent, as in multilevel models, or dependent, as for
example in in dynamic models (for a recent review see Fahrmeir and Knorr-Held, 2000)
or in hierarchical models with latent Gaussian Markov random fields. In all these cases,
the full conditional distributions for the random effects will follow multivariate Gaussian

distributions, which are straightforward to sample from. If the random effects prior have
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a (spatial or temporal) Markov structure, the algorithm proposed in Rue (2001) provides
a fast and efficient way to simulate from the full conditional distribution in one block.

As an illustration for a random effects model, we consider data on salamander mating
taken from McCullagh and Nelder (1989). The data set is termed “challenging” by Karim
and Zeger (1992) because of the binary response variable, (0= failure, 1=success) of
the mating experiment between a female and a male, and the study design is crossed
rather than nested, with two sets of random effects. The data have been collected in
three experiments, one conducted in the summer and two in the fall where each male
and female salamander has been taken from two different populations: rough-butt and
whiteside population. The total number of experiments was 360. The data is available at
www.stat.uchicago.edu/~pmcc/glm/glm.html.

We follow model B by Karim and Zeger (1992) closely, and include the following
fixed effects in the model: an indicator of season, two indicators of the male and female
salamander population and an indicator for the interaction term. We then add for each
male and female salamander an additional random effect in the model, say b; and b7 for
the j-th female and the k-th male, which we assume to be independent realizations from
a normal distribution with mean zero and variance o7 and of, respectively. The linear

predictor for the i-th experiment is hence
i = @3+ bl + b}

For the variance parameters afc and o2 we assume independent inverse gamma distribu-
tions with parameters a = 1.0 and b = 0.1 respectively. Assuming the logistic regression
model with our auxiliary variable approach, all full conditionals for the random effects
follow normal distributions.

We performed a simulation of 21,000 iterations and discarded the first 1,000 as a burn-
in, using either the separate update of \;, or the joint update of A\; and z;. Mixing of all
parameters was very good with autocorrelations dropping quickly to zero. The results
have been in good agreement with those obtained by Karim & Zeger (1992), despite the
slightly different model specification (Karim & Zeger use improper priors for variance
components and random effects of dimension 2, rather than 1). We focus here only on the
acceptance rates for the separate and joint updates. Interestingly, the acceptance rates
in the joint updates (min = 0.72, median of 0.97, max = 0.99) are consistently higher
compared the ones obtained from the separate updates (min = 0.71, median of 0.89, max
= 0.90). This suggests that the joint updates might be slightly more efficient than the
separate ones, at virtually no additional computational cost. The acceptance rates are

even higher in the corresponding model without the random effects, which suggests that



sampling from the prior for ); is an efficient procedure. However, this might be different

in other applications, and we will mention alternatives in the discussion.
5. DiscussioN

We have presented an auxiliary variable representation for the Bayesian logistic re-
gression model that lends itself to efficient simulation using standard MCMC methods.
In particular we highlighted two non-standard models where we believe that gains in
efficiency will be marked.

Popular current alternatives for MCMC simulation in Bayesian logistic regression mod-
els are found in Albert & Chib (1993) and Gamerman (1997). In Albert & Chib (1993)
it was noted that specifying a scale mixture for \; in (3) as \; ~ Gamma(4,4) induces a
t-distribution for ¢; with 8 degrees of freedom which gives a good approximation to the
logistic distribution (up to a change in scale). However, this remains an approximation
and a qqg-plot of the true logistic distribution against that found using the Student approx-
imation reveals considerable departure in the tails, see Figure 1. In applications it will
be difficult to assess the effect of this bias on the posterior distribution of the regression
coefficients. Our approach, however, is exact and provides a fast and efficient algorithm
for inference in logistic regression models. One current area of investigation is to use
the method of Albert & Chib (1993) to construct an independence Metropolis kernel for

updates to \;, where the accept-reject step corrects for the approximation.
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Figure 1: Plot of t-quantiles against logistic quantiles for probabilities between 0.0001 and
0.9999 (Solid line). The dashed line gives the reference line if the two distributions are identical.



An alternative algorithm without auxiliary variables is described in Gamerman (1997).
Gamerman suggests a “weighted least squares” Metropolis-Hastings proposal based on a
linear Taylor-approximation of the likelihood. This algorithm works well in practice, in
particular if the number of parameters to be updated is not too large. However, accep-
tance rates will typically become too low in highly parameterized models, for example in
dynamic logistic regression models. In contrast, the corresponding acceptance rates in our
approach will always be unity due to the introduction of the auxiliary variables. More-
over, the extension of Gamerman’s approach to variable dimension settings is non-trivial
whereas we have shown in §3 this to be straightforward using auxiliary variables.

Finally we note that the approach proposed in this paper is straightforward to extend
to the use of nonlinear regression splines (Denison et al., 2002) and to logistic regression
models for ordinal data, such as the cumulative (Albert & Chib, 1993) or the sequential
model (Albert & Chib, 2001).
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