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Abstract

In financial time series transaction price changes often occur in discrete in-
crements, for example in eights of a dollar. We consider these price changes
as discrete random variables which are assumed to be generated by a latent
process which incorporates both exogenous variables and autoregressive com-
ponents. A standard Gibbs sampling algorithm has been developed to estimate
the parameters of the model. However this algorithm exhibits bad conver-
gence properties. To improve the standard Gibbs sampler we utilize methods
proposed by Liu and Sabatti (2000, Biometrika 87), based on transformation
groups on the sample space. A simulation study will be given to demonstrate
the substantial improvement by this new algorithm. Finally we apply our model
to the data of the IBM stock on Nov 13, 2000, and estimate the influence of
the duration between transactions, the volume, and the bid-offer-spread both
to model fit and prediction.

Keywords: Bayesian inference; Discrete-valued time series; High-frequency finance; Markov
Chain Monte Carlo; Multigrid Monte Carlo.



1 Introduction

In recent years the availability of intraday financial data had a big impact on the
econometrics literature. Many propositions were made to model the behavior of these
high frequency data. The models deal either with the price process itself or with the
time intervals (the durations) between market events. For a global overview about
high frequency finance see Bauwens and Giot (2001) or Dacorogna, Gengay, Miiller,
Olsen, and Pictet (2001).

Recent developments in the section of the duration models are for example the ACD
model of Engle and Russell (1998) and the many extensions such as the fraction-
ally integrated ACD model of Jasiak (1998), the threshold ACD model of Zhang,
Russell, and Tsay (2001), the SCD model of Bauwens and Veredas (1999), and the
log-ACD model of Bauwens and Giot (2000). In modeling the price process itself one
is faced with the feature that transaction price changes often occur in discrete incre-
ments. Hausman, Lo, and MacKinlay (1992) captured this feature in their ordered
probit model, where they assumed the existence of a latent continuous dependent vari-
able whose conditional mean is a linear function of observed explanatory variables.
Another proposition was made by Rydberg and Shephard (2002). They suggest a
decomposition model, where the price change is assumed to be a product of three
random variables, namely of a price change indicator, of the direction and of the
absolute value of the price change.

In this paper we introduce another model that deals with the price process itself and
that captures the feature of discrete price changes. We assume that the observed
price changes are discrete versions of latent continuous variables. Latent variable
approaches were used for many different problems in literature, for example for the
data augmentation algorithm in Tanner and Wong (1987) or for the computation
of posterior distributions in probit models in Albert and Chib (1993). The latent
process in our model has an autoregressive structure and is influenced by exogenous
variables. The autoregressive structure is a major difference to the work of Hausman,
Lo, and MacKinlay (1992), where the latent process is not autoregressive but only
incorporates the lagged observed discrete price changes. Additionally, we try to find
appropriate transformations for the exogenous variables whereas the cited work em-
ploys only observed covariates themselves.

For estimating the parameters we use a Bayesian approach and develop a standard
Gibbs sampling algorithm in Section 2. However, this algorithm exhibits very bad
convergence properties. Therefore in Section 3 we follow methods proposed by Liu
and Sabatti (2000) to improve the behavior of the standard Gibbs sampler. In par-
ticular, we introduce a special transformation group acting on the sample space and



modify the algorithm adding a so-called GM-step (Liu and Sabatti (2000)). The sim-
ulation study in Section 4 demonstrates the substantial improvement of the modified
Gibbs sampler. Finally, we apply our model to the data of the IBM stock on the
13th of November, 2000, and estimate the influence of some covariates to the price
changes with regard to model fit and prediction.

2 Model and the standard Gibbs sampler

2.1 Model formulation

We assume that we can observe a discrete response time series {Y;,t = 1,..., T},
where Y; takes on only K different values, and a (p + 1)-dimensional vector X; =
(1, X4,...,X;,)" of real-valued covariates for each ¢t € {1,...,7}. To model the
time dependency in {Y;,t = 1,...,T} we assume that there exists an underlying
unobserved real-valued time series {Y,*,t = 1,...,T'} which produces the discrete
valued Y; by thresholding. In particular, the following latent variable representation
holds:

Y, =k <= Y€1, u), ke{l,...,K}, (2.1)

Y =Xi8+ oY, +¢;, te{l,..., T}, (2.2)

where —00 = ap < a1 < ... < ag_ 1 < ax = oo are unknown cutpoints, and
B = (bo,.-.,0B,)" is a vector of unknown regression cofficients. All latent variables

(except parameters) are marked with an asterisk *. We assume that & ~ N(0,?)
i.i.d. Since the vector of covariates contains an intercept, we have to fix a; for
reasons of identifiability. In particular, we set c; = 0. For the same reasons we have
to fix the variance 6%, since otherwise we could multiply e := (o, ...,ax_1)", 8 and
Y* = (Y,...,Y}) by a positive constant without changing the likelihood. There-
fore we assume 0% = 1. It remains to estimate the latent variables Y;*,t = 0,...,T,
the cutpoints a;,j = 2,..., K — 1, the regression parameters 3;,7 = 0,...,p and
the autoregression parameter ¢. For the following we introduce the notations
0 = (Bo,---,Bp0), Y = (Y1,....Yp), Y5, = (Yy,...,Y Y, ..., YY) and
a p = (Qg,..., 0 1,0k41,...,ax 1). Univariate normal distributions that are
truncated to an interval [a,b] are denoted by Ny (p,0?). For the n-dimensional
normal distribution with mean g and covariance matrix X we write N, (u,X). I,
denotes the identity matrix with n rows and columns.



2.2 Bayesian inference using a standard Gibbs sampler

Now we develop a MCMC algorithm that allows us to draw approximate samples
from the posterior distribution [a,0,Y* | Y]. Here [z|y] denotes the conditional
distribution function or density of = given y, and [z] the marginal distribution or
density of z. For the Bayesian approach we have to specify prior distributions for o,
B and Y*. We assume

[Y* 0, a] x exp {—% [072(Y5)? + 77288 + p°¢?] } ; (2.3)

where o, 7 and p are known hyperparameters. We assume all parameters to be a
priori independent, we choose a noninformative prior for e and normal priors for Y,
B and ¢, respectively. We can take large values for o, 7 and p, when there is little
prior information about Y7 and 6.

Latent variable update:
First we have to determine the conditional distribution [YO* Y, Y, a, 0]. Since
Equation (2.1) holds, the complete vector Y is known, when a and Y*, are known.
Therefore the conditional distribution reduces to [Yg | Y*(, c, ]. As one can see
from Equation (2.2) only the component Y}* in the vector Y*, can play a role for the
conditional distribution. Together with the N (0, c?)-prior for Yy it follows that
007 -Xi8) 1 >

P*+o2 TPgrP+o2)
Next we investigate the most complicated case, namely the conditional distribution
[Yt* Y, Y*, a, 0] fort € {1,...,T — 1}. By definition we have immediately

[l/b* | Y,Yio,a,a} ~ N <

. " [Y*,Y,B, ¢,
Y IY, Y™, B, ¢, N 540 (2.4)
[YTT7YT|Y*T7YiT7187 ¢7 a][YfTaY*,T,,B, ¢, a] (2 5)
[YJYit767¢7 a] . '

The second factor in the numerator of expression (2.5) has the same form as the
numerator on the right-hand side of Equation (2.4), therefore we can iterate this way

of proceeding until we get

T
Y YnY*a"wY*f:Y:"';Ynf: s P Y*a ) W

[1/;*|Y,Yit,,3,¢,a]: Hn:l[ n o | 0 n—1 *1 1 18 ¢ a][ 0 18 ¢ a]

[Y7Y7t7ﬂ7¢7a]

Since we are interested in a conditional distribution for ¥,*, we can ignore terms that

do not involve Y;* to get
T
I:Yt*|Y7YitJBJ ¢7 a] X HI:Y7’2<7Y”|}/E]*7"'7Y7’:<—17}/17"'7Yn_1767 ¢7 a]

n=t



Using the definition for conditional distributions each of these factors can be further

decomposed as

[Y'r;k? Yn|YE)*7 . '7Y7:;17Y717 . '7Yn—17:67 ¢7 a]
= [Yn|Y7;,ka}/E)*7 . '7Yr;k—17}/17 . '7Yn—17167 ¢7 a][YT;kD/O*J L Yr;,k—la }/17 L Yn—17/37 ¢7 a]

For the last equality, (2.1) and (2.2) are used. Now ignoring again all terms that do

not involve Y,* we get
[}/;*|Y7 Yit: /67 ¢7 a]
oo VY, Vi Y7, B Al Y, B, ¢

: 1 *
X Ly ) 07050 { =507, — X008 - 07}

e {507 x5 - vy 7}
x 1[ayt_1,ayt)(yt*) )

exp {—% [(140%) (1) = 2 (6(V = XiuB) + (XiB + 0V.1))) V7] } .

Obviously this is a truncated normal distribution,

Vig —XuB) + (XiB+eYr,) 1
1+ ¢2 ’ 1+ ¢2

In a similar way as the full conditional for Y we get

[Y;|Y’ Y**T’ ’8’ ¢’ a] ~ N[OLYTflzoéYT) (XIT/B + ¢Y7>’k717 1)

[Y; |Y7Y—t7/37 ¢7 a] ~ N[Ozyt_l,ayt) <

Joint regression and autoregressive parameter update:
Here we can update all the parameters 3;, j = 0,...,p, and ¢ in one block. The
derivation of the full conditional is completely analogous to the well-known pro-
bit model (e.g. Liu and Sabatti (2000), p.364). In particular we have for 8 =
(Bos- -+ By 6

[0]Y,Y", a] ~ Np+2(EZIYiO7 ),

a (p+2)-dimensional normal distribution with covariance matrix ¥ = (Z'Z + 7 11,45) '

and
]_ 11 e xlp }/0*

Z=1":
1 oy - 2y Y7
Cutpoint parameter update:
We are now interested in the full conditionals (o |Y,Y*, 8,0, | for k € {2,..., K—
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1}. As one can see from Equation (2.1), oy is the cutpoint that separates category k
and category k + 1. Additionally, to fulfill the order condition, ay has to lie between
ag—1 and aj 1. Since we have no other information about oy and have assumed a non-
informative prior for it, it follows that [ax|Y, Y™, B, ¢, a_] is uniformly distributed
in the interval (I, r), where

lk = maXx {Ozkl, tIIIIaXT {me} = l{]}} (26)

T, = min {Oé]H,l,t:I{l%I.lT {Y Y, =k+ 1}} . (2.7)

3 A Grouped Move Multigrid Monte Carlo (GM-
MGMC) algorithm

Simulation experiments with the standard Gibbs sampler developed in Section 2.2
show that the produced MCMC-chains converge very slowly to the region around the
true value especially for the cutpoints a; and the regression intercept ;. This behav-
ior was also observed by Cowles (1996) for the independent multinomial case, which
can be explained as follows. The parameter «; is drawn from a uniform distribution
with boundaries /; and r; given in Equations (2.6) and (2.7). If the observed dataset
is large (e.g. T' = 2000), the difference r; — [; is very small, so «; has very little room
to move in one iteration. Therefore we look for some possibilities to speed up the
convergence of the standard Gibbs sampler.

One general possibility is, of course, to update some variables in one block, for example
all latent variables Y;*. In this case we have to draw a sample of a (7' +1)-dimensional
truncated normal distribution instead of drawing 7"+ 1 samples from univariate nor-
mal distributions. However, to get a sample from a multivariate truncated normal
distribution one has to employ a Gibbs sampler itself (cf. Geweke (1991) or Robert
(1995)). Simulations show that one reaches an improvement in convergence, but the
computational cost is very high. So if one uses this method fewer iterations are needed
for a comparable result, but the time used for each iteration increases in such a way
that the overall improvement is negligible. In addition this blocking of the latent
variables does not involve the update of the cutpoints «j which seems to be most
important.

Therefore, we use now a method that was proposed by Liu and Sabatti (2000). It
is based on a method to sample from a distribution using group transformations. In
particular, if ' is a locally compact group of transformations defined on the sample



space S, L its left-Haar measure (as defined in Rao (1987), p. 492), x € S fol-
lows a distribution with density =, and v € I' is drawn from 7(y(x))|.J,(x)|L(dv),
with J,(x) = det (379—(;)), 37( ) the Jacobian matrix, then x* = 7(x) has density
7, too (Liu and Sabatti (2000), Theorem 1). Typical examples of such transfor-
mation groups are the translation group on S along an arbitrary direction, I' =
{veR":y(x) =x+ve = (z1 +ve1,...,2q+ veq)} with Lebesque measure as left-
Haar measure (here v has to be drawn from 7(x + ~e)), or the scale group on S,
L ={y>0:vx) = (yx1,...,72q4)} with v~ 'dvy as left-Haar measure (here v has to
be drawn from v¢ !7(vyx)). In both cases the form of the left-Haar measure follows
directly from its definition.

We apply the method by Liu and Sabatti (2000) where x is a vector with T+p+ K +1

components, namely

X = (YE]*,---,Y;,ﬁo,...,BP,QQ,...,QK,1,¢),

and 7 is the posterior density of x. The difficulty in the choice of a suitable transfor-
mation group is to find one where the resulting distribution allows to draw samples
very fast. Unfortunately, in our problem standard transformation groups as the trans-
lation group or the scale group do not lead to an easy sampling distribution. Therefore

we use the group

Lo ={7y>0:79(x) = (&1, s YTy Tins1y - -+, Td) }

which we call a partial scale group on S. Here only m components are transformed,
the others remain fixed. The left-Haar measure for this group is again v~ 'dy as for
the (total) scale group. We easily compute det (679—(;)) = ™. Therefore

m(7(x))[J5 (%) |L(dy) = 4™ 'w(7x) dy.

In order to get an easy sampling distribution for our problem we take m =T +p+ K
and let only the parameter ¢ remain fixed. Therefore

ry(x) = (’YYE)*J s 77Y;77607 s erﬁpa Yya2, ..., YK 1, ¢) .
The posterior distribution in our problem is given by

W(X) = [Y* s ijwga 7¢|}/15"'7YT]

0 {

T
H 1 [y, - hayt )

t=1

Z —BX - YL o (YY) T BB+ p2¢2] } |



The density v 'm(yx) is therefore proportional to

t=1

T
— 1 * * — * — —
7" exp {—5 [Z(th — 18Xy — VYL 0T (VYY ) T8I W] } :
T

’ H 1 [70‘th1 7’YO‘Yt ) (’y}/t*)

t=1

t=1

. 1
o 7™ texp {—572

T
S = BX = oY) o () + T2ﬁ’ﬂ] } :

) H 1[04Yt—1704Yt)(}/;5*)

t=1

x (1) exp {—%72

T
}:G?—%TXV—¢ELV*%f%Kﬂ2+74Bﬁ]}
t=1

which is proportional to a Gamma distribution I'(a,b) for v* with parameters

T+K+p+1

a = 5 (3.1)
y (Y - XiB oY)’ 4o 2(05) + 7 6B 5.
- 2 . .
Here the I'(a, b) density is given by
ba
friapn(x) = () e >0

In this way we get a new algorithm that lies in the class of the grouped move multi-
grid Monte Carlo (GM-MGMC) algorithms (Liu and Sabatti (2000)). Each iteration
consists of the following two parts:

(a) MCMC-Step: Generate an iteration from the standard Gibbs-sampler using
— latent variable update
— joint regression and autoregressive parameter update
— cutpoint parameter update
to get Y, B., ¢, . as current values.

(b)) GM-Step: Draw 72 from I'(a, b) with a and b defined in (3.1) and (3.2) respec-
tively, and update the current values by multiplication with the group element
Y=V,

Y. < 7Y,

B. < 1B,

Qe — Yo



Note that ¢. does not need to be updated since it remains unchanged under the partial
scale group. Chen, Shao, and Ibrahim (2000) point out that GM-MGMC algorithms
do not always guarantee faster convergence than its parent MCMC-algorithm. There-
fore in the following section we test the new algorithm in several situations.

4 Simulation study

4.1 Design of the simulation study

First we mention that the smaller the number K of categories is the better the pa-
rameter estimates are when the Gibbs sampler of Section 3 is used. Therefore we
investigate the behavior of our improved Gibbs sampler for data sets with a for
our practical concerns relative high number of categories, K = 7. Further we take
T = 2000.

We investigate the behavior of the GM-MGMC Gibbs sampler for six different para-
meter sets that differ in the sign of the autoregressive parameter ¢, in the frequencies
that occur in the categories, and in the covariates. See Table 1 for specific choices
made. Especially concerning the frequencies we are interested in whether the parame-
ter estimates are better if the frequencies in the categories are nearly identical than
in situations where the majority of the observations lies in one or two categories and
only few observations in the other categories. This is important for many practical
problems. In particular for our application in Section 5 we observe that more than
80% of the observations lie in the categories 1 and 2, and only 3.5% in category 4.
In the following, 'very different’ frequencies means that there is at least one category
with more than 40% of the observations and at least one category with less than 5%
of the observations. ’Nearly identical’ means that in each category lie between 11%
and 18% of the observations.

‘ Parameter set ‘ [0) ‘ freq. in categories ‘ covariates ‘
A negative | nearly identical | 2 (normally distributed)
B positive | mnearly identical | 2 (normally distributed)
C negative very different 2 (normally distributed)
D positive very different 2 (normally distributed)
E negative | nearly identical | 2 (exp.trend,Bernoulli(0.6))
F negative | nearly identical | 4 (normally distributed)

Table 1: Parameter settings for the simulation study.



Xii X X Xoi
Parameter set || mean ‘ stdd. || mean ‘ stdd. || mean ‘ stdd. || mean ‘ stdd.
-0.40 | 2.20 0.02 | 0.02
-1.00 | 1.00 || -0.25 | 0.18
0.00 | 0.10 0.30 | 0.90
-1.00 | 0.90 || -0.25 | 0.11

| 0.00] 080 1.60] 1.10 | 0.40] 0.60 | -0.50 | 0.40 |

M| O] Q| I »

Table 2: Means and standard deviations of the normal distributions to generate the
covariates.

The parameter sets A to D are connected in the sense that in each we use two covari-
ates generated from normal distributions with specified mean and variance values, and
that there appear all combinations of positive/negative ¢ and nearly identical/very
different frequencies. In parameter set E, covariate X, is an exponential trend with
Xy =el/T = et/ and Xy, t=1,...,2000 is drawn from a Bernoulli-distribution
with success probability 0.6. In parameter set F' we use four covariates generated
from normal distributions.

For each parameter set we first chose the value of the autoregressive parameter ¢.
Then we tried not only different cutpoints to get nearly identical or very different
frequencies in the categories, but also different standard deviations of the normal
distributions the covariates were generated from. This is because otherwise we would
have had very small or very high values for the cutpoint ax_; = «g, which would
mean that the influence of the noise would have been very large or very small. The
means and standard deviations of the normal distributions used in parameter sets A,
B, C, D, and F are given in Table 2. Figure 1 shows the densities of 3;X;;, j =1,2,
the linear predictor X3, and the error component €; for parameter sets A to D. In
the fourth and fifth column one can compare the influence of X}8 and of the noise
;. The specific settings of the cutpoints, regression coefficients, and autoregressive
parameter are given in Table 3.

The simulation consists of the following three steps:

1. Generation of one design matrix per parameter set.
2. Simulation of 100 data sets per parameter set using the design of step 1.
3. 15000 iterations of the GM-MGMC Gibbs sampler for each of the data sets.

10



‘Parameterset H 042‘ 043‘ 044‘ 045‘ Qg H ﬁo‘ 51‘ 52‘ 53‘ Pa H ¢‘

A 13[24]35[46]57]49] 0.8]-60.0 0.2
B 122231 [41]53(29[-06] 9.0 0.5
C 071730404729 79| 06 0.3
D 08190354755 33|-06]| 9.0 0.4
E 06]13[24]31[3727] 02] -1.1 0.3
F 0718354653 28]-08] 04]05[04]-0.3

Table 3: Settings of the cutpoints, regression coefficients, and autoregressive
parameter.

4.2 Results of the simulation study

The computing time is about 0.08 seconds per iteration in presence of two covariates
and about 0.12 seconds in presence of four covariates on an 850 MHz Pentium III pro-
cessor, so that we had an over-all computing time of about 220 hours. As start values
we took 8; =0, j =0,....,p, ¢ =0, (2,3, 4,...) = (2,4,6,...), and randomly
drawn values uniformly distributed between ay,_; and ay, for Y*, ¢ = 1,...,2000.
After running the GM-MGMC Gibbs sampler we estimated the parameters by the
posterior means using the iterations 3001 to 15000, and computed estimates of the
relative bias, the standard deviation for the relative bias, the relative MSE, and the
standard deviation for the relative MSE for each parameter in each parameter set.
The estimates of the relative bias (ﬁrel), the relative MSE (@rel), and of the
corresponding standard deviations are

R

B = %2(@—@,
_— 11 - R 2
MSE,, = sz‘”_w) ,

N 1 1 R oo 12
std(Bpe]) = " m Z [¢r - — wBrel] )
r=1

2

—_ 1 1 n 2 oD
Std(MSErel) = E m Z |:(77br - w) - WMSErel} )

r=1

where 1) is the parameter to estimate and @r the posterior mean estimate of 1) for the
rth data set based on 12000 iterations of the GM-MGMC algorithm. Here we used
ﬁrel — ¢)"'B, where B is the common bias estimate, and the independence of the
estimated posterior means for different data sets.
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‘ Parameter set H rel. bias ‘ stdd. of rel. bias ‘ rel. MSE ‘ stdd. of rel. MSE ‘

A -0.0274 0.002932 0.0016 0.000132
B 0.0027 0.002513 0.0006 0.000078
C 0.0063 0.004196 0.0018 0.000206
D 0.0005 0.000048 0.0012 0.000119
E 0.0005 0.000049 0.0016 0.000165
F 0.0144 0.005020 0.0027 0.000393

Table 4: Estimates of the relative bias, relative MSE, and their standard deviations
for the autoregressive parameter ¢.

The autoregressive parameter ¢ is always estimated quite well, as one can see in Table
4. Figures 2 and 3 show the results for the cutpoints and the regression parameters.
The relative bias is between -1% and +1% for the cutpoints as well as for the regres-
sion parameters. The relative MSE is less than 0.001 for most of the parameters in
the parameter sets A to D. That means that on average the estimates are less than
3% away from the true values. The relative MSE is worse for the parameter sets E
and F. The worst value we get for 3, in set E, what was the regression parameter for
the exponential trend. Further we like to mention that all these estimates are similar
if one uses the iterations 5001 to 15000 instead of iterations 3001 to 15000.

Finally in Figure 4 we have a look at the autocorrelations of the chains produced
by the Gibbs sampler with GM-step and the Gibbs sampler without GM-step for
a specific data set from parameter set A. However, a similar behavior of the auto-
correlations was also observed for the other parameter sets (not shown). For the
cutpoints the chains produced by the the standard Gibbs sampler show very slowly
decreasing autocorrelations, even for lag 100 they are mostly above 0.8. In contrast,
the GM-MGMC Gibbs sampler produces chains with much lower autocorrelations
for the cutpoints. The chains for the autoregressive parameter ¢ and the regression
parameters B show the same pattern of autocorrelations in both algorithms.

We conclude that the GM-MGMC Gibbs sampler works very well in most situa-
tions, especially there is no difference in the performance whether the autoregressive
parameter is positive or negative and whether there are categories with very differ-
ent frequencies or not. As expected, the fewer covariates we use, the better is the
estimation. The autocorrelations in the chains produced by the GM-MGMC Gibbs
sampler are explicitly better than those in the chains produced by the standard Gibbs

sampler.
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5 Application to financial data

5.1 General remarks

In this chapter we want to detect and to quantify the influence of covariates informa-
tion on price changes of stocks. For this we took data of the IBM stock traded on Nov
13, 2000 at the NYSE. This is a very frequently traded stock (about 450 transactions
per hour), so that we have enough data even if we do not use data from the opening
and closing period which might exhibit different behavior. The data is taken from
the TAQ2 database of the NYSE, which contains the following covariates:

e TIMEDIFF, the time elapsed between two following transactions in seconds.
e SIZE, the volume of the transaction.
e BOS, the last available bid-offer-spread in USS$.

As response Y; we take the absolute values of the price differences. The price differ-
ences take on only values which are integer multiples of 11—6 US$, and 99.5% of them
lie between —-2 US$ and +- US$. The absolute price differences are a reasonable
quantity to consider, since first exploratory analyses show that longer time differences
between two transactions generally tend to lead to higher price jumps, however partly
upwards and partly downwards: As can be seen from Figure 5, price changes of 13—6
US$ or more upwards or downwards do not occur for time differences of less than 4
seconds. The frequency of higher price changes, upwards and downwards, increases
with the time elapsed since the last transaction. Therefore taking the signed values
would nullify the effect of the time difference. For comparison all computations will
also be made without covariates, that means only with the intercept and the AR(1)
component.

First we want to conduct an exploratory analysis to choose appropriate transforma-
tions of the covariates. However, two problems arise here. The first problem arises
since the response variable is discrete and takes on only few values. Therefore ordi-
nary scatter plots are not informative, especially when the regressor is also discrete
or categorial. Instead, we group the covariate data in intervals of the same length or
use categories and then compute the average response per interval or per category.
Now we can look for a linear (quadratic, logarithmic . ..) relationship.

This relationship, however, is between Y; in Equation (2.1) and X; in Equation (2.2).
Therefore linearity can be destroyed by the (a priori unknown) cutpoints «y, which
is the second problem. Only when the cutpoints are estimated to be nearly equidis-
tant, we have a validation for the chosen transformation of the covariate. Otherwise
one should use other transformations that take into account the different distances

13



price change ‘ category H frequency

03 1 855

+1/16% 2 781

+£2/16% 3 293

< —3/16% and > 3/16% 4 71

Table 5: Absolute price changes: associated categories and observed frequencies.

between the cutpoints. At this point further research will be necessary to develop
iterative methods for choosing appropriate transformations.

5.2 Exploratory analysis

On the Nov 13, 2000, between 10:00:01 am and 2:29:45 pm there was a total of 2001
transactions of the IBM stock at the NYSE. Because we want to consider only the
absolute values of the price changes from one transaction to the next one, we associate
the signed price changes to the response categories as shown in Table 5.

EXPLORATORY ANALYSIS FOR TIMEDIFF

Considering the data it seems to be useful to take the logarithm of TIMEDIFF to
get a nearly linear dependency of the response. As described in Section 5.1, we group
the data in intervals of the same length and compute the average response for each
interval. The result can be seen in Figure 6. The relationship is quite linear. For
small (logarithmic) time differences we have an average response of 1.35, for big ones
an average response of 1.96. The relatively high difference of 1.96 — 1.35 = 0.61 is
a first hint at the significance of this covariate. Therefore we use scored values of
In(TIMEDIFF) as covariate. Values greater than 2.6 were set equal to 2.6.

EXPLORATORY ANALYSIS FOR SIZE

Here we use categories to achieve a linear relationship. A SIZE of less than 500
stocks corresponds to category 0, 500 to 1000 stocks are associated with category
1, and 1000 or more with category 2. A plot of the average response per category
is given in Figure 7. Obviously, the dependency is linear, however the difference
between the maximal and minimal average response is only 1.84 — 1.69 = 0.15. So
this categorized version of SIZE is probably not a significant covariate. Estimations of
the corresponding regression coefficient in a model with In(TIMEDIFF) and category
of SIZE as covariates affirm this result: A 95% posterior credible interval contains
zero. Using other classifications for the categories do not lead to smooth dependencies
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Model A Model B
estimate ‘ std.err. ‘ 90% cred.int. | estimate ‘ std.err. ‘ 90% cred.int.

Qo 1.141 0.034 (1.085,1.197) 1.091 0.080 | (0.961,1.225)
o 2.108 0.059 (2.014,2.208) 2.004 0.113 | (1.822,2.195)
Bo -0.936 0.110 | (-1.117,-0.755) 0.175 0.044 | (0.097,0.247)
b1 2.617 0.409 (1.944,3.283)
Ba 0.340 0.040 (0.274,0.407)
0] 0.034 0.030 | (-0.015,0.083) 0.045 0.040 | (-0.021,0.110)

Table 6: Estimated posterior means and corresponding estimated standard
deviations and 90% posterior credible intervals for parameters in Models A and B.

or have the disadvantage of big unbalances in the frequencies for different categories.
Therefore we do not use the covariate SIZE (or any transformation) in the following

analysis.

EXPLORATORY ANALYSIS FOR BOS

The bid and offer prices provided by the TAQ2 database have different time stamps
than the transactions. We use the last available bid and offer prices for computing
the bid-offer-spread. This covariate takes on values from US$ 0.0625 to US$ 0.75
in steps of US$ 0.0625. However, bid-offer-spreads greater than US$ 0.3125 occur
only 19 times in the 2000 observations. Therefore spreads of greater than US$ 0.3125
were set equal to US$ 0.3125. The average responses for spreads between US$ 0.0625
and US$ 0.3125 can be found in Figure 8. The relationship is quite linear, and the
difference between the maximal and minimal average response is 2.04 — 1.53 = 0.51.

So we expect the covariate BOS to be significant.

5.3 Model estimation and verification

MODEL ESTIMATION
All computations were done for two models specified by:

Model A: Y = Sy + b - BOS, + 3 - In(TIMEDIFF), + ¢Y;",
Model B: Yy = By + oY/,

The estimated posterior means for the cutpoints, the regression coefficients, and the
autoregressive parameter using each of the iterations 5001 to 15000 of the GM-MGMC
Gibbs sampler are given in Table 6 together with their corresponding estimated stan-
dard deviations and 90% credible intervals. In Figure 9 the estimated marginal den-

sities for the parameters in model A are shown, in Figure 10 the estimated marginal
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densities for the parameters in Model B. We conclude that the intercept, the bid-
offer-spread, and In(TIMEDIFF) are highly significant, whereas the autoregressive
component with estimated parameter 0.034 is less significant. This low value means
that the response is mainly dependent of the covariates. Because of the positive sign
of the estimates for ; and (5, and because of the estimate for 3y, which lies clearly
left of the smallest cutpoint a; = 0.0, we expect no price change, if the bid-offer-
spread is small and only few seconds elapse until the next transaction. The higher
the bid-offer-spread is and the more time elapses, the higher is our expected price

change.

MODEL VERIFICATION

We want to compare model A with model B. Running the GM-MGMC Gibbs sam-
pler we get parameter estimates &;, Bi, (52 and }A/t*_u for each iteration 7. For each
i € {5001,...,15000} and each t € {1,...,2000} we can then compute the following

estimated probabilities:

P(Yi =118, 6u, Y7 ,) = ®(ani—XiB,— iV, ) (5.1)
P(Yt =2 | /31'7 b, }/ttl,i) = q’(dZ,z’_X;:@z’_@}Qtu) - cb(dl,i_X;lgi_¢iy;tl,i)(5'2)
P(Yt =3 | /31'7 ¢u dia Yt*—u) = q)(d&i_xgﬂi_@yt:,i) - q)(d%_X;,Bi_¢i§/;t1,i)(5-3)
P(Yt =4 | /Bia ¢z, di, Yttu) =1- q)(d&i_xgﬂi—@yttl,i) (5-4)
Now we set L5000

o 1 o A A N

e PN PY:]{Z ; i,Ai,Yti
i,k 10000 Z.:%)%l ( t | /317 ¢ (8 t—1, )

to get the 1-step-predictions for the response given by
}/\/t = argman:1774pt7k

The frequencies of the predicted categories and the sum of squared errors defined by

2000 R
SSE =Y (Y- V)’
t=1

are shown in Table 7.

In both models categories 3 and 4 were nearly never predicted, a result that was
somehow expected: The estimated value of the highest cutpoint a3 (= 2.108) is
relatively small compared to the noise variance (= 1). Therefore the influence of the
noise to the process is relatively high. Because most responses lie in category 1 and
only few in category 3 or 4, the emergence of these categories is connected to high
values of ;. The noise, however, does not play any role in the predictions, and the
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| Model A | Model B |

true category predicted category
1] 2] 3[ 4] 1] 2] 3[ 4
1 509 | 346 0 0 816 | 39 0 0
2 410 | 371 0 0| 766 15 0 0
3 88 | 205 0 0 283 10 0 0
4 6 64 0 1 64 7 0 0
‘ sum of sq. errors H 1623 H 2551 ‘

Table 7: Frequencies of predicted categories classified by true categories in Models
A and B.

impact of the covariates on the predictions is too small to reach the rarely occurring
categories 3 or 4.

Further we observe that Model A (with covariates) is clearly better than Model B
(without covariates): The tendency of our predictions is quite good in Model A as the
percentage of category-2-predictions raises with increasing true categories. In Model
B, however, nearly always category 1 is predicted independent of the true category.
Further the overall sums of squared errors show the superiority of Model A.

We like to note that the computation of these 1-step-predictions is very computer
intensive. A first approximation however can be gotten by using the posterior mean
estimates o, B, ¢, and 7:71 to compute probability estimates P;; = ls(Yt =k |
@,B,9,Y, ) where P is defined similarly to (5.1) to (5.4) and finally to set ?t =
argmaxkzlwllﬁt’k. Computations show that one gets hardly worse predictions if one
uses this approximation.

5.4 Predictions

We are now interested in fast predictions based on posterior mean estimates for
a, 3, ¢, and Y* which date back up to one hour, and based on the current values of
the covariates. For this we use the approximation approach mentioned in Section 5.3.
In particular, we split our data in different sections. The data of one fixed section
contains only the response and covariates information from %,,;, to t,,.,;. Employing
the GM-MGMC Gibbs sampler and using again its iterations 3001 to 15000 we com-
pute the posterior mean estimates @, 8, ¢, and 7;(“3 for this fixed data section from

tmin 1O tmas. Afterwards, we want to make predictions for Y;, . .,, n > 1. For this
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purpose we first compute estimates ?{;aﬁn for Y;* .., n>1, given by

N L , o .
}/tm‘“”—i_l T Xtmaw+1 ’6 + ¢ thaac

. . , . S~

}/tmaz+n T Xtmaz+n /6 + ¢ thmaernfl? n Z 2

Similar to Section 5.3 we get the following probability estimates for k € 1,..., K (set

@y = —o0 and g = o0):

ls(nmaw+1 - k | a) B? 67 7':

maz) ®(@ — X8~ 0Y,,.,) ~
~®(@ 1~ X}, 1B -0V,
P(Vipurin =k [ @8,6,Y 1 1) = @@ =X B—0Y  n1)—
~ (@1 = X B = OV nt)s 1> 2.
That leads to the predictions

}/}vtmaz+n = argmaxkzl,,ﬁlp(mmaz‘i‘n = k | . ‘)7 n Z 1

We computed these predictions for different combinations of t,,;, and %,,,, and for
n=1,...,500. To have the possibility to set %,,,, = 2000 we took the data of further
500 transactions between 2:29 pm and 3:26 pm on Nov 13, 2000. The corresponding
frequencies classified by predicted and true categories are given in Table 8.

Because of the small values of the estimated ¢, the predictions in Model B depend
mainly on the intercept. Therefore nearly always the same category was predicted in
each subtable for this model. Except for the data section {t,;,;, = 1,..., t;pae = 500},
where the sum of squared errors is nearly the same, model A is clearly better than
model B.

We repeated all computations in Sections 5.3 and 5.4 also with a model containing
the covariates In(TIMEDIFF), BOS, and, in addition, with the interaction of these
both (results not shown). However, this did not lead to a better fit to the data.

In addition, the computations were also be made for the direction of the price
change as response with categories 1=down, 2=no change, and 3=up. The covariates
TIMEDIFF, BOS and SIZE were all non-significant, the estimate for the autoregres-
sive parameter, however, was about -0.31. This affirms the conjecture of a negative
autocorrelation of lag 1 that appears immediately when looking on the stock prices:
Very often a negative price change is followed by a positive one and vice versa.

6 Summary and discussion

In Chapter 2 we introduced a new threshold model for discrete-valued time series,
where we assumed the existence of a latent process that includes both covariates and
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tmin = ]-; tmaw = 2000 ||

Model A || Model B

true category

predicted category

1] 2 | 3 ] 4 1] 2 | 3 4
1 118 | 100 0 0 218 0 0 0
2 116 86 0 0 202 0 0 0
3 16 47 0 0 63 0 0 0
4 2 15 0 0 17 0 0 0
| sum of sq. errors | 405 I 607 |
| tmin = 1, tae = 500 || Model A || Model B |
true category predicted category
1] 2 | 3 ] 4 1] 2 | 3 4
1 98 | 130 0 0 0| 228 0 0
2 57 | 129 0 0 1| 185 0 0
3 18 48 0 0 0 66 0 0
4 0 20 0 0 0 20 0 0
| sum of sq. errors | 387 I 375 |
| tmin = D01, tiee = 1000 || Model A || Model B |
true category predicted category
1] 2 | 3 ] 4] 1] 2 | 3 4
1 129 86 0 0 215 0 0 0
2 105 | 100 0 0 205 0 0 0
3 22 51 0 0 73 0 0 0
4 1 6 0 0 7 0 0 0
| sum of sq. errors || 363 || 960 |
| tmin = 1001, e, = 1500 || Model A || Model B |
true category predicted category
1] 2] 3] 4] 1] 2] 3] 4
1 120 98 0 0 218 0 0 0
2 94 87 0 0 181 0 0 0
3 32 49 0 0 81 0 0 0
4 3 17 0 0 20 0 0 0
| sum of sq. errors || 464 || 685 |
| tmin = 1501, t14. = 2000 || Model A || Model B |
true category predicted category
1] 2 | 3 ] 4 1] 2 | 3 4
1 153 65 0 0 218 0 0 0
2 146 56 0 0 202 0 0 0
3 28 35 0 0 63 0 0 0
4 9 8 0 0 17 0 0 0
| sum of sq. errors || 471 || 607 |

Table 8: Frequencies classified by predicted and true categories for different sections

of the data.
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an autoregressive component. The standard Gibbs sampler for the estimation of the
parameters in this model shows an extremely slow convergence behavior in the pro-
duced chains. Therefore we developed a new GM-MGMC Gibbs sampler, using a
so-called partial scale transformation group, whose elements operate on the random
samples of the interesting posterior distribution. In contrast to the standard Gibbs
sampler, this MG-MGMC Gibbs sampler shows a very satisfying behavior in most
cases, which is supported through the results presented in Section 4. Finally we used
the new Gibbs sampler to detect and to quantify significant covariates for the price
development of the IBM stock. For the absolute values of the price changes mainly
the bid-offer-spread and the logarithm of the elapsed time between two following
transactions are important covariates.

Of course, other applications of the model are possible. For example, one could think
about pain patients where the feeling of pain is measured on an ordinal scale, and
where besides an autoregressive structure some covariates are supposed to influence
the feeling of the patients.

We plan to extend the model in the direction that temporal effects as opening and
closing periods are covered. Further, one could drop the assumption that the variance
of the noise is constant. Then, of course, one will have to find again a method that
guarantees an acceptable convergence of the Gibbs sampler. In addition, we would like
to cover other time dependence structures as arising for example in stochastic volatil-
ity models. See for example Taylor (1994), Shephard (1996), or Ghysels, Harvey, and
Renault (1996) for a discussion of these models. Chib, Nardari, and Shephard (2002)
considered MCMC algorithms for SV models with real valued response.
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Figure 1: Generating densities for §;X;;, 7 = 1,2, in the parameter sets A to D,
densities for the linear predictor X}8 and the error component ; ~ N(0,1).
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