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Abstract

In this paper, we analyse the causes of under five mortality in Zambia,
with a particular emphasis on assessing possible time-variations in the ef-
fects of covariates, i.e. whether the effects of certain covariates vary with
the age of the child. The analysis is based on micro data from the 1992 De-
mographic and health Survey. Employing a Bayesian dynamic logit model
for discrete time survival data and Markov-Chain Monte Carlo methods, we
find that there are several variables, including the age of the mother and
the breastfeeding duration whose effects exhibit distinct age-dependencies.
In the case of breastfeeding, this age dependency is intimately linked with
the reasons for stopping breastfeeding. Incorporating such age dependencies
greatly improves the explanatory power of the model and yields new insights
on the differential role of covariates on child survival.

Key words: Child Mortality, Dynamic Survival Models, Bayesian Model Compar-

ison, Discrete Failure Time.



1 Introduction

Mortality and its converse indicator, longevity or life expectancy, are among the

most important measures of well-being and development in poor countries (Sen,

1998). Since child mortality has an overwhelming influence on life expectancy, it

is particularly important to analyse the determinants of child mortality in poor

countries. The general medical definition distinguishes mortality of a child with

respect to the child’s age: Death within the first week of life is included with peri-

natal mortality (which also includes late foetal mortality) and death within the

first month is referred to as neonatal mortality. Since peri- and neonatal mortal-

ity is heavily influenced by prematurity, fatal genetic conditions of the foetus, and

problems associated with delivery, analysis of mortality often separate between the

determinants of this type of mortality and mortality after the first month, which

is mostly related to socio-economic and health conditions of the household and the

child which will be the focus of the analysis here (e.g. Waldron, 1998). It is pos-

sible to analyse the determinants of child mortality at various levels of causality

(Mosley and Chen, 1984). The biomedical and epidemiological literature typi-

cally focuses on the immediate determinants of child mortality, in particular the

impact of various diseases and weakened resistance. In contrast, socio-economic

analyses of child mortality are usually focused on underlying determinants of child

mortality that make children more vulnerable to the attack of various diseases.

These determinants usually involve the education of the parents, the income or

wealth situation of the household, access to water and sanitation services and ac-

cess to health services. Sometimes, analysts also examine intermediate causes of

child mortality that lie between the underlying socio-economic determinants and

the immediate factors. Such variables typically include maternal factors such as

birth spacing or maternal age at birth, environmental contamination, nutritional

deficiency, and care practices (Mosley and Chen, 1984). The precise separation

between underlying and intermediate factors is, however, not always very precise

as some variables might be proxies of either (Schultz, 1984; Klasen, 1999).

In this study we will investigate the underlying and proximate determinants of

child mortality in Zambia in 1992 excluding neonatal mortality. We will jointly

consider socio-economic factors as well as maternal, environmental, and nutrition-

related issues. The analysis is based on the 1992 Demographic and Health Surveys
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in which for a representative sample of women from Zambia data was collected on

the monthly survival times of their children.

Apart from this question of the nature of the causal chain, there are question con-

cerning possible time-variations in the effects of the socio-economic determinants

of child mortality. In particular, there are good reasons to believe that some de-

terminants of child mortality should have a larger impact in the early phase of

life. Breastfeeding is likely to have a different impact on mortality in different life

periods. In particular, while there is strong biomedical evidence that exclusive

breastfeeding in the first months of life lowers child mortality (WHO,1995), the

importance of breastfeeding is less clear in later months, particularly after the child

has reached the age of one year. Such time-variations are typically modelled using

piecewise fits based on interaction terms with time (e.g. Guilkey and Riphahn,

1997). But this procedure has many disadvantages. First it is discontinuous and

depends on a pre-set partitioning of the time axis where finer partitioning increases

the flexibility of the fit but at the same time uses up a great number of degrees

of freedom. Moreover, this method can be quite unreliable if there are only a few

observations or events. It is therefore preferable to model these dynamic effects

smoothly without being too data-intensive.

In this paper, we use discrete-time survival models (see Fahrmeir and Tutz, 2001,

ch.9), with months as time units, for a refined analysis of the causes of child mortal-

ity. Such an approach can make considerably more efficient use of the information

contained in the data. In particular, we can model and estimate in a flexible way

non-linear and time-varying patterns of the baseline hazard and of covariate effects,

in addition to usual fixed effects of covariates. Inference for such dynamic discrete-

time survival models is fully Bayesian and uses MCMC techniques as in Fahrmeir

and Knorr-Held (1997) and Fahrmeir and Lang (2001). For model selection and

validation Bayesian model criteria are employed, including the Bayes factors, the

posterior deviance, and the Deviance Information criterion (Spiegelhalter et al.,

2002).

The paper is organised as follows. Section 2 provides a outline of the study and a
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descriptive summary of the data. Section 3 briefly outlines dynamic discrete-time

survival models and inferential methods used in the analysis. Results are discussed

in Section 4. Finally in Section 5 we draft conclusions and point out some direc-

tions for future research.

2 The Study

2.1 Zambia

Zambia is a low income developing country in Southern Africa, belonging to the

ten poorest countries in the world. While it was one of the richer African coun-

tries in the 1960s, largely related to its great mineral wealth (especially copper),

the economy stagnated and regressed throughout most of the 1970s and 1980s,

largely as a result of falling copper prices, economic mismanagement, and the im-

pact of subsequent austerity packages by the IMF and the World Bank. As a

result, poverty in Zambia has increased considerably so that by 1996, 72.6% of

the population was living on less than $1 per capita per day (World Bank, 2000).

Child mortality rose throughout the 1980s and early 1990s. This deterioration in

mortality was reinforced by the onset of the AIDS epidemic in the country which

increased mortality in all age groups, particularly since the mid-1990s.

2.2 The Data

The analysis of child mortality is based on data from the 1992 Demographic and

Health Survey (DHS) for Zambia. The DHS program is funded by United States

Agency for International Development to collect population, health, and nutrition

data from developing countries and is implemented by Macro International Inc.

in conjunction with a local institutional partner. For the survey a nationally

representative sample of women in reproductive ages (15-49) is interviewed using a

household questionnaire and a women’s questionnaire. The questionnaires consist
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of different sections including respondent basic data such as age and educational

achievements, type of the district and condition of residence, data on reproduction

and birth history with child’s individual characteristics, health history of the child,

information on maternity and feeding of the child, and more. (For more details

on the data see http://www.measuredhs.com/.) In order to undertake survival

modelling a data set was constructed from a child individual recode data file,

where each record represents a child and consists of survival information and the

values of the explanatory covariates.

Our analysis focuses on child mortality until age five excluding peri- and neonatal

mortality. Individual data records were available for 5965 children that were born

within the last five years before interview and had survived their first month of

life. 633 children had died. The Kaplan-Meier estimate for the survival of these

children is given in Figure 1. It shows a 5-years mortality rate of nearly 14%,

where most of the deaths occur within the first two years of life. (Note that here,

as well as in the following KM-plots, the y-axis is cut to the interval [0.7, 1].)

2.3 Coding of the Covariates

From the basic variables of the DHS data a set of covariates is constructed and

their values are grouped to form categorical and binary coded factors. Some of

them contain missing values. Table 1 gives a short description of these constructed

covariates, their coding, and their distribution. Child and birth specific informa-

tion is given by the covariates gender, birth order and the preceding birth interval,

where birth order is reduced to a binary factor, indicating whether the child is first

born. The preceding birth interval is calculated as months between the birth of

the child and the previous birth the mother had and is naturally only defined for

children not first born. A ‘short’ birth interval is defined to be no longer than two

years. Maternal information includes the age of the mother at birth, calculated

from the DHS data on the date of birth of the mother and the date of birth of

the child and coded in three categories. For the highest educational attainment

of the mother we distinguish no education or incomplete/complete primary school

versus higher attainment than primary school. Also the size of the household is
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Figure 1: Overall survival of children younger than five in Zambia (excluding peri-

and neonatal mortality).
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Table 1: Factors analysed in the child mortality study

factor frequency coding interpretation

SEX 3003 (50.3%) 0: female gender

2962 (49.7%) 1: male

BFIRST 4669 (78.3%) 0: no whether the child

1296 (21.7%) 1: yes is first born

BIRTHIN 1035 (22.2%) 0: ≤ 24 months preceding

3628 (77.8%) 1: > 24 months birth interval

MAGE 1780 (28.8%) 0: ≤ 21 age of mother

3486 (58.4%) 1: 22-35 at birth

699 (11.7%) 2: > 35

MEDUCATION 4822 (80.9%) 0: ≤ primary educational

1141 (19.1%) 1: > primary attainment

HHSIZE 1177 (19.7%) 0: 1 - 4 total number

1522 (25.5%) 1: 5 - 6 of household members

3266 (54.8%) 2: 7 -

URBAN 3393 (56.9%) 0: rural type of district

2572 (43.1%) 1: urban of residence

WATER 2835 (47.7%) 0: residence/tap source of

3108 (52.3%) 1: else water

HOUSE 3104 (52.3%) 0: wood/sand material

2836 (47.7%) 1: higher quality of the floor

ELECTRICITY 4776 (80.3%) 0: no electricity

1170 (19.7%) 1: yes

BREASTF 0: no currently breastfeeding

1: yes (time-dependent)
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taken into account, which is recorded for the time of the interview and is split into

three categories. Information on the type and condition of the residence comprises

the type of district by distinguishing rural and urban, whether the household has

electricity and the main material of the floor. The major source of drinking wa-

ter is divided with respect to its quality, where water access in the residence or

from public tab is assumed have controlled quality, while water from a public well,

springs, rivers or streams, ponds or lakes or rainwater is not controlled. Water

from tanker trucks is also added to the later category since, even if it is controlled,

it is usually rather costly and scarce.

Some covariates naturally have special characteristics which must be taken into

account when fitting the data. This applies for the duration of breastfeeding,

which is given in month. It is an internal covariate that is observed only as long as

a child is alive. It is also time-dependent, in contrast to most of the other variables

which are fixed in time. In consequence, the covariate ‘duration of breastfeeding’

carries survival information of the corresponding child as it can never exceed its

survival time. Therefore this covariate cannot be included into the model as a

fixed covariate, but its time dependent and survival-dependent nature must be

recognised. It is described in a binary covariate process (BREASTF), which has

the value one during the months the child was breastfed and zero when the child

was fed differently.1

The Kaplan-Meier estimate of Figure 2 gives an impression of the distribution of

duration of breastfeeding within the collective. Here, an observation is censored

when duration of breastfeeding ended due to death or censoring. It shows that the

majority of women would breastfeed their children about one to two years.

1To give an example, think of a child that survived only 5 months but was breastfed during
all this time. Duration of breastfeeding is then equal to 5. The corresponding covariate process
is equal 1 for all five month and not defined later. In contrary, if a mother stopped breastfeeding
after 5 months for some other reasons, e.g. illness, duration of breastfeeding is equal to 5 as well,
while the covariate process is equal 1 for five month and equal zero for the following month until
end of observation.
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Figure 2: Duration of breastfeeding (corrected for break-off by death or censoring

of the child).

8



3 Dynamic Discrete-Time Survival Models

Many studies of child mortality simply use a static logit framework, thus mod-

elling the probability of being alive at a certain age (e.g. Prevost, 1996; Mohamed

et al. 1998). While this is partly driven by the lack of time-varying covariates,

it is nevertheless problematic as it fails to model the precise timing of death and

thus wastes information available in most cross-sectional micro data sets. More-

over, it does not allow to include internal covariates such as breastfeeding. Many

data sets, including the DHS used here, collect a large number of retrospective

information for each child so that it is possible to model a dynamic survival model

with time-varying covariates.

For the data set at hand, survival time is not recorded continuously but is only

known to lie within a month or, generally, a time interval. Data of this kind are

known as interval censored. Since many ties occur, these data cause problems

when continuous-time models are used. Instead of continuous time one observes

the discrete time T with values t = 1, . . . , k, where T = t denotes death in month

or interval t, and k is the last observation interval. In addition to survival time T , a

sequence of possibly time-varying covariate vectors xt = (xt1, . . . , xtk) is observed.

Let x(t) = (x1, . . . , xt) denote the history of covariates up to month t. The discrete

hazard function is defined as the conditional probability

λ(t|x(t)) = P (T = t|T ≥ t, x(t))

for death in month t, given survival up to this month and the history of covariates.

Since our data set comprises children that have died within the preceding five

years, as well as children still alive, we recorded for each child survival information

by (Ti, δi), i = 1, . . . , 5965, where Ti ∈ {1, . . . , 60} denotes its observation time

(measured in months), and δi is the indicator of survival, which takes the value 1

if child i had died, and zero if it is still alive (i.e. censored). For formal reasons

we assume that censoring is non-informative and occurs at the end of the interval,

which implies that the set of children under risk at age t also includes children

who are censored at t. Thus, for δi = 1, Ti is the age of the child at death, and for

δi = 0, Ti is the current age of the child at interview.
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Discrete-time survival models can be cast into the framework of binary regression

models by defining binary event indicators yi(t), t = 1, . . . , Ti, with

yi(t) =

{
0, t < Ti

δi, t = Ti.

The hazard function for child i can then be written as a binary response model

P (yi(t) = 1|xi(t)) = h(ηi(t)) (1)

where xi(t) are the covariate processes for child i, h is an appropriate response or

link function, and the predictor ηi(t) is a function of the covariates.

Note that breastfeeding is an internal covariate, i.e. its path may carry information

on survival because it can be observed only as long as a child is alive. Fahrmeir

und Wagenpfeil (1996) and Fahrmeir and Tutz (2001, ch.9) give formal conditions,

which guarantee that internal covariates are non-informative for the discrete-time

survival process. Informally, these conditions can be described as follows: For

each t, the joint distribution of the risk set Rt of children alive at month t and the

covariates xi(t), i ∈ Rt, given past risk sets, covariates and observed deaths, does

not depend on the parameters contained in the predictor ηi(t− 1). This seems to

be a plausible assumption in our application.

Common choices for discrete survival models of the form (1) are the grouped

Cox model and logit or probit models. In this paper, we use a logit form. The

conventional model is then

P (yi(t) = 1|xi(t)) =
exp(ηi(t))

1 + exp(ηi(t))

with partially linear predictor

ηi(t) = β0(t) + x′itβ . (2)

The baseline hazard effect β0(t), t = 1, 2, . . . is an unknown, usually non-linear

function of t to be estimated from the data. Treating the effect β0(t), t = 1, 2, . . .

as separate parameters usually gives either very unstable estimates or may even

lead to divergence of the estimation procedure. In a purely parametric framework

the baseline hazard is therefore often modelled by a few dummy variables dividing
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the time-axis t into a number of segments or by some low order polynomial. In

general it is difficult to correctly specify such parametric functional forms for the

baseline effects in advance. Non-parametric modelling based on some qualitative

smoothness restriction offer a more flexible solution to explore unknown dynamic

patterns in β0. Then (2) can be regarded as the basic form of a semi-parametric

predictor where the effects β of covariates are fixed and time-constant.

In many applications, the restriction to constant covariate effects is not realistic.

Rather, the effect of some covariates may vary over time. Therefore, the predictor

is generalised to

ηi(t) = β0(t) + z′itβ(t) + w′
itγ

where the effect β(t) of the covariates in zit are time-varying, while wit comprises co-

variates with an effect γ that remains constant over time. Also the time-dependent

effect functions β(t) will be modelled non-parametrically.

To estimate smooth effect functions and model parameters, we use a fully Bayesian

approach, as developed in Fahrmeir and Knorr-Held (1997) and Fahrmeir and Lang

(2001). For fixed effect parameters γ we assume diffuse priors. For the dynamic

effect functions, more exactly for the sequence β(t), t = 1, . . . , k of function values,

we assign smoothness priors in form of a second order random walk model

β(t) = 2β(t− 1)− β(t− 2) + u(t),

with i.i.d. Gaussian errors u(t) ∼ N(0, τ 2). The random walk model locally pe-

nalises deviations from straight lines or, equivalently, deviations of second differ-

ences from zero. The variance τ 2 controls the amount of smoothness: the penalty

increases or decreases as the variance becomes smaller or larger, respectively. Thus,

the variance acts as a smoothness parameters. Data driven estimation, jointly with

effect functions and fixed effects is possible by assigning highly dispersed inverse

Gamma priors.

Fully Bayesian inference is based on the posterior distribution of the model pa-

rameters, which is not of known form, however. Therefore, MCMC sampling from

full conditionals for dynamic effect functions, fixed effects and smoothing param-

eters is used for posterior analysis. Details are given for example in Fahrmeir and

Knorr-Held (1997) and Fahrmeir and Lang (2001).
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An essential task of the model building process is the comparison of a set of plau-

sible models, for example to rate the impact of covariates and to assess if their

effects are time-varying or not. The comparison of models intends to select the

model that takes all relevant structure into account while remaining parsimonious.

A model criterion should therefore trade off between goodness of fit and model

complexity.

Consider that comparison is about a set of non-nested hierarchical models

M1(θ), . . . ,Mm(θ), such as described above, where θj comprises the entire set

of parameters of the model Mj. A classical approach to Bayesian model selection

relies on Bayes factors (Jeffreys, 1961). For comparing two models, M0 and M1

say, it is defined by

BF(M) =

∫
L(Y |θ0,M0)π(θ0|M0)∫
L(Y |θ1,M1)π(θ1|M1)

(3)

where π(θj|Mj) denotes the prior specifications made under model Mj and

L(Y |θj,Mj) is the likelihood, i.e. the conditional probability of the data given

the fully specified model. Thus the Bayes factor is the ratio of the marginal like-

lihoods of models M0 and M1 and expresses the weight of evidence for model M0

over model M1. A serious challenge is its computation for complex, hierarchical

models as the integral, i.e. the marginal likelihood, are again intractable, see Han

and Carlin (2001) for a comparative review. We use an approximation of the Bayes

factor via importance sampling from the posterior distribution which is equivalent

to the posterior harmonic mean of the likelihood (Kass and Raftery, 1995) and is

computational feasible also for large data sets as in our application.

Additionally, we routinely employ the Bayesian model deviance, which is defined

as minus twice the log-likelihood (Dempster, 1997), i.e.

D(M) = −2 log L(Y |θ,M) .

For a given set of data the deviance D(M) is a function of the model parameters θ.

Characteristics of its posterior distribution can therefore directly be derived from

the posterior distribution of θ, which is provided by the MCMC output. A central

characteristic is, of course, the posterior mean of the deviance D(M), which is

frequently used to summarise the goodness of fit of a model.

Based on the Bayesian model deviance Spiegelhalter et al. (2001) suggested the
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Deviance Information Criterion DIC

DIC(M) = D(M) + dfM . (4)

Here the posterior mean of the deviance D(M) is penalised by the effective num-

ber of model parameters dfM measuring the complexity of the model, where

dfM = D(M) − D(M̄), and D(M̄) := D(θ̄,M) is the deviance evaluated at

the posterior mean of the model parameters. Like the posterior deviance also the

DIC is easy to compute in a MCMC analysis.

Note that D(M) is the logarithm of the posterior geometric mean of the likelihood

whereas the integrals of the Bayes factor are approximated by the posterior har-

monic means of the likelihood, and so, despite their different origin, the criteria

we determine for model comparison are closely related. A systematic comparison

of the criteria together with a simulation study is given in Berger (2002).
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4 Results of the survival analysis

To get an insight to the data structure, check for possible interactions between the

covariates and explore time-variation in the effect structures we studied different

Kaplan-Meier curves and univariate models in a preliminary analysis. This allows

us to reduce the complexity of the multivariate model building process.

At first sight it seems that gender has no impact on child’s survival. If additionally

interaction with the order of birth is considered the Kaplan-Meier estimates reveal

that generally boys have a higher mortality risk than girls, but for first-borns,

where girls have a higher mortality risk (Figure 3). Overall first borns have higher

mortality than their younger siblings. No relevant interactions between other co-

variates have been found.

To explore which of the covariate effects might vary with the age of the child,
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Figure 3: Child mortality dependent on gender and birth order.
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we fitted univariate dynamic logit models with time-varying covariate effects and

compare them with the corresponding constant estimates. Model comparison is

based on the criteria described above, i.e. the Bayes factor, the posterior mean of

the deviance and the DIC, where smaller values indicate a better fit. We found

the most distinct time-variation for breastfeeding. Also the age of the mother at

birth shows time-variation which should be considered. The dynamic structures of

the other factors are rather weak and their improvement of the fit does not justify

the increased complexity of the model.

Using this information we fitted a multivariate model (M∗) jointly evaluating all

covariates, the interaction of gender and birth order (SEX*BFIRST) and time-

varying effects for BREASTF and MAGE.

Baseline effect
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Figure 4: Dynamic effect for the multivariate model.

The results for the constant (fixed) effects are summarised in Table 2 where the
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posterior mean of the parameters expresses the impact of the covariate. Addi-

tionally the posterior standard deviation is given, together with the 10% and 90%

credibility regions enclosing 80% of the posterior sample of the effects. It confirms

the findings from the Kaplan-Meier analysis showing a strong interaction between

birth order and gender. A larger preceding birth interval has a clear negative im-

pact on the survival of children while a higher education of the mother improve

the life expectation of a child. Also children living in a larger household benefit.

The effects of the factors describing the condition of residence and the type of dis-

trict of residence seem to carry partially same information and thus have a smaller

impact. The 10%-90% credibility bands of the effects for the variables URBAN,

HOUSE and WATER even include the zero. In general children living in better

equipped houses such as houses with electricity, have a lower mortality rate.

Table 2: Results for the constant effects from the selected multivariate logit model

factor post. mean Post. StdDev 10% CI 90% CI

BFIRST -0.028 0.149 -0.216 0.161

BIRTHIN -0.290 0.099 -0.419 -0.165

SEX 0.104 0.092 -0.015 0.219

SEX*BFIRST -0.313 0.180 -0.539 -0.082

DMEDUCATION -0.167 0.122 -0.325 -0.014

HHSIZE D1 -0.662 0.104 -0.799 -0.535

HHSIZE D2 -0.963 0.096 -1.086 -0.842

URBAN 0.151 0.126 -0.007 0.319

WATER 0.093 0.136 -0.077 0.267

HOUSE 0.001 0.125 -0.158 0.158

ELECTRICITY -0.289 0.139 -0.472 -0.113

The development of the effects over the age of the child are displayed in Figure 4

together with the 80% credibility region. The estimated baseline effect declined

over time with a steep descent within the first year. The peaks jutting at month

24, 36 and 48 are caused by heaping of children reported to have died at this age,

a typical misrepresentation in these kind of surveys. Controlling for this heaping

through a flexible baseline is a further advantage of our approach as it is likely

to reduce biases of the coefficients on the fixed and time-varying effects. For the
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covariates we only display the effect for the first 36 months since later the cred-

ibility intervals are too wide to provide any reliable information on the dynamic

structure. The figure shows the distinct time-variation for breastfeeding causing a

high risk of mortality when not done in the first year but having no impact when

stopped within the second year. This goes along with the general breastfeeding

conduct of mothers in Zambia, which was illustrated in Figure 2. As described

before, break-off by death or censoring of the child does not influence this result.

The effect of age of the mother indicates that the benefits of an older mother are

rather relevant in the second year, probably after breastfeeding is stopped. For

comparison we also fit a model where all covariate effects are fixed constant (M0)

and only the baseline effect is allowed to smoothly vary over time, as well as a sim-

ple parametric model (M1) which captures possible time-variations of the baseline

effect by a piecewise fit, that is by including five interaction terms with time. Fig-

ure 5 shows the values for the Bayesian model criteria for these models, i.e. minus

twice the logarithm of the Bayes Factor respectively the marginal likelihood, the

posterior mean of the deviance and the DIC. It becomes obvious that the data

contains dynamic patterns which cannot be adequately captured by a piecewise

baseline effect.

To validate the dynamic effects of the covariates we further fitted models, where

in turn the effects of BREASTFT and MAGE are fixed constant (models M2 and

M3). Their fits are also shown in Figure 5. Clearly all criteria support the dy-

namic effects for breastfeeding. Also the dynamic effect for the age of the mother

improves the goodness of fit, although the difference in DIC(M∗) and DIC(M3)

is very small.
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Figure 5: Comparison of different multivariate models. M0 : β0(t) + β′w +

β BREASTF +β MAGE. M1 : β0(Dummy)+β′w +β BREASTF +β MAGE.

M∗ : β′w + β(t)BREASTF + β(t)MAGE. M2 : β′w + β BREASTF +

β(t)MAGE. M3 : β′w + β(t)BREASTF + β MAGE.
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4.1 Reasons for stopping breastfeeding
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Figure 6: Duration of breastfeeding dependent on reasons for stopping breastfeed-

ing.

The strongest effect on survival shows breastfeeding, which induces a very high

risk of mortality when stopped already within the first year of life. One reason

might be the low quality of substituting nutrition. However, we would then expect

that the quality of water shows the converse time-structure, which is not the case

here. Another explanation becomes apparent when studying the reasons for which

breastfeeding was stopped within the first year. Figure 6 illustrates the dependence

of duration of breastfeeding on the reasons for stopping, distinguishing illness and

weakness of the mother or the child from innocuous reasons such as weaning age,

pregnancy, working ect. . It shows, that if not due to illness or weakness, most

women in Zambia tend to breastfeed longer than one year. We would expect that

life expectancy of the child is reduced when breastfeeding was stopped due to
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Figure 7: Child mortality dependent on reasons for stopping breastfeeding.

illness or weakness compared to other stopping reasons (see Figure 7).

As a consequence we included the stopping reasons in the selected model M∗

from above. Similar to BREASTFT we constructed a time-dependent covariate

STOPR that is zero as long as the child is breastfed and changes to one in the

month before breastfeeding was stopped due to illness or weakness. For all other

children it is zero throughout observation time. Hence STOPR is not identical

to an interaction between a fixed covariate representing stopping reason and the

time-dependent covariate BREASTFT, since in the last moth of breastfeeding both

covariates have value one when illness or weakness occurred (see Figure 8).

Figure 9 shows the resulting dynamic effects of the covariates of this extended

model where the effect of the stopping reasons is allowed to vary over time (model

M4). The effect of breastfeeding becomes much flatter revealing that the high risk

of stopping breastfeeding within the first months can mostly be explained by the
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Figure 8: Construction of the time-dependent covariates BREASTF ( —— ) and

STOPR ( - - - - ), when assuming that at month 6 breastfeeding was stopped due

to illness or weakness and death occurred at month 9.

stopping reasons. This is of course not achieved when STOPR is included with

a fixed effect (model M5, effects not shown). Figure 10 shows the model criteria

for those models and model M∗. All criteria are in agreement that the reasons for

stopping breastfeeding carry important information and should be included with a

time-varying effect. However, STOPR obviously cannot explain all time-variation

of the effect of breastfeeding, since the criteria shown in Figure 10 still reject a

fixed effect for BREASTFT (model M6). The constant effects of the remaining

parameters are unaffected by the inclusion of STOPR, and therefore not shown.
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Figure 9: Dynamic effect for the multivariate model including STOPR.
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Figure 10: Model comparison for reasons for stopping breastfeeding. M∗ : β′w +

β(t)BREASTF +β(t)MAGE. M4 : M∗+β(t) STOPR. M5 : M∗+β STOPR.

M6 : β′w + β(t)MAGE + β(t)STOPR + β BREASTF .
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5 Discussion

The analysis examines the fixed and time-varying impacts of socio-economic, ma-

ternal, environmental and nutrition-related factors on child mortality in Zambia

using a dynamic logit model. Our modelling approach yields a much better fit

than traditional modelling approaches with fixed effects and time-variation being

modelled using dummy variables. The comparison of this quite large number of

univariate and multivariate models of such a huge data set was only possible as

all fit criteria can be derived as a ‘by-product’ from the MCMC sampling of the

posterior distribution of the parameters and hence do not demand much additional

computation. Thus it is computationally possible to evaluate a large class of non-

nested models using very large data sets.

Apart from illustrating the opportunities of such a modelling approach, the ap-

plication also generates some new insights which will be discussed presently. The

substantive results support some known findings, for example about the higher

mortality of first-borns, about the importance of the socioeconomic conditions of

the household (proxied by urbanization, housing quality, and electricity access),

the importance of mother’s age and education, and the harmful effects of short

birth-intervals (e.g. Mosley and Chen, 1984; Guilkey and Riphahn, 1998, Schultz,

1984).

We report two unusual findings, one related to household size and the other related

to gender differences in mortality. In larger households, mortality is significantly

lower. Given that we consider household size (rather than family size) and given

that households in Zambia often include relatives beyond the nuclear family or

even non-relatives, this effect may be a reflection of well-endowed households at-

tracting additional members. Also, there may be the intertemporal selection effect

that small households may be small due to past mortality.

Second, while boys suffer overall from higher mortality, girls do badly among the

first-borns. The first finding is consistent with boys higher susceptibility to mortal-

ity, particularly within the first year (see e.g. Waldron, 1998) combined with little

evidence of gender bias in any direction in Sub Saharan African countries (Klasen,
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1996). The particularly poor state of first-born girls is a new finding and merits

further investigation. It may not show up in other studies due to the fact that

boys have much higher neonatal mortality which would lead to higher mortality

of all birth orders (e.g. Arnold, 1997). Since we exclude neonatal mortality, the

relative disadvantage of first-born females only becomes apparent. The causes for

it remain to be explored further in future work.

Regarding the time-varying effects of covariates, breastfeeding and maternal age

play an important role. The benefit of greater maternal age at birth are particu-

larly apparent in the second year of life. This is consistent with expectations as

care and nutrition decisions of the mother play an increasing role in determining

mortality when breast-feeding is ceased in the second year. Here the experience

and maturity that comes with age appears to have a significant impact.

The most important substantive finding of the paper is the dynamic effect of breast-

feeding. When just looking at breastfeeding in our dynamic setting, we reproduce

the known result that it reduces mortality, particularly in the first nine months of

life (e.g. WHO, 1995). We also find that breastfeeding beyond one year of age has

little impact on mortality. Very long breastfeeding (beyond 30 months) appears

to be associated with even slightly higher mortality, which may be due to the fact

that only very poor mothers with little alternative nutrition on offer would breast-

feed this long (e.g. Klasen, 1999).

More importantly, we show that care must be exercised when interpreting such a

finding. When we consider the reasons for stopping to breastfeed, we find that the

effect of breastfeeding is intimately related to the reasons for stopping it. Many

mothers stop breastfeeding due to illness and weakness of them or their child and

they are the ones who then suffer from elevated childhood mortality rates.

Three important message emanate from this. First, an important policy impli-

cation of this finding is that health (and possibly nutrition) interventions should

particularly be targeted towards women who are suffering from illness and weak-

ness to allow them to continue breastfeeding. Second, the large effects of the

benefits in breastfeeding (e.g. Guilkey and Riphahn, 1998) are hard to interpret

without considering the reasons for stopping breastfeeding. Third, once we have

controlled for the reasons for stopping to breastfeed, it is not possible to make a
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firm judgement about the benefits of breastfeeding in the first year as virtually all

women continue to breastfeed beyond that time, unless forced by illness to stop.

We thus show that our modelling approach not only generates a superior fit of the

data but also generates a number of important and policy-relevant findings on the

determinants of child mortality in a poor developing country.
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