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Abstract:

Discrete survival models have been extended in several ways. More flexible mod-
els are obtained by including time-varying coefficients and covariates which deter-
mine the hazard rate in an additive but not further specified form. In this paper
a general model is considered which comprises both types of covariate effects.
An additional extension is the incorporation of smooth interaction between time
and covariates. Thus in the linear predictor smooth effects of covariates which
may vary across time are allowed. It is shown how simple duration models pro-
duce artefacts which may be avoided by flexible models. For the general model
which includes parametric terms, time-varying coefficients in parametric terms
and time-varying smooth effects estimation procedures are derived which are
based on the regularized expansion of smooth effects in basis functions.
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1 Introduction

Statistical modelling of survival data has some tradition of trying to avoid mis- or overin-
terpretation of estimated effects or estimated hazard functions. Much of this effort has been
dedicated to the incorporation of frailties (e.g. Vaupel et al., 1979 or more recently Keiding
et al., 1997, Henderson & Oman, 1999). In the following we will focus on alternatives which
are connected to more flexible models, e.g. the incorporation of time dependent effects.
Simple models as well as flexible models may produce artifacts but it will be shown that
adequate flexible models are helpful to avoid artifacts.

Since in applications duration or survival time is often measured on a discrete scale we will
consider flexible models of discrete survival and first introduce some basic concepts. The
discrete scale may be due to grouping if failure is known to occur within certain intervals
[a0, a1), . . . , [aq−1, aq), [aq,∞) where aq often denotes the final follow up. Alternatively, time
T may be measured directly on a discrete scale, e.g. in days, weeks or months. The corre-
sponding discrete hazard function is given as the conditional probability

λ(t|x) = P (T = t|T ≥ t, x)

where T = t denotes failure at time t (in interval [at−1, at) if grouping is assumed). Models
for discrete time have the common form

λ(t|xi) = h(β0t + x′
itβ) (1)

where h : R → [0, 1] is a fixed response function. A model of type (1) may be derived
from the (continuous time) proportional hazards model yielding the link function h(u) =
1 − exp(− exp(u)) (e.g. Kalbfleisch & Prentice, 1980). Cox (1972) considered the logistic
link h(u) = exp(u)/(1 + exp(u)) which yields quite similar results for short intervals (see
also Arjas & Haara, 1987 and Ryu, 1994). The analogue to the unspecified baseline hazard
which is familiar from Cox’s proportional hazard model is found in the parameters β01, . . . , β0q

which determine the discrete baseline hazard.

In model (1) the parameterization of the effect of covariates is rather restrictive. A first step
to more flexible modelling is to replace the linear predictor ηit = β0t + x′

iβ by

ηit = β0t + x′
itβt (2)

yielding
λ(t|ηit) = h(ηit)

where for simplicity the predictor is given in the condition. The time dependence of βt

allows the effects of covariates to vary across time. For example, in treatment studies the
impact of the treatment may vanish after some time. Models of this type may be seen
as varying-coefficient models (Hastie & Tibshirani, 1993) where the effect of covariates is
modified by an additional variable, the so-called effect modifier. In the present case the
effect-modifier is time. Estimation procedures for varying coefficients models that are based
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Figure 1: Mean estimate of β0t (left panel) and βt (scaled by covariate mean) (right panel) when
fitting the model ηit = β0t + xiβt to data generated from ηit = x2

i (mean of estimates: solid line,
empirical confidence bands: dashed lines, mean of estimated confidence bands: dash-dot lines).

on penalization are given in Hastie & Tibshirani (1993). Alternatively localizing techniques
may be used. The general framework of localizing approaches is extensively treated in Fan &
Gijbels (1996). For varying coefficients modelling, also in the context of survival modelling,
see Kauermann & Tutz (2000, 2001). Bayesian modelling approaches are found in Fahrmeir
& Wagenpfeil (1996).

Models with time-varying coefficients are more flexible by reflecting the variation of effect
strength across time. In particular if the covariate is fixed at time t = 0 one has to expect
vanishing effects (see Verweij & van Houwelingen, 1995 for an example). However, time-
varying effects may also be due to the misspecification of the linkage between response and
covariate. This may be seen from a simple example where the underlying predictor has
the form ηit = x2

i with xi being measured at time t = 0. Figure 1 shows the result if the
varying coefficients model ηit = β0t + xiβt is fitted. It is seen that the estimates β̂0t, β̂t are
strongly misleading. While β̂0t is an increasing function, β̂t is decreasing. Since the linear
term xiβt tries to fit the nonlinear effect x2

i the effect β̂t is larger in the beginning where all
the subjects are in the study but decreases if the subjects with high risk are no longer in the
study. Similar effects have been described for the contious time models by Abrahamowicz
et al. (2002). Figure 2 shows similar effects for the underyling model ηit = (1−xi)

2. In both
cases an analysis allowing for varying coefficients yields misleading effects which are strongly
supported by confidence intervals which suggest that the effects are indeed decreasing or
increasing.

A different approach to achieve more flexibility is to weaken the assumption of linearity by
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Figure 2: Estimate of β0t (left panel) and βt (scaled by covariate mean) (right panel) when fitting
the model ηit = β0t + xiβt to data generated from ηit = (1 − xi)2 (mean of estimates: solid line,
empirical confidence bands: dashed lines, mean of estimated confidence bands: dash-dot lines).

using an additive predictor

ηit = β0t +

S∑
j=1

f(j)(xitj)

where f(j), j = 1, . . . , S are unspecified smooth functions of covariates. Additive modelling
has been investigated e.g. by Hastie & Tibshirani (1990) by use of backfitting estimators,
Linton & Härdle (1996) by integration techniques, whereas Marx & Eilers (1998) and Aerts
et al. (1999) use low-rank smoothers. An application of the latter approach to discrete
survival modelling is found in Eilers (1998). One of the problems of the additive form is
that it is time-independent. So the effect may not vary across time. If effects are vanishing
across time the effect will be estimated with strong bias. In Figure 3 the underlying model
is given by ηit = γtα(xi) where α is a smooth function (Figure 5) and γt is an attenuation
parameter which decreases over time. The fitted model ηit = α(xi) assumes that there is
no damping. It is seen that the effect of xi is hardly recognizable from the estimate (with
smoothing parameters optimized with respect to the Akaike Information Criterion) shown
in Figure 3. The estimated function is a rather flat function and the only feature it shares
with the true function is the decrease for low values of the covariate. The increase for higher
values does not show up in the estimate.

In the following we will consider a model which allows for flexibility in several respects.
The effects of covariates may change across time where the effects may be linear as in
the parametric varying-coefficients model but the effects may also be represented by smooth
functions which show varying intensities across time. The additive model and the parametric
varying-coefficient model are limiting cases of this interaction between covariates and time.
In Section 2 and 3 the model and estimation procedures are outlined. In Section 4 and 5
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Figure 3: Estimate of the smooth function when fitting the model ηit = α(xi) to data generated
from ηit = γtα(xi) (true function: solid line, mean of the estimated functions: dashed line, empirical
confidence bands: dash-dot line)

simulation results and an application to duration time of patients in a psychiatric hospital
are given.

2 The model

The model to be considered in the following is the discrete time survival model (1) with the
generalized predictor for individual i at time t given by

ηit = β0t + x′
itβt +

S∑
j=1

γtjf(j)(zitj) (3)

where x′
it = (xit1, . . . , xitp), z

′
it = (zit1, . . . , zitm) are covariates and β0t, β ′

t = (βt1, . . . , βtp), γtj ,
t = 1, . . . , T , j = 1, . . . , S, are unknown parameters. The essential components as far as the
modelling of covariates is concerned are the linear varying-coefficients components and the
additive component. The varying-coefficients component

ηV,it = x′
itβt

allows that the effects of the x-covariates vary across time. In order to reduce the number of
parameters to be estimated it has to be assumed that βt varies at least in parts smoothly over
time. By considering βt as a function in time the varying-coefficients component becomes
a semiparametric term reflecting the smooth interaction between the x-covariates and time.
Of course in the limiting case one has βtk = β·k, t = 1, . . . , T , and therefore the case of a
fixed effect is enclosed. Thus at least parts of ηV,it may have simple linear parametric form.
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The additive component

ηA,it =
S∑

j=1

γtjf(j)(zitj)

reduces for γtj = 1 to a simple additive term where the effect of the z-variables has the
unspecified functional form f(j). Thus for metrically scaled variables the restrictive linear
form is avoided. However, for γtj = 1 the possibility of an interaction with time is excluded.
If a covariate like age in a therapy study is distinctly nonlinear it has to be assumed that
the effect does not change across time. In ηA,it the interaction between a covariate and
time is captured by introducing the parameters γtj . These parameters modify the effect of
covariate zitj which is given by f(j)(zitj) in the multiplicative form γtjf(j)(zitj). Therefore
the effect of zitj , nonlinear as it may be, is modified by time. If for example γtj decreases,
i.e. γtj > γt+1,j , the γ-parameters act as damping constants which reduce the effect of zitj

across time. Model (3) gains flexibility in the additive part, however in exchange for the cost
of introducing multiplicative components which makes straightforward use of established
estimation procedures impossible. In the general form of ηA,it the parameters γtj and the
functions f(j) are not identifiable. Thus the restriction γ1j = 1, j = 1, . . . , S, is made.

In the following estimation is based on low-rank smoothers. We will consider direct fitting
procedures by using penalized basis functions. The most prominent version of low-rank
smoothers are penalized spines, also known as P-splines, as introduced by Eilers & Marx
(1996). That means the unknown flexible parts of the model are represented as sums of
basis functions. The unknown parts are the unknown functions f(1) . . . , f(S) and the param-
eters β0t, βtk, γtj, k = 1, . . . , p, j = 1, . . . , S, which are considered as functions in time, i.e.
β0(t), βk(t), γj(t). All these functions will be specified as sums of basis functions. Let m
represent any of these functions, then one uses the form

m(x) =

M∑
s=1

αsBs(x)

where Bs(·) are basic functions connected to knots κs. Of course basis functions as well as
the number and location of knots may depend on the function which is fitted. The truncated
power series used by Ruppert & Carroll (1999), Ruppert (2000) have the form

m(x) = α0 + α1x + α2x + . . . αkx
k +

∑
s

αk+j(x − κs)
k
+

where (u)k
+ = ukI(u ≥ 0). In the following mostly B-splines will be used as basis functions.

Eilers & Marx (1996) give many reasons for prefering B-splines. We found them to be
numerically more stable than the truncated power series. It should be noted that parametric
terms may be considered as special cases. If M = 1, Bs(x) = x is chosen, then m(x) has the
form m(x) = α1x and is therefore simply parametric.

In order to have not to distinguish between the different terms in the predictor (3) in the
following a simpler form is used. Appropriate choice of basis functions yields for the general
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predictor (3) the condensed additive form

ηit =

q∑
j=1

γtjα
′
jwitj (4)

where w′
itj = (witj1, . . . witjPj

) is the vector of covariates, α′
j = (αj1, . . . αjPj

) and γtj , t =
1, . . . , T , j = 1, . . . , q, are unknown parameters. The observable variables witj are composed
from the covariates xit and zitj and the knots. In order to show that (4) comprises (3) it is
sufficient to demonstrate that the additive term γtjα

′
jwitj may take the form of an expansion

in basis function of any of the terms used in (3). The choice γtj = 1, witjs = xitjBs(t), s =
1, . . . , Mj, yields

γtjα
′
jwitj =

∑
s

xitjαjsBs(t)

which represents the component xitkβtk from x′
itβt where αjs are the weights and Bs are

the basis functions used in the expansion of the varying coefficient βtk. Smoothly varying
coefficient β0t corresponds to the special case where xitk = 1. If just one knot is used and
B1(t) = 1 one obtains a non-varying parameter. The additive term γtjf(j)(zitj) in (3) follows
directly from the expansion f(j)(zitj) =

∑
s αjsBs(zitj). If no interaction between time and

a function of a covariate is present one sets γtj = 1. In the following we will use the more
compact form (4) of the predictor.

3 Estimation and inference

3.1 Penalized maximum likelihood estimates

Let the observations be given by (ti, δi, xi), i = 1, . . . , n, where time ti = min{Ti, Ci} is the
minimum of failure time Ti and censoring time Ci with the indicator variable determined by

δi =

{
1 if Ti < Ci

0 if Ti ≥ Ci.

Assuming random censoring, the likelihood contribution of observation i is given by

Li = ciλ(ti|ηiti)
δi

ti−1∏
j=1

(1 − λ(j|ηij)) (5)

where the constant ci = P (Ci > ti)
δiP (Ci = ti)

1−δi is considered as noninformative and in
the following will be dropped. In (5) without loss of generality it is implicitely assumed that
censoring takes place at the beginning of interval [ati−1, ati). Based on (5) it is easy to show
that the log-likelihood function is given by

l =

q∑
t=1

∑
i∈Rt

yit log λ(t|ηit) + (1 − yit) log(1 − λ(t|ηit)) (6)

7



where yit contains the transition of individual i from interval [at−1, at) to [at, at+1) in the
form

yit =

{
1 individual fails in [at−1, at)
0 individual survives in [at−1, at).

The index set Rt = {i|s ≤ ti − (1 − δi)} represents the risk set, i.e. the individuals that
are still under risk in interval [at−1, at). For a derivation see e.g. Fahrmeir & Tutz (2001).
It should be noted that for the derivation of (6) the time dependence of coefficients has
no influence. From (6) it is easily seen that the likelihood is equivalent to the likeli-
hood of a pseudo binary response model P (yis = 1|xi) = h(ηit) for binary observations
y11, . . . , y1,t1−(1−δ1), y21, . . . , yn,tn−(1−δn).

The basic concept of P-splines is to use the expansion in basis functions used in the con-
struction of the predictor (4) together with maximization of the penalized likelihood. The
penalty term penalizes the differences of the coefficient of adjacent basis functions where
the ordering of the basis functions B1(·), . . . Bs(·) is given through the ordering of the cor-
responding knots κ1 < . . . < κs. Following the suggestions of Eilers & Marx (1996) we will
use many equally spaced knots and steer the smoothers by smoothing parameters. Ruppert
(2000) investigated the number of knots and found that it has little influence for monotone
functions. For non-monotone functions a number of knots given as min{n/4, 35} seems to
perform well.

Assuming the predictor ηit =
∑

j γtjα
′
jwitj we use the penalized log-likelihood

lp = l −
∑

j

K1,j + K2,j .

The first penalty smoothes the parameters γtj across time and has the form

K1,j =
γ̃j

2

T∑
t=2

(γtj − γt−1,j)
2

with smoothing parameter γ̃j. For reasons of identifiability γ1j = 1 is fixed. The second
penalty smoothes the weights α1j , . . . , αjMj

in the form

K2,j =
α̃j

2

Mj∑
s=1

(αjs − αj,s−1)
2

where α̃j is the smoothing parameter. While K1,j is a penalty which ascertains smoothness
across response categories, K2,j smoothes the effect of the covariate. We restrict the presen-
tation to first order differences. Of course one could also consider higher order differences
which in connection with higher order P-splines have nice properties in the limiting case
where smoothing is maximal, i.e. α̃j → ∞. Matrix forms of K1,j, K2,j are given by

K1,j =
γ̃j

2
{e′1e1 + 2e′1Pγγj + γ′

·jP
′
γPγγ·j}, K2,j =

α̃j

2
α′

jP
′
αPααj
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where γ′
·j = (γ2j, . . . , γTj), e

T
1 = (−1, 0, 0, . . . , 0), and Pγ , Pα are matrices with entries 0, 1,−1

(for details see Appendix).

The estimation equations are obtained by considering the penalized score function. Collect-
ing the parameters in

δ′ = (γ′
·1, . . . , γ

′
·q, α

′
1, . . . , α

′
q)

one obtains the score function

sp(δ) = ∂lp/∂δ = (∂lp/∂γ′
·1, . . . , ∂lp/∂α′

q)
′

with components

sp,αj
=

∂lp
∂αj

=

T∑
t=1

∑
i∈Rt

γtjwitj
∂h(ηit)

∂η
(yit − μit)/σ

2
it − α̃jP

′
αPααj

sp,γtj
=

∂lp
∂γtj

=
∑
i∈Rt

α′
jwitj

∂h(ηit)

∂η
(yit − μit)/σ

2
it − γ̃j{[eT

1 Pγ]t + [P ′
γPγ]tγj}

where μit = h(ηit), σ
2
it = h(ηit)(1 − h(ηit)) and [ ]t denotes the component t of a vector or

in the case of a matrix the tth row. The estimation equation sp(δ) = 0 cannot be solved in
the usual way by using (penalized) Fisher-scoring because the incorporation of the damping
constants γtj makes the predictor non-linear. We suggest a stepwise procedure which uses
estimation procedures from generalized linear models.

In the first step the parameters γtj are considered as fixed. For given parameters γtj the
equations

∂lp
∂αj

= 0, j = 1, . . . , q, (7)

correspond to the fitting of a generalized linear model with linear predictor ηit =
∑

α′
jw̃itj

where w̃itj = γtjwitj are the observed covariates. Equation (7) may be solved by iterative
(penalized) Fisher-scoring where α′ = (α′

1, . . . , α
′
q) is updated by

α(s+1) = α(s) + F−1
p,γ (α(s))sp,γ(α

(s))

where sp,γ(α)′ = (s′p,α1
, . . . , s′p,αp

) is the score function evaluated at α and the corresponding
penalized Fisher matrix evaluated at α is given by

Fp,γ(α) =

T∑
t=1

∑
i∈Rt

γ2
tjwitjw

′
itj

∂h2(ηit(α))

∂η
/σ2

it(α) + Pα̃ (8)

where Pα̃ is given as block diagonal matrix Pα̃ = Diag(α̃1P
′
αPα, . . . , α̃qP

′
αPα). The index γ

is used because of the dependence on the given parameters γtj.

The second step uses the estimate of α which results from the first step. If the parameters
α1, . . . , αq are given the equations

∂lp
∂γtj

= 0, t = 1, . . . , T, j = 1, . . . , q (9)
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correspond to the fitting a generalized linear model with predictor ηit =
∑q

j=1 γtjw̃itj where
w̃itj = α′

jwitj is the linear predictor. Let the parameters be rearranged by γ′ = (γ′
·1, . . . , γ

′
·p)

with γ′
·j = (γ2j, . . . , γTj). The Fisher scoring takes the form

γ(s+1) = γ(s) + F−1
α (γ(s))sα(γ(s))

where sα(γ)′ = (sγ11 , . . . , sγTq
) is the score vector evaluated at γ and

Fα(γ) =
T∑

t=1

∑
i∈Rt

vitv
′
it

∂h2(ηit)

∂η
/σ2

it + Pγ̃

is the corresponding Fisher matrix where v′
it = (0′q, . . . , w̃

′
it, . . . , 0

′
q), w̃it = (α′

1wit1, . . . , α
′
qwitq)

and 0q is a q-dimensional vector containing zeros, i.e. 0′q = (0, . . . , 0). The penalty is given
as the block diagonal matrix P = Diag(γ̃1P

′
γPγ, . . . , γ̃qP

′
γPγ). The Fisher matrix Fα depends

on the parameters α which are contained in vit.

Penalized maximum estimates are computed by solving (7) with starting values γtj . Then
(9) is solved by considering the obtained estimates α̂j as known. The resulting estimates γ̂tj

are then used as known to solve (7). The iteration of these cycles is ended if both estimates
do no longer change.

3.2 Inference

Let us first consider the case without multiplicative terms, i.e. γtj = 1, t = 2, . . . , T, j =
1, . . . , q. Then the estimation is reduced to the first step where (7) is solved. As estimator
for the covariance Marx & Eilers (1998) propose for this case the sandwich matrix

ˆcov(α̂) = F−1
p,1 (α̂)F1(α̂)F−1

p,1 (α̂) (10)

where Fp,1 is the special form of (8) where γtj = 1, i.e.

Fp,1 =

T∑
t=1

∑
i∈Rt

witjw
′
itj

∂h2(ηit)

∂η
/σ2

it + Pα̃

and F1 is equivalent to Fp,1 without penalization term, i.e. α̃j = 0 yielding Pα̃ as a matrix
containing only zeros. If one assumes that the number of knots is large enough to represent
the underlying smooth structure of influential terms the covariance ˆcov(α̂) is an approxi-
mation based on asymptotic arguments when n → ∞, α̃j/n → 0 (see also Tutz & Scholz,
2000).

If interaction between time and a function of covariates is in the model in the form of
parameters γtj the penalized Fisher matrices used in the two estimation steps are of limited
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use since they assume that either γ or α is known. Then the covariance is based on the total
penalized Fisher matrix Fp = ∂lp/∂δ∂δ′. The approximation

cov(δ̂) = F−1
p (δ̂)F (δ̂)F−1

p (δ̂)

holds if it can be assumed that the chosen knots and basis functions represent the under-
lying functions. This condition is weak when many basis functions, say 30, are used with
equidistant knots. In addition non-informative censoring is assumed which makes it possible
to treat the observations as asymptotically uncorrelated responses yit. A short sketch of the
approximation and the total Fisher matrix is given in the Appendix.

4 Simulation

4.1 Method

In a small simulation study the gain in efficiency by adequate modelling and the performance
of the basis function approach is investigated. The two concepts introduced, time-varying
effects of variables and time-varying effects of smoothly transformed variables, are evaluated
separately. In the first case one compares

ηit = β0t + x′
itβ (11)

to

ηit = β0t + x′
itβt. (12)

The simulated model is given by

ηit = β0t + x′
itb

[(
1 − 1

1 + exp(−c · (t − 1))

)
· 2

]
(13)

where b determines the covariate effect at t = 1 and c determines how fast the effect decreases
over time. Therefore b and c form a time dependent parameter βt. Figure 4 shows the
attenuation of βt for several values of c. For simplicity β0t = β0 is chosen.

In the second case one compares

ηit = β0t +
S∑

j=1

f(j)(zitj) (14)

to

ηit = β0t +

S∑
j=1

γtjf(j)(zitj) . (15)
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Figure 4: Attenuation component of the generating models (13) and (16) for different values of c
(0.4: solid line, 0.2: dashed line, 0.1: dotted line, 0.05: dash-dot line).

The generating model (with S = 1) then is

ηit = β0t +
(
sin

(xit

10

)
b1 + b2

)[(
1 − 1

1 + exp(−c · (t − 1))

)
· 2

]
. (16)

The difference to the first model is that b is replaced by a nonlinear term. Figure 5 shows
the nonlinear term for various values of b1 and b2 which are chosen such that it is centered
for the range of xit used.

The measure M used for comparison is squared error

SE =
∑

it

(pit − p̂it)
2

with t = 1, . . . , T and T fixed (For the results presented here T = 15) and pit denoting
the probability from model (13) or (16) transformed into the probability of a multinomial
distribution with

∑
t pit = 1. With λit = λ(t|xi) denoting the hazard function it is obtained

by pit = λit

∏t−1
s=1(1 − λis). The estimate p̂it from model (11), (12), (14) or (15) is given in

the same way with λit being replaced by λ̂it = h(η̂it).

An alternative measure we used for comparison is Kullback-Leibler or entropy

E =
∑

it

pit log

(
pit

p̂it

)
.

The results from this measure did not differ much from squared error. For this reason squared
error will be reported exclusively.
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Figure 5: Smooth covariate component of the generating model (16) for various values of b1/b2

(4/0.9914: solid line, 3/0.7435: dashed line, 2/0.4957: dotted line, 1/0.2478: dash-dot line).

The improvement achieved by adequate modelling is evaluated by the ratio of measures

R =
M(flexible model, AIC-smoothing)

M(restricted model, AIC-smoothing)
(17)

where the flexible model is the adequate model for the underlying process, i.e. (12) for
time-varying coefficients and (15) for attenuated smooth effects. The restricted models are
(11) and (14). In order to obtain an adequate fit for each simulated data set the smooth-
ing parameters are chosen from the data set once for the flexible and once for the restricted
model. The algorithm used for searching the optimal smoothing parameters (i.e. the optimal
penalties) in terms of the Akaike Information Criterion (AIC) is Powell’s unconstrained op-
timization by quadratic optimization (UOBYQA) (Powell, 2002). It forms quadratic models
by interpolation and minimizes with respect to these models. If the derivatives exist (albeit
they don’t have to be evaluated) an optimum will be found. The algorithm has been chosen
because it requires no derivatives, which for the AIC are not obtained easily. In order to
meet the constraint that the smoothing parameters may not be smaller than zero, optimiza-
tion by the AIC is done for the the logarithm of the smoothing parameters. To evaluate
the effect of the true structure behind the data the data generation has been varied system-
atically. The parameters b and c of the generating model (13) and b1, b2 and c of model
(16) determine how strong the covariate influence and the variation of attenuation are. The
baseline parameters β0t are set constant over time, i.e. β0t = β0 for all t. Nevertheless all
models fitted include a baseline that is allowed to vary over time. The value of β0 does not
seem to influence the results systematically and is chosen such that it yields a probability
of 0.1 when no covariate influence is present. There also does not seem to be a systematic
influence of the distribution of the covariate values and so a uniform distribution is chosen.
The values are between −23 and 23 for the generating model (13) and between 18 and 64
for model (16). It is to be expected that the result of the comparisons will depend on the
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Table 1: Median of the ratio ’SE(model with time-varying effects)/SE(model with fixed effects)’
for different data generation parameters (using generating model (13)) with 100 comparisons for
each combination.

c
.1 .2 .4
n=100 n=20 n=50 n=100 n=100

.1 0.6605 1.001 0.7654 0.4706 0.3296
b .2 0.2847 0.7911 0.4034 0.2026 0.1548

.3 0.1788 0.6662 0.2889 0.1323 0.1365

number of subjects in the data set and so the simulation is done with 20, 50, 100 and 200
subjects. For each combination of parameters 100 simulations have been done.

4.2 Results

4.2.1 Time-varying effects of variables

Table 1 shows the improvement obtained by including the time-varying effects for different
combinations of parameters of the generating varying-coefficients model (13). The values
given are the medians of the ratio (17) for the squared error measure being computed for
each simulated data set individually. Since the distribution of these ratios is not symmetric
the mean values are larger than the median. The standard deviation varies from 0.0950 to
2.0815, but for most parameter combinations it is smaller than 0.4.

As a general tendency the median becomes smaller, i.e. the flexible model performs much bet-
ter, when b gets larger. That means that when covariate influence is stronger flexible/time-
varying modelling becomes more important. In a similar way the improvement by using the
time-varying model becomes more distinct when the decrease across time is stronger. The
relation between the number of subjects used for each data set and the medians is as one
would expect. An increased number subjects increases the benefit of using a more flexible
model. In general it is seen that misspecification by falsely assuming constant parameters
may yield very bad estimates. The incorporation of varying coefficients reduces the mean
squared error strongly. Even for moderate values (e.g. b = 0.2) the reduction of mean
squared error is between 84% and 20%.

Figure 6 shows the estimated smooth function for βt from the flexible model (12) for one of
the parameter combinations in Table 1 based on 100 simulations. The mean estimate (dotted
line) is quite close to the true function (solid line). The estimated pointwise confidence bands
which are based on the sandwich matrix (mean ± 1.96 · standard error)(dash-dot line) are
well comparable to the empirical confidence bands (dashed line) although they are slightly
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Figure 6: Estimation results for βt based on the the varying coefficient model (13) with generating
model parameters b = 0.2 and c = 0.2 (true function: solid line, mean of the estimated functions:
dotted line, empirical confidence bands: dashed line, mean of the estimated confidence bands:
dash-dot line)

smaller. If the number of subjects (here: 100) increases the difference between the empirical
and estimated standard errors becomes even smaller.

4.2.2 Time-varying effects of smoothly transformed variables

Table 2 shows the median values for the comparison of a model with time-varying effects
of smoothly transformed variables to a model that incorporates only smoothly transformed
variables but no time-varying effects. The comparison has been done with different param-
eters for the generating model. The median of the ratio of measures (17) depends on the
parameters that determine the strength of the covariate effect (here: b1 and b2). A stronger
covariate effect (i.e. a larger value of b1) is beneficial for the flexible model. Also when the
decrease of attenuation over time becomes stronger (i.e. a larger value of c) the benefit of
using the time-varying model increases. An increase in the number of subjects also increases
the benefit of using the time-varying model. Even in the case of a rather flat function and
weak time dependence the flexible model is rather stable, although it has no advantage over
the time-independent model.

The left panel of Figure 7 shows the estimated smooth function (dotted lines) from the
model with time-varying effects. The right panel shows the corresponding estimated γ̂t values
(circles). Albeit the true function (solid line) is within the confidence bands (empirical and
estimated) the mean estimate is slightly larger than the true values. This effect has been
found in all the simulations. It might be attributed to the penalization of variation in the

15



Table 2: Median of the ratio ’SE(model with attenuation of smooth effect of covariates)/SE(model
with fixed effects of smooth effect of covariates)’ for different data generation parameters based on
generating model (16) for 100 comparisons for each combination.

c
.2 .4
n=100 n=50 n=100 n=200

1 / .2478 1.008 1.006 1.001 0.8057
b1 / b2 2 / .4957 0.9910 0.9982 0.5643 0.3594

3 / .7435 0.7922 0.8587 0.5874 0.3648

estimation procedure and the fixed value of γ̂1 = 1, as this may lead to a function that
is forced to decrease only slowly from the starting value. When working with increasing
attenuation functions the estimates were consistently too small. This effect could explain
why the estimate of the smooth function seems to be flatter than the true function (to be
seen for example in the left panel of Figure 7): The combination of larger values of γ̂t and
smaller values of the estimated smooth function produces results similar to those from the
true functions.

Figure 7: Estimates of the smooth function (left panel) and γt (right panel) with data from gen-
erating model (16) with parameters b1 = 3, b2 = .7435 and c = .4 (real function: solid line/circles,
mean of the estimated functions: dotted line, empirical confidence bands: dashed line, mean of the
estimated confidence bands: dash-dot line).

The mean estimated confidence bands (dash-dot lines) for the estimate of the smooth function
(left panel of Figure 7) as well as for the γts are smaller than the empirical confidence bands.
As with the estimate of the time-varying parametric effects this difference decreases when
more subjects are available.
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5 Application to hospital data

The data presented here are from 1922 patients of a German psychiatric hospital with di-
agnosis ”schizophrenic disorder of paranoid type”. The response is time spent in hospital
measured in days. The covariates available for smooth modelling are age at admission, cal-
endar time between 1/1/1995 and 12/31/1999 (measured in days since 1/1/1995) and GAF
(Global Assessment of Functioning) score at admission which is a physician’s judgment of
the patient’s level of functioning. The other covariates are 0-1-coded variables and are given
by: gender (MALE=1: male), education (EDU=1: above high school level), partner situ-
ation (PART=1: has a permanent partner), job situation (JOB=1: full/part time job at
admission), first hospitalization (FIRST=1: first admission in a psychiatric hospital) and
suicidal action (SUI=1: suicidal act previous to admission).

The predictor of the model for ”probability of dismissal” has the form

ηit = β0t + fT (calendar time)

+MALE · βMALE + EDU · βEDU + PART · βPART
+JOB · βJOB + FIRST · βFIRST + SUI · βSUI
+fA(age) + γt · fG(GAF score)

where fT, fA and fG are smooth functions. A specific feature of the model is the incor-
poration of two time scales, namely the time which patients stay in the hospital and the
calendar time. The flexibility of the model allows to model both effects.

The predictor given is already the result of model selection. Starting from a general model
the model has been selected based on the Akaike Information Criterion (AIC). Table 3 gives
the AIC for selected models. In particular this criterion favors the inclusion of a time-
dependent smooth term for ”GAF score at admission” over a (time-dependent) parametric
or a fixed smooth term.

Table 3: AIC for different models for ”probability of dismissal” with optimal smoothing parameters
(”. . .” refers to the binary components mentioned in the text, ”ct” to calendar time, ”age” to age
at admission and ”GAF” to GAF score at admission).

Model AIC
ηit = β0t + ct · βT + . . . + age · βA + GAF · βG 15790.7
ηit = β0t + ct · βT + . . . + age · βA + γt · fG(GAF) 15775.3
ηit = β0t + fT(ct) + . . . + age · βA + γt · fG(GAF) 15773.8
ηit = β0t + fT(ct) + . . . + fA(age) + fG(GAF) 15777.1
ηit = β0t + fT(ct) + . . . + fA(age) + GAF · βGt

15772.6
ηit = β0t + fT(ct) + . . . + fA(age) + γt · fG(GAF) 15770.3
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Table 4: Estimates of the parametric terms of the model for ”probability of dismissal”

covariate parameter estimate standard deviation
gender (male) -0.0525 0.0550
education -0.0387 0.0716
partner situation 0.2619 0.0654
job situation 0.0428 0.0731
first hospitalization 0.0845 0.0680
suicidal action -0.0828 0.1145

Figure 8: Estimated smooth effect of calendar time fT (left panel) and smooth effect of age
at admission fA (right panel) of the model for ”probability of dismissal” (estimates: solid lines;
confidence bands: dashed lines).

Table 4 shows the parameter estimates of the parametric terms. The only variable that
seems have influence is partner situation. The effect for this variable is rather strong. If
the patient has a permanent partner the time spent in the hospital is strongly reduced. The
rest of the variables has no significant effect. For schizophrenia as an endogenic disorder it
is not to be expected that variables like job situation or gender have an influence on the
healing process. The right panel of Figure 8 shows the smooth estimate of the effect of the
variable age at admission. With increasing age the stay in the hospital is shortened. The
effect of calendar time is shown in the left panel of Figure 8. It is seen that the time spent
in hospital decreases almost continuously with calendar time. However it is not clear if the
effect is more connected to the organization of the hospital or to new developments in the
treatment of schizophrenia.

An interesting effect is that of the GAF score which is an assessment score at admission.
Figure 9 shows the estimated effect fG in the left panel and the corresponding time-varying
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Figure 9: Estimated smooth effect of the covariate ”GAF score at admission” on ”probability
of dismissal” (left panel) and its attenuation over time (right panel) (estimate: solid line/circles;
confidence bands: dashed lines).

attenuation parameters γt in the right panel. The shape of the smooth function clearly
indicates that a lower GAF score at admission (indicating a lower level of functioning) results
in a lower probability of dismissal. This is reasonable as a patient in a worse condition can
be expected to require longer treatment. The plateaus at scores under 30 and over 60 also
deserve attention. They indicate that the essential difference is between low and high GAF
score. Only for a small window between 30 and 50 points the effect is changing. Moreover,
the curves clearly show that a linear effect with time-varying coefficients is not appropriate.
This is also supported by the Akaike criterion which favors the time-dependent smooth
component for the covariate ”GAF score at admission” over a time-dependent parametric
component. The estimate of γt (right panel of Figure 9) shows that the effect of the GAF
score at admission vanishes over time. This is plausible as the condition of a patient is
expected to change over time and so the predictive power of the initial score diminishes.
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Appendix

1. Penalization
Consider with restriction γ1 = 1 and γ′ = (γ2, . . . , γT ) the penalty K =

∑T
t=2(γt−γt−1)

2

which has the form
K = (e1 + Pγγ)T (e1 + Pγγ)

where

e′1 = (−1, 0, . . . , 0), Pγ =

⎛
⎜⎜⎜⎝

1 0 0 0
−1 1 0 0

0 −1 1 0
...

. . . −1 1

⎞
⎟⎟⎟⎠

One obtains
K = eT

1 e1 + 2eT
1 Pγγ + γ′P ′

γPγγ.

For K =
M∑

s=1

(αjs − αj,s−1)
2 one obtains the simpler form

K = (Pαα)′(Pαα) = α′P ′
αPαα

where α′ = (α1, . . . , αM) and the (M − 1) × M matrix Pα is given by

Pα =

⎛
⎜⎜⎜⎝

−1 1
−1 1

. . .

−1 1

⎞
⎟⎟⎟⎠

2. Approximative covariance
The information matrix that corresponds to the penalized likelihood is given by Fp(δ) =
E(−∂lp/∂δ∂δ′). Its components are given by

E

(
− ∂lp

∂αj∂α′
j

)
=

T∑
t=1

∑
i∈Rt

γ2
tjwitjw

′
itj

(
∂h(ηit)

∂η

)2

/σ2
it + α̃jP

′
αPα,

E

(
− ∂lp

∂αj∂αl

)
=

T∑
t=1

∑
i∈Rt

γtjγtlwitjw
′
itl

(
∂h(ηit)

∂η

)2

/σ2
it, l �= j,

E

(
− ∂lp

∂γtj∂γtj

)
=

∑
i∈Rt

(α′
jwit)

2

(
∂h(ηit)

∂η

)2

/σ2
it + γ̃j[P

′
γPγ]tt,

E

(
− ∂2lp

∂γtj∂γt̃j

)
= γ̃j[P

′
γPγ ]tt̃ , t̃ �= t,

E

(
− ∂2lp

∂αj∂γtj

)
=

∑
i∈Rt

γtjwitjw
′
itjαj

(
∂h(ηit)

∂η

)2

/σ2
it,

E

(
− ∂2lp

∂αj∂γtl

)
=

∑
i∈Rt

γtjwitlw
′
itjαl

(
∂h(ηit)

∂η

)2

/σ2
it, l �= j,
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where [ ]tt̃ denotes the elements (tt̃) of a matrix.

The components of the Fisher matrix without penalty F (δ) contain the first terms as
given above, i.e. with α̃j = γ̃j = 0. Thus one has Fp(δ) = F (δ) + P where P is the
penalty matrix depending on α̃j , γ̃j. In the same way the score function s = ∂l/∂δ is
connected to the penalized score function s(δ) = ∂l/∂δ by sp(δ) = s(δ)+Pδ. Common
assumptions are ∂l/∂δ = 0p(n

1/2), ∂l/∂δ∂δ′ = −F + 0p(n
1/2) with F−1 = 0(n−1) and

similar assumptions for higher order derivatives. Then the expansion

0 = sp(δ̂) = sp(δ) +
∂sp

∂δ′
(δ̂ − δ) + . . .

yields

δ̂ − δ =
(
−∂sp

∂δ′

)−1

sp(δ) + 0p(n
−1) + 0p(n

−3/2λ̃)

= (F (δ) + P )−1 (s(δ) + Pδ) + 0p(n
−1) + 0p(n

−3/2λ̃)

where λ̃ = max{λ̃j , α̃j}. Based on this expansion the covariance may be shown to have
the form

cov(δ̂) = (F (δ) + P )−1cov(s(δ))(F (δ) + P )−1 + 0(n−2) + 0(n−3λ2)
= Fp(δ)

−1F (δ)Fp(δ)
−1 + 0(n−2) + 0(n−3λ2).

3. Akaike Information Criterion (AIC)
Following Hastie & Tibshirani (1990) and Eilers & Marx (1996) the AIC is computed
by

AIC = deviance + 2 · (effective) dimensions of the vector of parameters δ

wherein the dimension component is given by the trace of the smoother matrix. The
smoother matrix is obtained by treating the Fisher matrix introduced above as if it
would be from a one step iterative estimation procedure. The smoother matrix then is

H = (F + P )−1F.
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