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Comparison of three estimators in Poisson

Alexander Kukush and Sergiy Shklyar

National Taras Shevchenko University, Kiev, Ukraine

Abstract

A structural errors—in—variables model is investigated, where
the response variable follows a Poisson distribution. Assuming the
error variance to be known, we consider three consistent estimators
and compare their relative efficiencies by means of their asymp-
totic covariance matrices. The comparison is made for arbitrary
error variances. The structural quasi-likelihood (QL) estimator is
based on a quasi score function, which is constructed from a con-
ditional mean-variance model. The corrected estimator is based on
an error—corrected likelihood score function. The alternative esti-
mator is constructed to remove the asymptotic bias of the naive
(i.e., ordinary maximum likelihood) estimator. It is shown that the
QL estimator is strictly more efficient than the alternative estima-
tor, and the latter one is strictly more efficient than the corrected
estimator.

Introduction

We suppose that Y|X has a Poisson distribution with parameter A =
AMX, B) = exp(Bo+B1X). Here X ~ N(uy,02),02>0,and B = (Bo,B1)"
is the parameter of interest. Let W = X + U be a surrogate covariate,

where U is independent of X and Y, and U ~ N(0,02), o
and known.

2
u

is positive

We observe independent realizations (Y;, W;), i =1,...,n. We sup-
pose that the parameter set © 5 is a compact set in R?, and the true value



B is an interior point of ©g; only for the naive and alternative estimator
we allow the parameter set to be the entire plane R2.

In [4] the asymptotic covariance matrices of three estimators were
compared, namely for naive estimator (which is inconsistent) and of the
corrected and quasi-likelihood estimator (these two are consistent). The
comparison was made for small 2 and unknown p, and o2. In the present
paper we compare the two consistent estimators for arbitrary oi, but we
suppose that p, and o2 are known.

We introduce an intermediate, alternative estimator, which removes
the asymptotic bias of the naive estimator. The alternative estimator
makes it possible to compare the two other consistent estimators.

Throughout the paper E denotes the mathematical expectation, and
var denotes the variance of a random variable, while cov denotes the
variance—covariance matrix of a random vector. Let 9S/0BT mean the
derivative of the score function S(b) at the true value of the parameter (.

In Section 2 the naive estimator is introduced and its inconsistency is
shown. In section 3 the corrected estimator is defined, and its asymptotic
covariance matrix is evaluated. Section 4 gives the asymptotic properties
of the alternative estimator. In Sections 5 and 6 the asymptotic covariance
matrices of the last two estimators are compared. Section 7 compares the
quasi-likelihood estimator with the other two consistent estimators, and
Section 8 concludes.

2 The naive estimator

For the naive estimator, we suppose that the parameter set is R2.

2.1 The estimator
The log-likelihood of the error free model is given by

n

Qu(b) =Y [Viln M(X;,b) — A(X;, )] (1)

i=1
with b = (bo,b1)T € Op and A\(X;,b) = exp(by + b1 X;). If we replace
the unobservable variables X; by the observable surrogates W;, we arrive
at the criterion function for the so-called naive estimator Bnajve, Which is



found by maximizing

n

Qnaive(h) = Y _[Viln A(W;,b) = A(Wi,b)], be R,

i=1

where A(W,b) = exp(by + b1W), (if the maximum is not attained we
set, Bnaive = 00). The resulting estimator Bnaive coincides with the ML
estimator if W is measured without errors, i.e., if W = X, and in that
case Bnaive would be consistent. But as X; has been replaced by W;, the
naive estimator is inconsistent.

2.2 Uniqueness of solution

The function b — Y;In )\(Wz,b) — )\(Wz,b) = Y;(b() + b1WZ) — eXp(b() +
b1 W;) is bounded from above and concave because it is a composition of
the bounded from above strictly concave function Y;t — e! and the linear
functional by + by W;. Hence Qpaive(b) is a bounded from above concave
function, so to find zeroes of

_ 6Qnaive _ - - : 1
S = 2% — 570 - 20,70 ()

i=1

is an equivalent way to define Bnaive.

Denote by n; the least positive integer such that Y,, > 0 and by ns
the least integer such that n; > ne and Y,,, > 0. We have n; < na < oo
a.s.

Statement 1. If the random event n, < n occurs, then almost surely
Qnaive has a unique maximum point. It is the unique zero of Spajve.

Proof. Almost surely W,, # W,,. In this case, it is easy to prove
that the sum of the two terms of Qpaive corresponding to ni-th and no-th
observations is strictly concave and has a unique maximum point. We
obtain Qpaive by adding the bounded from above and concave function,
80 Qnaive 18 strictly concave. In the considered case Y,, > 0, Y,,, > 0,
Wi, # Wh,, and n > ns hold, and the maximum point of Qnaive exists

because sup Qnaive(b) — —o00, as R — oo (indeed, we have this for
llol| >R

the sum of the two summands, and the remaining summands of Qnaive
are bounded from above). But the maximum point of Qnaive iS unique



because Qpaive is strictly concave. The second part of Statement 1 holds
because Qpaive 1S concave.

Definition 1. Let Z be a random variable on a probability space (Q, F,P),
and Zy, Zs,... be independent observations on Z. A sequence of state-
ments A1 (Z1), Az(Z1,2Z2),... holds eventually iff

a0y, ]P(Qo) =1Vw € Q EN(LU) Vn > N(w) : An(Zla .. ,Zn)

holds true. .
Because of Statement 1, ghe estimator Bnaive 1S eventually finite, and
it satisfies eventually Shaive(Bnaive) = 0.

2.3 Inconsistency of the naive estimator

For all b, almost surely, when the number of observations n — oo,

" Quaive () — Qi) ©)
uniformly on any compact set, where
naive (D) = B Y (bo + b1 W) — A(b, W)] = E{E[Yi(bo + b1 W)| X} — EA(b, W)
=E[X(B, X)(bo + b1 X)] — EX(b, W). (3)

Now, remember that W ~ N(u,,02) and consider, for arbitrary func-
tion f, the following expectation, assuming its existence:

o0 _ 2 1
E[f(W)A(W,b :/ o+ 1) ebothipethiT oo dr
SOV = [ fne+7) N
> botbi s 4 1p202  —mmze® ]
— +71)e 0 1Ha T35070,, e 202 dT
/_oo f(ﬂx ) /_271'0'10
—elothitetsVOLE F(W 4 byo?). (4)
Analogously, remembering X ~ N(u,,02), we can prove that
E[f (X)X, )] = et iret 355 Bf (X + f1o?). (5)

Applying (4) and (5) to (3) we get

. (b)) = eﬁo+61um+%6fai(b0 + b + bif102) — pbotbina+ibiol,

naive



Q:ve(b) is a concave function. So it attains its maximum at the point
where its derivative is equal to zero. We have

aQnalve( ) 660+61#m+%6%03 1 _eb0+b1um+%b?0—3} 1
ob fz + P12 fz +bioy, )’

and 22 — 0 holds if and only if

Bo + Bipa + 58302 = by + by, + $bo?
P + 102 = g + bio2,

2 T

This system has the only solution 37, . = (60 +h+ B3 ‘720‘; , BroE ) .
So Q%% has unique maximum point 37 -

Let € > 0. Denote by K the circumference of radius € and centre at

ﬂnalve We have Sup Qnalve < Qnalve( nalve) Because Of (2) Sl[ivp Qnaive <

Qnawe(ﬁnawe) eventually Because of concavity of Qpuaive the maximum
pomt Bnawe of Qnaive eventually lies inside K. Therefore Bnawe tends to

aive almost surely.

Statement 2. The naive estimator is convergent, as n — 0o,

2
Bo + b1 jz + B ”2;;

ﬂnaive ”
P17 —05
w

(a.s.)

3 The corrected estimator

In this Section and hereafter we assume that the parameter set @3 is a
compact set in R?, and the true value of 3 is an interior point of ©4.

3.1 Definition

To construct a consistent estimator, we have to correct the log-likelihood
function (1) for the measurement error. Let us denote a typical term of

(1) by
Qnaive(Xa Y, b) =YIn )\(X, b) — )\(X, b)

We are looking for a “corrected” function ¢(W,Y,b), such that
E (¢(W,Y,0)|Y, X) = gnaive(X, Y, D),



see [1], Chapter 6. Such function is given by
1
q =Y In \(W,b) — exp (—51)%03) AW, b).

The corresponding corrected criterion function is

Qeor(b lz”:(ymwl,b) e BT AW, D))

n

and the estimator Bcor is a measurable solution of
Bcor € arg max Qcor(b).
bG@B

(Qeor does mot attain a maximum on the entire plane R? because it
is unbounded from above.) The estimator is strongly consistent, and
\/ﬁ(ﬁcor — ) converges in distribution to N (0, X¢or), where Y, can be
found by the following sandwich formula.

Define the corrected score function by

0

S(b) = !

q(W,Y,b),

and let S = S(B) and

S
A——]Ew, B—COVS, (6)

both are taken at the point b = 8. Then, see [1],
Yeor = ATTBA™T. (7)
Hereafter M~ " denotes (M~1)T, where M is a square matrix. We are

going to compute this matrix.

3.2 Computation of A
We have

o Y — e BT\, 8)
T\ YW~ (W = Bio2)e B W, 6) |’



B2
e = A ( e ) :
op W —Bio (W —pio2)” —o?
By (4), remembering 02, — 02 = 02, we have
B2
4 = PotBuatifiel < _1 , B;gu_ , )
w— P12 (w—piol) —o?
2
— Pot+BiuatiBion ( ! 5 Ha +€1§“ ) ) )]
ez +ﬂlax (/J‘Z+ﬂlax) +Ux

3.3 Computation of A~!
The determinant of the latter matrix equals 2. Therefore

2
Al = ief(60+61um+éﬂfai) < (Bro2 + pa)” + 02 —(B102 + pa) > ‘
o2 _(51‘73 + pz) 1

T

3.4 Computation of B

Hereafter, in symmetrical matrices, we will often write down only one of
the two corresponding symmetrical entries.

We have with A = A(W, §) :
SST =
YV2W — Y (2W — Bio2)e2b8iou )
+(W=B102) e Fioi )2
Y2W? = 2W (W —B102) e 2570 \Y
+(W—Py02)2 e Biou )2

V22638100 YA+ e Bion \2

We observe that ES = 0 and so B can be written as
B=ESS". (10)

In order to evaluate this expectation we consider the following three ex-
pected values for an arbitrary function, assuming their existence. First,

IE[f(W)|X]:/_oo f(X+u)e7% du (11)

2moy,



because W|X ~ N(X,02); next

E [ FW)AW, ) e85 x| =
0 122 2 7i ].
— X + u) PotBiX+Biu—50870, o 207 du =
/f U v V2o, "
00 _("—3103)2 1
= X +u)efothX o7 207 du =E[f(W)| XX, B),
R e du = B[f(W)IX]A(X.5)
(12)
where Wi |X ~ N(X + 102, o2).
At last, applying (12) with S replaced by 23, we have
E [ /(W)X (W, 8) e~ | X]
— eﬂm]E[f A(W, 28) e~ 5(280)°7% X]
= E[f(W)|X]A(X,28) e i
= E[f(W)|X] (X, B) e, (13)

where W5|X ~ N(X + 28102, 02). Therefore with A = A(X, 3) we
have from (9):

E(SSTIX,Y) =
Y220V 4570 A2 V2X — YA(2X + B102) + eBi7u \2(X + By02)
YV2(X2 +02) — 2(X + B102)XAY — 202\Y +
+eP7N2 (X 4 B102)? + 02)

Remember that by the properties of the Poisson distribution
E(Y|X) = A(X, B),

E(Y?|X) = MX, B) + A*(X, B).



Therefore, again with A = A(X, §),

E[55T|X]:A< L )

X X2%2+02
Sl X = fiof AT (X A o)
+N’ (X2 +02) - 2(X + B102)X — 202 +
+e81% (X + f102)? + 02)

_ ]. X 3203 2 ]. X+610'5
_A<X X2+ai>+(el - < (X + Bro7)* + o

(0 0
+A<0 Mﬁ)'

Finally we have, see Subsection 1.2,

B (XAX, §)] = BLA(W3)]exp(Bo + fupie + 35107),
where W3 ~ N(u; + B102,02);
E [f(X + Bi1o.)N (X, 8)] = E[f(X + Bio,)A(X,28)] =
= E[f(W1)] exp(2Bo + 281 itz + 287 02),

where Wy ~ N(pe + 28102 + B102,02) = N(pe + p102 + Bio2, o2).
Therefore finally,

B =E[E(SST|X)] =
1 2
= exp(fo + Bipa + 5630;) < 1 (1t ﬁzﬂj_ogl)gz- o )

5 5 1 22 +61(U12u+0-£)
+exp(260 + 28141z + 287 07) (€717 —1 ( 2
( 102)( ) [Mz+51(‘7120+0925)] +U’2”

0 0
+exp(260 + 2611 + 26%03) < 0 Bt > )
u

3.5 Factorization

In order to simplify the expression for A and B we introduce

9= iz + B0



and

R:<(1) g).

Then

A=RTAR
with

Ay = exp(Bo + Bipa + 1B202) L0
x 2 1Y%2 0 o,‘% )

and

B=R'B\R
with

By =exp(Bo + Bipe + %5%03) ( L0 )

2
0 oy,

1 2
+exp(280 + 28111z + 28702) (5170 —1) ( 10 )

2 4 2
ﬂlgw 10y T+ 0y

0 0
+exp(2fo + 2811 + 28707) ( 0 Bot )
u

Here we used the identity

<£1J (1)><i° a:ZQfI-QJ)(é i]>:<gix (gfm+)2x+y>'

3.6 Final expression for X,

From (7) we have
RYcowRT = AT'By AT,

and hence

RYeo,RT = o~ (Bo+Bipa+36703) .

VS
o =
B
N~ —
+

+ (ot oot

quk|Eq>J>
= q | Q
R AN
+ =
sq»|8ql°
v
N |5qw o
+
@
=
Y]
Q
BN
VR
o
CL| Q
o
=0
v
—
[y
I
N



4 An alternative estimator

For the alternative estimator we can assume the parameter set to be the
entire plane R?.

4.1 Definition

Denote the conditional expectation of Y given W by
m(W, 8) = E(Y|W).

Then, see [1], [3],

1
m(W, B) = exp (ﬁo + Bipxw + 55%U§(|W> ; (15)
with o 5 s
,uma + Woy, o200
Bxiw = T: U%(\W = % (16)

Another way to improve the naive estimator of 3 is to substitute in
(1) the value m(W;, b) instead of A\(X;,b). We get the criterion function

Qar(b lz Yilnm(W;,b) — m(W;,b)), be Og. (17)
i=1

:

The alternative estimator Bal is a measurable solution of

Ba € arg min Qai(b)-

4.2 Connection with naive estimator
Consider the transformation
(1) = bt s+ SR
Uz
2 blﬁ
It is a homeomorphism of R? onto itself. The inverse transformation
equals
2
bQ bl‘;_é)

11



One can observe that Qa1 (b) = Qnaive(#(b)). Then eventually Q.1(b) has a
unique maximum point according to Statement 1, and it can be computed
as

Bal = ¢_1(Bnaive)- (18)
The homeomorphism ¢ is differentiable and '9(;511(4’) is nonsingular. Then
9Qai(b) 99(b)
8ZT = Snaive((b)) T
Hence %‘Ta)) eventually has a unique zero Bal.

4.3 Consistency

*

Because of (18), continuity of ¢~', Statement 2, and relation B7,,. =
¢(B), the alternative estimator is strongly consistent.

4.4 Asymptotic normality

As 1962%17;6(11) = 0 and due to the consistency property, we have, see [1],

that \/ﬁ(Bal — ) converges in distribution to N (0, X,;), where ¥, can be
found by a sandwich formula which is similar to (7).

Let
ga1(b) = Y Inm(W, b) — m(W, b), (19)
Oqu(b) Y —m(W,b) dm(W, b
05,
Aal - _EWTI7 B, = cov Sal ) (21)

both taken at the point b = 5. Then
Sa = A BaA! (22)

(we will see below that A, is a nonsingular matrix).

12



4.5 Computation of A,
We have by (20)

S = (0 = m(w.9)) ! ) (23)

X |w +ﬂ1‘7§qw
and by (15)

BSal - 1 2 2
S8BT m(W, §) < uxyw + Biox w ) (1’ Bxiw +ﬂ10X|W) + B

where

B- [—Y+m(W,ﬂ)]< . )

X|W
Hence

0Sal 1 uxw + BLox < 0 0 )
T - .
BT (W ) ( s (uxw + o) + ok w 0 Yol

We want to compute the expected value of gg‘}‘. We first find

EE = E[E(E|W)] = 0.

In order to compute the expectation of the other terms we derive a general
expression for all these terms.

As puxyw ~ N (,uz, g—g), see (16), we have, using (15), for any function
f for which the following expectation exists

E [f(uxw)m(W,5)] =E {f(lixw)exp (50 + Bipxiw + %B%U§(|W>:| =

2 2

Oo Lo o P (_ 2"310)
:/ f(pe+7) exp <ﬁ0+51ﬂz + 6T+ 5610X|W> ot dr =

—00 ™=

2 4\ 2

- e (- (r-az))

= +7) ex + +z 202) dr =
/_oo f(/J/Ct ) p <BO Blﬂm 2B1 mog/aw

— Bl Olexp (6o + buns + 3202 ) (24

13



4 4
a a

with v ~ N (,ux + b1 2%, J—;) Here we used (16) with 02 = 02 — o2.
Summarizing these results, we finally get
6Sal
Aal = _EaBT
1 5 5 1 227 +610'2
=ex + « + =80, o4 (125
p(ﬂo B 251 > (ugﬂrﬂwﬁ (uz+6103)2+é )

4.6 Computation of By
As in the case of the corrected estimator, B, can be computed as
Bal = E(SuSq).
We have from (23)

T v 2 1 uxyw + Box
Salsal - [Y m(W7 B)] ( . (/JX\W +ﬂ10§(|w)2 '

Like in the Subsection 4.5 we have
E[(V = m(W,8))*| W] = o(W, 8) = m(W, §) + m*(W, §) (e“T%iw —1),

see [5], and therefore

E (SuSy|W) = [m(W, B) +m2(W, B) (eﬁ%"gﬂw _1)] x
1 B |W +51U§(‘W
X ( (,UX\W +ﬂ1‘7§(\w)2 ) . (26)

To evaluate the expectation of (26) we need again a general formula for
certain expectations with arbitrary functions f. Assuming that the fol-
lowing expectation is finite, we have by (24) using the definition of m in
(15):

E[f (ux jw)m” (W 8)] = E [ £ (x| )m(W, 28) e™%w | =

2
— Bl exp (260 + 2600 + 2502 = %) =

= Elflews (250 + i)+ (24 2 )) - c2)

14



4 4
with vy ~ N (um + QBIg—g, g—g) Here we used the identity o2 — U%\’\W =
4
Z—g.
From (26), (24), and (27) we obtain
1 Mz + ﬂlog
1
Ba = E(SaS,)) = exp <ﬁ0 + Bipe + 55%3) o (e +Bi103)? |+
4
+3
2, o
1 Mz + ﬂl (Ux + 0'_22)
2 _2 v
2 2 _ —B; Tzgn iNT2
exp(2Bo+2B1 1t +251073) (1 e K ) [uz + b1 (oﬁ + j—i)]
4
+5

4.7 Factorization

As in Subsections 3.5 and 1.6 we use
1
_ 2 _ g
g_:ul‘-i-ﬂlaza R_<0 1)

From (25) we have
Au=RT AR
with

1 2 2 1
Ay =exp Bo+61um+§ﬁlaz 0

and from (28)

Eqm|aq.¢. =]
N———

B. = R'ByR
with

1

1
By = exp (50 + Bipz + 55%”5) ( 0

+exp(260+2p1 pu+26702) (1 —e

15



4.8 Final expression for X,

We have RE,RT = A, 'ByA; .

Now,
—1 1 2 2 1
Ay =exp |— | Bo+ Bipa + §B1% 0

and hence
T 1 2 2 1
RYaR =exp|—|fo+ Blqu: + iﬁlgz' 0 +
2 2
2,2 a1 B
+ eBlam 1—e Tw o2 . 29
( ) ( B Bi+ 4 > (29)

g

Hq»u|EqM =)
N———

ﬂqus|gq|\: o

5 Comparison of >, and X,

From (14) and (29) we get

g
2 2 2 2 1 lé)ﬂl
R(Xcor — Eal)RT = ef17= (eﬂla“ _1) 2 . 72 2
Tw 9w 32 Tw
G LA L

—efier [ —e_B% inga ! zﬂl o2 +efio 0 040 2 |-
B Bi+ e 0 _EB1




which can also be written as

o [ e T g (e )
«;_2 8, (eﬁ?oi _1) B30 5;%
0 0
1o <eﬁ1”u —2+4e %gi§u> %
=R+ F. (30)

If 51 =0, then F = 0. Suppose that 5; # 0. Because

252 2 2 4

2 2 —B2%27u 0.0 o
% —2 4o R > Bl — B = BT L > ),

o o

w w

the matrix F} is positive semidefinite and the 1-1 entry of Fj is positive.
In addition the determinant of Fj is positive. Indeed

4 aﬁ 2
(ma:%@ewﬁ4¢w+ﬁa_@maq]
Ux

4
_ Tuge [
= Jug

O-.T

Therefore F' is positive definite, and so is Ycor — Xay.
We proved the following result.

SR
SR

_Q>a

Theorem 1. Let 02 > 0 and let p, and o2 be known. If 3; = 0, then
Yeor = Ya; otherwise, if 51 # 0, then Yo > ¥,1.

6 Comparison of asymptotic expansions for
Yicor and Yy

We show that for 51 # 0
Seor — Lal = 0284 + 0(08), o2 =0, (31)

where Sy is positive definite.

17



We analyze the matrix F of (30) when o2 — 0. First

221 4 4

_p2TaTu 1 oL0 0,0
LR Wi Zﬁfai+§3f0§— S+ S A 4+ 0(0y) =
o2 2 lop
2‘73 4 _4 6 2‘73 4 4 6
1_2+610-u+0(0-u): 1_2+B10-u+0(0-u)'
Uw U%
Similarly,
B202 2 2 4 ‘7121; 1 2
et "_]-:ﬂlgu-i-o(au)a _4:_2+O(Uu)
U.T U.T
Therefore
B3 4 B3
S48 S 0 0
_ 4 o2 1 o2 6
F=o, 5 3 —l—(o 5_}?_1_5_2 + O(oy,)-
o2 ol O [

The second matrix in brackets is nonnegative semidefinite, the first matrix

4
has positive diagonal elements and its determinant f—é is positive. Hence

F =0!Fy +0(0%),

where Fj is a positive definite matrix. Let Sy = efios ‘R'D"SDR™T,
then Sy is a positive definite and (31) holds true.
We proved the following theorem.

Theorem 2. Let y,;, 0> be known, and 3; # 0. Then, as 02 — 0,
Yeor — Yal = (73 -S4 + O(Uﬁ)

with a positive definite matrix Sy.

7 Quasi-likelihood estimator

7.1 The estimator

The structural quasi-likelihood (QL) estimator of 3 is defined as a mea-
surable solution of the equation

1 z”: Y; — m(W;,b) Om(W;,b)

n v(W;, b) ob =0 (32)

i=1

18



Here

v(W, ) = var(Y|W).

The quasi-likelihood estimator is consistent by arguments, which are
similar to the ones for a polynomial model, see [3], see also [4]. It is
asymptotically normal, and the asymptotic covariance matrix is given by
a corresponding sandwich formula [4], which is similar to (22),

EQL = A(SiBQLAéE

Now, the problem is to compare the asymptotic covariance matrices
of the three consistent estimators.

Using (20), we see that the alternative estimator eventually satisfies
an equation which resembles (32):

1 Z”: Y; — m(W;,b) Om(W;,b)

n & m (W5, b) 0b

=0. (33)

Both QL and alternative estimators are not ML estimators, therefore
a priori it is not clear which estimator is more efficient. We mention that
if 02 = 0, i.e., the measurement error vanishes, the equations (32) and
(33) coincide, because Y| X has a Poisson distribution, and

E(Y]X) = var(Y]X) = (X, 8).

7.2 Asymptotic optimality of quasi-likelihood estima-
tor

We use the theorem 2.1 from [2] to prove that Yqr, < Za.
Consider the family of unbiased estimation functions, which linearly
depend on Y:
H =AY —m(W,b))x(W,b)},

where yx is a smooth two-dimensional vector such that taking expectation
and differentiation with respect to b are interchangeable and Sandwich-
formula holds. QL and al-estimation functions belong to this family (for

x(W,b) = U(Vlm) w and x(W,b) = m%, respectively). For
alG e H

oG(b) Om (W, b) Ax (W, b)

SR —x(W, b)T + Y = m(W, b))T-

19



As m(W, ) = E[Y|W] and x(W, 6)% depend only on W, for b = 3,
the expectation of the second item is equal to 0. Then

S5 = E (W05 )

Let us compute EGSJ; .

G(5)550(8) = x(%,5) T py PR,
A E[(Y = m(W,8))2| W] = o(W, ),
Im(W, )

B [G(5)S5L(0)| W] = X7, ) =52

E (G(5)S&.(8) =E (X(W, 5>%> ,

So

oG\ !
(Easr) EG()SE®) =1

is a constant matrix.
By theorem 2.1 [2] the QL-estimation function is Or-optimal, see the
~1
definition of this optimality in [2]. Because Lg = (]EG(S)G(S)T) , where

G® () = E2B(BG(5)G(8)T)'G(B) is a standardized estimating
function, the QL-estimator has the least asymptotic covariance matrix
within H, with respect to Loewner order (i.e., for two symmetrical matri-
ces S; and So, S; < Sy iff S; — Ss is positive semidefinite).

7.3 Comparison of asymptotic covariance matrices of
alternative and QL estimators

Now we show, that ¥, — Xqr, is strictly positive definite. Suppose that
Yal — Xqu is singular. Then so is Eéi -3 =cov SS% — cov SS). But
the first formula of the proof implies

cov(SéQL St ) = cov SS% — cov SS). (34)

al

20



—1
Indeed, in Subsection 7.2 we obtained that (E%@) ESa (5)55L (B) =

—1
(E25242)) " ESqL(8)S4y,(8). Hence, with ESu(8) = ESqu(8) =
and using the definition of standardized estimator, we obtain ESaISSI)JT =
A, ES;T)SSI{T = A;B;lAal = cov SS). Hence (34) holds.

Then the vector SS% —SS) with probability 1 lies in own non-stochastic

=

subspace, and there exists a linear functional f # 0 such that f (SSI)J —
SS)) =0 a.s. Denote

]
f=f- (EaSQL> (cov )"

B
-
fo=f- (Ea(%ﬂ) (covSa) " .
Then f1(Sqr) — f2(Sa) =0 a.s., and a.s.
1 om 1 om
¥ - mnan (55) = @ - movang (55)
Now choose coefficients ay, ¢ such that fy (,UXW +1ﬂ10§(|W> = a, +
W, k=1,2. As
om(W,B) 1
T —m(Waﬁ) ( ,UX‘W +ﬂ10§(|W ) )
PR = OV ) ( + W) = (F = m(W. 9) (a2 + 2l s

So almost surely

a +aW = (1 +m(W, B)(exp(ﬁfag(lw) - 1)) (az + caW).
As the functions in this equality are continuous and the support of W is R,
the formula holds for all real non-stochastic W. Considering a behaviour

at infinity, he get as = c2 = 0, then f, =0, f = 0. So we get contradiction.
We have proved that X, — Yqr, is a positive definite nonsingular matrix.
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8 Conclusion

2

In the case of known p, and o,

holds true for arbitrary o2.

Theorem 2 shows that Ycor = Ya1 + O(02), as 02 — 0. This implies
that Seor & Sa & Sqr, up to O(o}), because earlier it was shown that
YL = Zeor + O(0y,), see [4].

Compare ¥, with the asymptotic covariance matrix Xaive for ordi-
nary (naive) MLE. It was shown in [4] that

202 1 Z -
Ycor — Znaive = U_gexp <_ (BO +B1/1/1' + §Uiﬁf>> : < gg ]_g ) +

+0(cd), o2 =0,

we compared Y., and X,;. This result

where g = pi,+0231. The same expansion holds true for ¥, — X paive. This
shows that in a sense ¥, is larger than Y,aive, for small o2. (But we men-
tion that Bnaive i inconsistent, while all the three remaining estimators
are consistent).

The next question remains open. To compare ¥Xqr, a1, and Yeor,
2 2

when p,, o2 are unknown and we plug-in fi, = fi, and 62 = 62 — o2
instead of p, and o2, while we construct Sqr, and Ba (here fi,, and 62, are
sample mean and sample variance of Wy, Ws, ..., W,,). In this situation

an additional term in ¥qr and X, appears, see [3]. But X, remains
unchanged, because f.o; does not use the distribution of X.
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