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Abstract

The Poisson regression model is often used as a first model for count data with
covariates. Since this model is a GLM with canonical link, regression parameters can be
easily fitted using standard software. However the model requires equidispersion, which
might not be valid for the data set under consideration. There have been many models
proposed in the literature to allow for overdispersion. One such model is the negative
binomial regression model. In addition, score tests have been commonly used to detect
overdispersion in the data. However these tests do not allow to quantify the effects
of overdispersion. In this paper we propose easily interpretable discrepancy measures
which allow to quantify the overdispersion effects when comparing a negative binomial
regression to Poisson regression. We propose asymptotic a-level tests for testing the size
of overdispersion effects in terms of the developed discrepancy measures. A graphical
display of p values curves can then be used to allow for an exact quantification of
the overdispersion effects. This can lead to a validation of the Poisson regression
or a discrimination of the Poisson regression with respect to the negative binomial
regression. The proposed asymptotic tests are investigated in small samples using
simulation and applied to two examples.

Key words: Poisson regression, negative binomial regression, quantification of overdis-
persion.



1 Introduction

In many areas of application, like automobile insurance, life insurance, biostatistics or physi-
cal applications, Poisson regression is used to model the dependency of count data on covari-
ates. Since the Poisson regression model is a generalized link model (GLM) with canonical
link, the regression parameter can be easily estimated. One restriction of the Poisson distri-
bution is however that it allows only a single parameter to estimate the mean and variance.
In particular equidispersion, i.e. equality of mean and variance, holds. If the variance exceeds
the mean we speak of overdispersion.

There is considerable literature on modeling and detecting overdispersion in count regres-
sion data. Roughly, two general approaches are followed. One is based on mixture models,
where random effects are included in the Poisson regression to account for overdispersion,
while the other approach is to develop probability models for count data which have more
than one parameter for the modeling of mean and variance.

Mixture models are mostly used for the detection of overdispersion. In particular score
tests are derived, which have the advantage that only the model without the random effects
has to be fitted to the data. Dean (1992) provides a unifying theory for score tests for extra
Poisson variation developed by Fisher (1950), Collings and Margolin (1985), Cameron and
Trivedi (1986) and Dean and Lawless (1989). These tests assume more general exponential
family models with random effects and are based on expansions developed by Cox (1983)
and Chesher (1984). General exponential mixing models are introduced and discussed by
Lindsay (1986). Score tests for extra Poisson variation in the positive or truncated-at-zero
Poisson regression model against truncated-at-zero negative binomial family alternatives are
derived in Gurmu (1991) and score tests of extra Poisson variation in left or right truncated
Poisson regression models are given in Gurmu and Trivedi (1992). Graphical methods for the
detection of overdispersion are developed in Lambert and Reoder (1995). The special case
of finite mixed Poisson regression models with covariates in both Poisson rates and mixing
probabilities is discussed in Wang, Cockburn, and Puterman (1998).

Breslow and Clayton (1993) use penalized quasi-likelihood and McCulloch (1997) pro-
poses a Monte Carlo EM algorithm for estimation in generalized linear mixed models (GLMM).
These include Poisson regression with random effects. Markov Chain Monte Carlo (MCMC)
methods are utilized in Bayesian analyses for GLMM’s (see for example Zeger and Karim

1991, Besag, York, and Mollie 1991 or Clayton 1996).



The second approach to modeling count regression data with overdispersion uses proba-
bility models for count data with more than one parameter. One of the most known such
model is the negative binomial regression model (see for example Lawless 1987). Note that
the negative binomial regression model can also be derived as Poisson-Gamma mixture model
(see for example Cameron and Trivedi 1998, p. 101). Other count probability models are
the double Poisson family, which is a special case of the double exponential models (see
Efron 1986) and the generalized Poisson distribution (Consul 1989). Inference in the double
exponential regression models is only approximate. Ganio and Schafer (1992) develop likeli-
hood ratio and score tests for testing for overdispersion in a double exponential family, while
Fitzmaurice (1997) considers the problem of model selection for overdispersed data within
the class of double exponential family models. In contrast to the double exponential fam-
ilies, Consul and Famoye (1992) give maximum likelihood estimates in generalized Poisson
regression models and an application using the generalized Poisson regression model is given
in Singh and Famoye (1993).

In contrast to methods for detecting overdispersion in a data set, the goal of this pa-
per is to develop quantitative measures for overdispersion, which can be easily interpreted
and assessed by the experimenter. These measures will be used to quantify the effects of

overdispersion in a data set. In particular we seek to answer the following question:

Is overdispersion in the data low enough to ignore it by using the Poisson regres-
stom, or is the effort justified, to switch from the Poisson model to the negative

binomial regression model because of a high degree of overdispersion in the data?
Score tests for overdispersion are typically based on hypotheses of the following form
H :a=aq versus K : a > ay, (1.1)

where a is the overdispersion parameter and a = ay corresponds to no overdispersion. In
many situations ag = 0. We like to point out that the above question cannot be answered by a
test for (1.1), since the rejection of H does not allow for a quantification of overdispersion. A

more appropriate way to answer the above question is to consider the following test problem
H :a>ag versus K : a < ag, (1.2)

where the bound aq is chosen in advance. If the null hypothesis of test problem (1.2) is

rejected we have significant evidence that the overdispersion parameter a is bounded by



ag. Thus a quantification of the overdispersion in terms of the size of the overdispersion
parameter « is achieved. Similar approaches are common in bioequivalence testing (see for
example Chow and Liu (1992) for normal populations and Munk and Czado (1998) for a
nonparametric approach). This approach has also been successfully used in the quantification
of link misspecifications in GLM’s (see Czado and Munk (2000)).

We will first develop an asymptotic « level test for testing problem (1.2), however since
the size of the dispersion parameter a in the negative binomial model is difficult to interpret,
we develop more interpretable measures depending on a. These measures are also suitable
for detecting the effects of outliers on the degree of overdispersion. The statistical test for
(1.2) will then be used to construct a corresponding test for the more interpretable measures.

The small sample performance of the constructed asymptotic a level test will be inves-
tigated in a comprehensive simulation study (see Appendix), which leads to a modification
of the original rejection area. Finally, we demonstrate the usefulness of these modified test
procedures in two data sets. The first data set involves claims from an automobile insurance.
Here we can show that while a negative binomial regression model fit gives a very small value
for the overdispersion parameter, strong overdispersion effects are present when outliers are
not accounted for. In a second example involving patent data strong overdispersion effects
are visible even after accounting for possible outliers.

The paper is organized as follows: Regression models for count regression data including
GLM’s and negative binomial regression are introduced and discussed in Section 2. This
includes also the derivation of an asymptotic « level test for (1.2) for the overdispersion
parameter in a negative binomial regression setup. Section 3 develops more interpretable
discrepancy measures and uses p-value curves to allow for an exact quantification of overdis-
persion. Examples are given in Section 4 and Section 5 summarizes and discusses the results.
Finally in the appendix the results of a simulation study investigating the finite sample prop-

erties of the asymptotic test procedure developed in Section 2 are given.

2 Regression models for count regression data

In the last few years usage of GLM’s has become standard in many areas of application. The
standard reference on GLM’s is McCullagh and Nelder (1989) and further details, especially
for count data, can be found in Cameron and Trivedi (1998). We now sketch the required set

up and provide some details especially for the modeling of count regression data. In general



there are 3 components needed to define a GLM:

1. Random component:
Given the covariates x;, the responses ;, ¢ = 1,..,n are iid with a density of the form

Oy — b(0)
a(9)

which is a density from the exponential family.

f(y:0,6) = exp { + c(y, ¢)} , (2.1)

2. Systematic component:
The given p vectors of covariates &, j = 1,..,p define linear predictors
n = xiB = o + Pixir + Poxio + .. + Py for i =1,..,n, where B is the vector of the

unknown regression parameters.

3. Parametric link component:
The link function g(p;) = 1; = @B combines the linear predictor with the mean y; of

y;. Here, the canonical link function is used, so that 8 = n holds.

As a first model for count regression data we consider Poisson regression.

2.1 Poisson Regression

The density of the Poisson distribution fp,;(y) = exp{—p + yInp — Iny!} can be rewritten
in the form of the exponential family with a(¢) =1, 60 =1Inp, b(0) = exp(d) = exp(ln pu) =
p, and ¢(y,¢) = —Iny!. The canonical link function is the log-link function n = In(u).

Therefore, the conditional mean of the observations y; given the covariates x; is given by
E(Y; | ;) = exp(n;) = exp(xif), i=1,..,n.

One important property of the Poisson distribution is equidispersion, i.e. p; = E(Y;) =
Var(Y;). If in a data set the variance exceeds the mean, we say, that the data shows overdis-
persion. We speak of underdispersion, if the variance is lower than the mean.

Usually, we assume, that the observation periods for count data Y; are identical for all
t = 1,..,n. But observation periods can be different in practice. To standardize the observa-
tion time for all observations an additional variable ¢; must be introduced, which is related
to the observation period of the i-th observation. It is now assumed, that the response Y; | x;

is Poisson distributed with parameter ¢;1}, where pf = exp(x}3). This implies that
E(Y; | ;) =t} = exp(In(t;) + ziB),
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and the linear predictors are given by
m = xiB = In(p;) — In(t;) = 6; — In(t;),

where In(¢;) is called offset and is assumed to be known.
As already discussed in the introduction there are different possibilities to construct
overdispersion models. We concentrate in this paper on the negative binomial regression

model, which we discuss now.

2.2 Negative binomial regression

One of the earliest references on the negative binomial distribution is Greenwood and Yule
(1920). Properties of the negative binomial distribution are discussed in Armitage and
Colton (1998, p. 2962-2967) and in Johnson, Kotz, and Kemp (1993, p.99). The density of

the negative binomial distribution is defined as follows:

=t ) (e Y (e ) 29)

with dispersion parameter ¢ > 0. Clark and Perry (1989) use quasi maximum likelihood

for parameter estimation and Aragén, Eberly, and Eberly (1992) discuss the existence and
uniqueness of the maximum likelihood parameter estimates in the negative binomial distri-
bution.

In contrast to the Poisson distribution the negative binomial distribution allows overdis-
persion, since the mean, denoted by p; := E(Y;), is always lower than the variance, given
by Var(Y;) = wi + ap?, if a > 0. For example, Cameron and Trivedi (1998, p.75) show,
that the Poisson distribution is a special case of the negative binomial distribution, when
the dispersion parameter a is equal to zero. For known « it is straight forward to see that
(2.2) is a member of the exponential family given in (2.1). For an unknown parameter a
Cameron and Trivedi (1998, p.33 and p.75), show that the negative binomial distribution
is a member of the exponential family with nuisance parameter ¢, which is similar to the
exponential family defined in (2.1). The Fisher information matrix of the negative binomial
model is given in Lawless (1987). To get the entries of the Fisher information matrix, one
has first to take the second partial derivatives of the log-likelihood function, which is given

by

i=1 |j=0

L(B,a) =InL(B,a) = XH: {Zl: In(aj +1) — In(y!) +y;Inp; — (y; +a ) In(1 + aui)} ,



where y7 = y; — 1, and then take the expectations of the negative second derivatives. It

follows, that the expectation of the second mixed derivatives is zero, which implies, that the

parameters a and 8 are asymptotically uncorrelated and the Fisher information matrix has

the following form of a diagonal block matrix:

FI, (B, a 0
FIB.a) = o . Flpi1p+1(B, a)

Here FI,4(B,a) is a p x p matrix, while FI, 1 ,.1(8,a) is a scalar. It is not trivial to

obtain the joint MLE (B,a) of (B,a). The simplest method to get the estimator (B,a)

for r,s=1,...,p.

is to maximize the log-likelihood function £(8,a) for fixed values a, for example with the
Fisher-scoring or Newton-Raphson algorithm. From the resulting estimates B (a) and the

profile likelihood L£(8(a),a), which still depends on a, one can get the estimator a with

one-dimensional maximization with respect to a.

2.3 Asymptotic a— level test for the testing problem (1.2) in neg-
ative binomial regression

Lawless (1987) shows, that under regularity conditions and mild conditions on the covariate
values x;’s to ensure that n='F I(83,a) approaches a positive definite limit as n — oo, the

MLE (B, a) is asymptotically normally distributed, i.e.
FI(B,3)?(B — B,d — a) 3 Nyy1(0, Ly1). (2.3)

Here N,(p, X) denotes a p-dimensional normal distribution with mean vector y and covari-
ance matrix ¥, and I, denotes the (p + 1)-dimensional unity matrix. We will now use the
asymptotic normality result (2.3) to construct an asymptotic validation test for overdisper-

sion.

Theorem 2.1 Under the assumption, that (2.3) holds, an asymptotic uniformly most pow-
erful (UMP) a-level test for the hypothesis H : a > ag versus the alternative K : a < aqg 1is

‘= {a - @(Eé,azf)) = “}’ 24)

where 6(B,a) denotes the (p+1,p+1)-entry in the inverse of the Fisher information matriz
and ®(.) the standard normal cdf.
Proof: To use the Theorem 3.53.2 (p.78) in Lehmann (1986), we show, that the assumptions,

given by the rejection region
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needed for this theorem, are satisfied asymptotically. At first one has to prove, that there is
asymptotically a monotone increasing likelihood ratio in a. Let p,(a) denote the density of a
when the true dispersion parameter is a. For this, we choose aq > ay. Using (2.3) it follows

that

1 _ (5 )2
Pa, (@) N V2ra? exp{ 2 (@—ay)?}
Pa, (@) \/;W? eXp{_ﬁ(a — ap)?}

L /-
= exp {T?? (2a(a1 — ag) + a5 — a%)} ,

where 0 = 6(3,&). Since a1 — ay 1S positive, the resulting likelihood ratio is a monotone
increasing function in a. Now, Theorem 3.5.2, p.78 in Lehmann (1986) can be used asymp-
totically. Since Lehmann gives a UMP-test for H : 6 < 0y versus K : 0 > 0y, we have to
consider the dual test problem. The first part of the theorem can be transformed to

(1*): For the test H : 0 > 0y versus K : 0 < 0y there exists a UMP-test, which is given by

1 if T(z) <C,
V(x) =4 7 if T(x)=C,
0 if T(z)>C,

where C' and 7y are determined by Ey,®(z) = a.
With these results the rejection region for the asymptotic validation test H : a > ag versus
K :a < ag 1s given by

C={a: a<C(C},

where C' is uniquely determined by

P(Ca0,5) =0 (“2") =a (23)

o

Since ® (C—Iﬂ) is monotone increasing in C, condition (2.5) is equivalent to the rejection

— 5. a/—a()
C={a: @ <6(B,&)> < a},

reqion

which was to prove.

3 Discrepancy measures and p-value-curves

3.1 Discrepancy measures

Before we are able to quantify the effects of overdispersion when a Poisson model is used, we

have to find discrepancy measures, which can be used to compare the Poisson (POISSON)

7



with the negative binomial model (NB). This discrepancy measure should be chosen in such
a way that its magnitude can be easily interpreted by the experimenter. The dispersion
parameter a of the negative binomial distribution itself is however not suitable for this, since
it is difficult to interpret its magnitude. We will denote this naive discrepancy measure
with dy(a) = a. Moreover, the discrepancy measure should be a monotone function of a to
guarantee a unique interpretation. One possible measure is the ratio of the variances of both

models:

Var(NB) pA+ ap
= =1 ) 1
Var(POISSON) 1 Tap (3:1)

For regression data Y;, ¢ = 1,..,n with means p; = exp(xiB), 7 = 1,..,n, we choose the

maximum of (3.1) over p; as discrepancy measure given by
!B
d(a) =1+ amax{u;} =1+ amax{e”i" }. (3.2)
(3 (3

This discrepancy measure can be interpreted in the following way: If d(a) = 2, it follows
that the maximal variance in the negative binomial regression model is twice as large as in
the corresponding Poisson regression model. The experimenter can set a cut off value for
d(a) denoted by dy. If d(a) < dy, the experimenter will accept the Poisson regression model
for the data, while if d(a) > dy a negative binomial regression will be accepted. The choice
of reasonable values for dy will be discussed later.

Since the discrepancy measure d(a) in (3.2) depends also on the unknown regression

parameter 3, the value of d(a) has to be estimated, one such possible estimate is given by
~ tg
d(a) == 1 + amax{e%iP@}, (3.3)

where B(a) is the regression parameter estimate in the negative binomial regression model
with fixed dispersion parameter a.

We now return to the problem of finding a reasonable cut off value d,. For this we consider
the consequences of fitting a false Poisson regression model to a data set which arises from
a negative regression model with dispersion parameter a and approximately the same mean
specification. In this case the regression coefficient estimates based on the incorrect Poisson
model (denoted by B(0)) and the correct negative binomial model (denoted by B(a)) will be
approximately the same, i.e. B(O) A B(a). Using the asymptotic normality of the maximum

likelihood estimate 3 (a) in a negative binomial regression model with fixed dispersion a, it



follows that an estimate of the asymptotic covariance matrix of B(a) denoted by cov(B(a))
(3.4)

is given by
cov(B(a)) = (X'D(a)X) ™,
where D(a) is a diagonal matrix with ith element given by
Di(a) = : ﬁ;(p%)(a)’ where 73;(a) = exp(azfﬁ(a))
Using the definition of CZ( ) given in (3.3) and condition (3.4) it follows that
N
cov(B(a)) =~ d(a)cov(B(0)),

which means that the estimated asymptotic covariance matrix of the true regression pa-

~

-~

rameter estimates (3(a) is approximately underestimated by at most the factor d(a) if the
incorrect Poisson model is used. Since significance tests of covariate effects are based on such

estimates of the standard error of the regression coefficients, it follows that a reasonable cut

off point of dy might be around 2.
composition of the data. Since this measure can take on very large values caused by a large

maximal value for y;, it is useful to control the discrepancy measure for data with outliers in

Before using the discrepancy measure defined in (3.2) in practice one has to check the
the mean space. In these cases we suggest to use instead of the maximal value max;{;} of

the mean some quantiles, like the 90% or 95% quantile of the means y;, yielding the following
(3.5)

discrepancy measure:
dy(a) =1+ az,,,

t

where z,, is the 100q%-th empirical quantile of {y;,7 = 1,..,n} for ¢ € (0,1]. Note that
T

d(a) is a special case of dy(a) with ¢ = 1. Again this can be estimated by using B(a) to
calculate the 100q%-th empirical quantile of {i;(a) = e iﬁ(“),z’ =1,..,n} as an estimate of
Zqu- Using (3.5) with the 90% quantile for example, one accepts, that the maximal deviation

d,(a) in the variances of both models is valid only for 90% of the data.

3.2 p-value-curves
Even though we do not suggest to use dy(a) = a as discrepancy measure we first consider

the testing problem
versus K :a <ay for fixed ag.

H:a>q



Using the asymptotic UMP-test derived in Theorem 2.1 we can calculate an estimate of the

corresponding p-value, which is given by

Plag) = @ @é,?)) . (3.6)

If we vary in the test problem H versus K the value of ag, we can consider P(.) as an
asymptotic p-value curve. To interpret the p-value-curve ﬁ(), we consider the asymptotic
p-value-curve for the testing problem H : a > ag versus K : a < ag and the testing problem

K :a < ag versus H : a > ag respectively, in Figure 1. The testing problem H versus K

K versus H

08

H\versus K

08

p-value
p-value

04
04

0.0
Q
Q
a
0.0
0]
Q
q

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Figure 1: p-value-curves for the validation problem H versus K (left panel) and the discrim-
ination problem K versus H (right panel)

can be considered as a validation testing problem, since if one rejects H, the dispersion
parameter is validated to be less than ag with significance o. In a similar way, the testing
problem K versus H can be regarded as a discrimination testing problem, since a
rejection of K implies, that the dispersion parameter is larger than ag with significance
a. In the left panel, the level P = a = 0.05 determines the minimal value ap, for which
H : a > ag can be rejected at a level a = 0.05 of significance. Looking at the right panel,
it gives the maximal value ay at the level P =a=0.05 for rejecting K : a < ag. Since the
right curve can be generated by the left one by reflecting the curve at the axis P= 0.5, both
test problems can be summarized in one curve (see Figure 2). Here, the value ag, describes
the minimal value for rejecting the hypothesis H : a > ag for a given level a of significance.

At the same time it is also gives the maximal value ag; at the level P=1- «, for which the
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hypothesis K : a < ag can be rejected for the given level ov. The interpretation of Figure 2

can therefore be summarized as follows:

)
©
@

Discrimination

08

p-value
06
L

04

02
|

Validation

0.-05
005 S
aol

aOu

0.0
|

0.2 0.4 0.6 0.8 1.0

ao

Figure 2: General p-value-curve

1. Model validation (H : a > ay versus K : a < ag):
The hypothesis H : a > a¢ can be rejected for values greater than ag, at level o and
the Poisson distribution can be used to model the given data if one is willing to accept

a dispersion parameter less or equal agy,.

2. Model discrimination (K :a < ay versus H :a > ag):
For values lower than ag, the hypothesis K : a < ay can be rejected at level a and the
change from a Poisson to a negative binomial model is justified if one assumes that a

dispersion parameter > a; indicates that a negative binomial is required.

In summary, the quantities ag, and ag; from the general p-value with respect to the dispersion
parameter a allow to quantify the effect of overdispersion for count regression data when
comparing Poisson regression to negative binomial regression. However, since the magnitude
of the dispersion parameter is difficult to interpret we now propose to translate the concept
of p-value curves to the more interpretable discrepancy measure d(a). Similarly, the p-value-
curve with respect to the testing problem H : d(a) > dy versus K : d(a) < dp is given
by

Pldy) = @ (76 - dla(d°)> , (3.7)



where d~'(.) is the inverse function of d(.). If d4(a) is used in (3.7), d " is replaced by d_(.),

the inverse function of d,(.).

4 Examples

4.1 Automobile Claims

Hallin and Ingenbleek (1983) explored data on third party motor insurance claims in Sweden
for the year 1977. Part of the data is reproduced in Andrews and Herzberg (1985) and the
complete data is available from the Stalib database (http://lib.stat.cmu.edu/). The
data were compiled by the Swedish Committee on the Analysis of Risk Premium in Motor
Insurance. The dependent variable Y is the number of claims, the number of insured in

policy years is used as offset (see Subsection 2.1) and possible risk variables are as follows:
e kilometres: kilometres travelled per year (categorized into 5 classes)
e zone: geographical zone (9 zones available)
e bonus: no claims bonus: equal to the number of years plus one, since last claim

e make: 1-8 represent eight different common car models. All other models are combined

in class 9.

To compare the Poisson model with the negative binomial model we fit the data to both
models. We use all given variables, since they are all significant. In this example we code all
explanatory variables as categorical factors and we ignore interactions to prevent a high loss
of degrees of freedom. For the Poisson regression model the residual deviance is given by
2966.1 on 2157 degrees of freedom. Since the residual deviance is considerably larger than
the degree of freedom, overdispersion can be suspected. This is confirmed by a negative
binomial regression model fit, which reduce the residual deviance to 2231.17 on 2156 degrees
of freedom. However, the overdispersion parameter a is estimated to be a = 0.009. Before
one can conclude, that the lack of fit in the Poisson model is caused by overdispersion,
one has to check the residuals and the specification of the link function. The plots of the
deviance residuals of both models (not given here but given in Sikora 2002) are quite similar
and clustered around zero, so that it can be excluded, that mean specification fits the data
reasonably well. At last we checked the link specification with a plot of the number of

claims against the linear predictor estimates, which also showed no lack of fit. Therefore,
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it is reasonable to assume, that the high residual deviance is caused by overdispersion in
the data. To quantify the overdispersion and to check, whether a Poisson regression model
must be refused for this data, we determined the p-value curves, introduced in Section 3.2
given in Figure 3, corresponding to the modified rejection area given in (6.2). We modified
the rejection area since the simulation results presented in the Appendix indicate that the

original test is too liberal in small samples.

o o
-
© «©
o <)
© ©
3 © ER
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> >
S s =
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o~ ~N
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doi=1.75 =1.82 dol=3.05 =3.24
o o
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1.70 1.75 1.80 1.85 29 3.0 3.1 3.2 33 3.4
dOoquantil dOoquantil

Figure 3: p-values using different discrepancy measures d(.) (top left: dy(a), top right: d(a),
bottom left: d,(a),q = 0.90, bottom right: d,(a),q = 0.95) for the automobile claims data

The top left panel shows the p-value curve with respect to a. It illustrates, that one has
to accept the minimal value ag, = 0.0094 for rejecting the hypothesis H : a > a¢ to validate
the Poisson model with a 10% significance level. Note the significance level is 10%, since
we use (6.2) as rejection region. For this a level test the horizontal cut lines are are § and
1 — 3. The value ag, = 0.0094 seems to be very small, since a = 0 indicates a model without
overdispersion, so that we would tend to accept the Poisson model. But we already noted,
it is difficult to interpret the value ag, and therefore it is more useful to consider the p-value

curve respect to other discrepancy measures such as d(a) or d,(a). The right panel in the
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above line shows the curve respect to d(a) with d(a) = 1 + amax;{i;}. Here, it results in a
value dy = 33.2 to reject the hypothesis H : d > dy at 10% significan level. Therefore, if one
wants to validate the Poisson regression model, one has to accept, that the maximal variance
of the negative binomial regression model is 33 times larger than the maximal variance of
the Poisson model. This large value of dy can of course not be accepted, so that we are
inclined to use negative binomial regression for this data. This example illustrates in an
impressive way, how misleading the results based on the dispersion parameter estimate can
be. It shows, how important it is, to use a discrepancy measure, which is easy to interpret.
Finally, we check the composition of the data and find, that the large value of dy = 33.2 is
caused by a large maximal mean estimate fimax = 3429.7, whereas the 90% quantile of the
estimated means [i; is only 87 and 95% of the estimated means take on only values between
0 and 238. Therefore it is useful to consider the p-value curves respect to the discrepancy
measure d,(a) as defined in (3.5). The bottom left panel shows, that for 90% of the data, the
maximal deviation in the variances between the Poisson and the negative binomial regression
model is only 1.82. In the bottom right panel the corresponding result for ¢ = 0.95 are given,
yielding a minimal value of dy, = 3.24 here. This shows that if one is willing to disregard
outlying observations causing a large expected mean value, then only a moderate increase
in the variance needs to be tolerated when a Poisson regression model is used compared to
a negative binomial regression model. If one does not want to disregard these observations,

a change from the Poisson to the negative binomial model is required.

4.2 Patent data

Wang et al. (1998) investigated data on patents US high-tech firms in 1976. The dependent
variable Y; here is the number of patent applications and explanatory variables are R&D,
which describes the annual research and development spending, and annual Sales. Using

model selection techniques (for details see Sikora 2002) we select the following specification

for p; = E(u;)
log(11;) = Bo + BLR&D/Sales + BoV/ R&D + B3R&D/Sales x V R&D (4.1)

for our comparison. A Poisson regression model for mean specification (4.1) gives a residual
deviance of 377.18 on 66 degrees of freedom, which is reduced to 78.55 on 65 degrees of
freedom with an estimated overdispersion parameter a = 0.29. We checked as in the previous

example that the better fit of the negative binomial model is likely to be caused by the fact
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that it allows for overdispersion. While in the first example the dispersion parameter was
estimated to be close to zero (@ = 0.009), it is here estimated to be @ = 0.29. We again
determine the p-value curves corresponding to the rejection area (6.2) for this data set

for different choices of discrepancy measures (Figure 4). The top left panel shows the p-
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Figure 4: p-values using different discrepancy measures d(.) (top left: dy(a), top right: d(a),
bottom left: d,(a),q = 0.90, bottom right: d,(a),q = 0.95) for the patent data

value curve respect to a. It results a minimal value ag, = 0.37 for rejecting the hypothesis
H :a > ap and to accept the Poisson model. In contrast to the first example (where the
minimal value was ag, = 0.0094) this value seems to be larger and we tend to reject the
Poisson model. To quantify the overdispersion in a more interpretable way, we now consider
the p-value curve respect to the discrepancy measure d(a) given by the top right panel.
As we have already expected, this figure confirms the rejection of the Poisson model, since
the minimal value for rejecting the hypothesis H : d > dy at a = 10% is dy = 121. This
means that to validate the Poisson model, one has to accept, that the maximal variance in
the negative binomial model is 121 times larger than the maximal variance in the Poisson

model. This value is very large, so that we should use the negative binomial regression
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to model this data. It remains to check the data for observations which produce extreme
mean values. While the maximal estimated mean value is 321.7, 95% of the expected patent
applications take on values between 0 and 111.2, and the 90%-quantile of the estimated
means is 72.6. Since 90%- and 95%-quantiles of the estimated means are quite lower than
the estimated maximum, it is useful to consider the p-value curves respect to the discrepancy
measure dy(a). In the Figure 4 the bottom left panel shows the p-value curve with respect to
the 90%-quantile, while the bottom right one gives the one with respect to the 95%-quantile.
Both bottom panels result in large minimal values dy, = 28.1 and dy, = 42.5 respectively
for rejecting the hypothesis H : d > dy. This implies, that the maximal variances of both
models differ by a factor of about 28 and 42, which can not be accepted. In contrast to the
first example a consideration of the discrepancy measure d,(a) does not lead us to change
our advise to use the negative binomial regression model instead of the Poisson regression
model in this example. As we have already suspected from the large drop in the residual
deviance, the quantification of the overdispersion effects by using p-value curves confirms in
all panels of Figure 4 the rejection of the Poisson model and we advise to change to the more

appropriate negative binomial regression model for this data set.

5 Summary and Discussion

We developed in this paper discrepancy measures between a Poisson regression model and
a negative binomial regression model which can be easily interpreted by the experimenter.
These measures can also be interpreted as giving approximate bounds on the underestima-
tion of the standard errors of the regression parameters when a Poisson model is used while
the true model is an negative binomial model. These measures are then used to construct
asymptotic a-level tests for one sided null hypotheses, which allow for the quantification of
overdispersion effects in terms of the interpretable discrepancy measures. Such a quantifica-
tion of overdispersion effects cannot be achieved using score tests commonly developed for
the detection of overdispersion.

In a simulation study (see Appendix) we show that the original proposed asymptotic test
with rejection area (2.4) is too liberal in small sample sizes and as a result we modified the
rejection area to (6.2), which gives approximately a-level tests in moderately large sample
sizes (n > 100). We applied these tests to 2 data sets with moderately large sample sizes,

where we feel comfortable to apply the modified test (6.2). Considering a modification of
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the original discrepancy measure we can also adjust for the effects of outliers in the mean
space.

Even though this paper concentrates on the quantification of overdispersion effects when a
Poisson regression model is compared to a negative binomial regression model, the approach
presented can be also used to consider other overdispersion models such as the generalized
Poisson regression model (see Consul and Famoye 1992) or the double Poisson family of Efron

1986. Currently we investigate these extensions of the approach developed in the paper.

6 Appendix(Simulation study)

We investigated the small sample performance of the asymptotic test proposed in Theorem
2.1 through an extensive simulation study. To assess the small sample performance we
determined estimates of the power function and the corresponding p-value curves for the
discrepancy measures introduced in Section 3.1. In particular we examined the following

questions:
e How does the sample size n influence the test performance?
e Does the range of means influence the test performance?
e Does a different value of the signal to noise ratio influence the results?

To answer these questions we generated negative binomial data sets Y; ~ NB(u;,a) with
i = exp(xiB) and x! = (1, z;), i.e. only a single covariate was used. The values for x;, i =
1, .., n, were chosen equally spaced in a given interval. The data sets were generated with two
different sample sizes, n = 25 and n = 100. For the range of the p;’s we chose two different
intervals. For the first range interval we chose the regression parameters 3, and [; in such
a way, that the resulting means y; vary in the interval %/:L < i < %ﬂ Vi=1,.,n, where
= % * , ;. The second range for the means p; satisfies iﬂ < i < %/:L Vi=1,.,n.

Finally, we considered the signal to noise ratio, which is defined as

E(Y;
SN (a, p;) = # (6.1)
/ Var(Y;)
For the negative binomial case we have SNyg(a, i1;) = \/% = lféu" We then fixed
pitap i

the two pairs (a; 1) = (0.3;3) and (a;z) = (0.63;100), for which the resulting SN(a, f1)
has a value of 1.25. With two other pairs (a; ) = (0.15;10) and (a; z) = (0.24;100) the
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resulting value of SN(a, 1) is 2. Since the mean values are determined by the covariates
and the regression parameters, the desired SN (a, 1) are only approximately achieved. The
parameter sets (a, p, n, &;, 3), which are close to the described conditions are summarized

in Table 1.

Simulation of the power function

At first we examined the behavior of the power function corresponding to the validation test
for H : a > ag versus K : a < ag defined in Theorem 2.1. The power function is given
by f(a) = P(reject H : a > ag) with the rejection region of the validation test given by
@(HZA) < «. For the hypothesis H : a > ay we chose 4 different values for ay, namely

~

o(B.a)
ag = 0.3,0.63,0.15 and 0.24. For each parameter set in Table 1 we determined an estimate

of the power function £(a) based on 300 simulated data sets. The resulting 16 estimated
power functions are summarized in 4 groups which have the same ay. We carried out this
study for levels of significance @ = 0.05,0.1 and 0.15, but we present in Figure 5 only the
results for @ = 0.1. The other results can be found in Sikora (2002, page 89-91).

At the vertical line a = a( one is accepting an error of a = 0.1, i.e. the power function
at this point should asymptotically not be larger than 0.1. Since all curves cut the vertical
line above the value 0.1 (horizontal dotted line), it can be concluded, that the asymptotic
test is liberal in small samples. Moreover, in all 4 groups it can be seen, that the sample
size influences the test results, since the curves corresponding to a large sample size n = 100
(parameter sets 2,4,6,8,10,12,14 and 16) are steeper at a = ag and the corresponding tests
are less liberal. To get information about the influence of the range of the means, one has
to compare the 1st with the 3rd and the 2nd with the 4th parameter set in each group. The
curves of the 1st and the 3rd parameter set, and of the 2nd and 4th respectively, are quite
similar, so that we can conclude, that the range has minimal influence to the test results.
Comparing the two panels in the first column with the two panels on the right, one can
find out some differences in the level of errors at the vertical line a = ay. The curves on
the left side cut the line a = a¢ at a higher level than the curves on the right. The only
difference in the parameter sets between these groups is the value of . While for the 1st
and 3rd parameter set i was chosen as 3 and 10, it takes on the value 100 for the 2nd and

4th parameter set on the right. We conclude, that a larger fi (see right side) induces a less
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liberal test. As we have seen in Figure 5, the validation test is a very liberal test in small
samples. To reduce this problem, we propose to change the actual rejection region to the
following rejection law:
Reject the hypothesis H : a > ag versus K : a < ag at a level of significance «, if and only if
(L)< (6.2)
a(B,a)’ — 2

With this change the test is less liberal, which can be seen at the horizontal solid line in

Figure 5, which represents the new level of significance & = 0.2. For the groups with a
sample size n = 100 the curves cut the vertical line a = a( at a level around this value 0.2,

so that we can accept this new test as an a-level test for larger sample sizes.

p-value curves respect to dy(a)

Since we generate random variables the consideration of only a single p-value curve per
parameter set can lead to wrong conclusions. Therefore, we repeat the construction of the p-
value curves (3.6) 20 times for each parameter set and calculate the values ag, = % "1 Qo
and ag; = % i ag, as the cut points of the curves with the levels P =0.05 and P = 0.95.
The values ag;, is the value for which in data set i the test based on (6.2) for K : a > ay,
versus H : a < ag, is rejected at level o = .1, while ag,, gives the value in data set i for which
the test based on (6.2) rejects H : a < ag,, versus K : a > ag,, at a = .1. Therefore ay
gives the average value of dy(a) for which the negative binomial model can be discriminated
from the Poisson model, while ag, gives the average value of dy(a) for which the Poisson
model can be validated. The values ag,, ag and the percentages of the deviations a — ag;
and ag, — a are summarized in Table 2.

The p-value curves for all parameter sets can be found in Sikora (2002, page 97-100), while
we present here only the curves of the first group with ¢ = 0.3 and g = 3. In Figure 6 the
values ag; and ag, are shown by a vertical solid line and the true value of a is shown by a

vertical dotted line.
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Discrimination Validation

of Poisson of Poisson

PS n | SN(a, i) i range true | ag | true a — @y | Goy | Gou— true a
interval pi; a in % in %
1 25 1.25 3] [1.5;4.5] |0.30|0.16 47% 0.41 37%
21100 1.25 31 [1.5;4.5] |0.30|0.22 27% 0.35 17%
31 25 1.25 31[0.75; 5.25] | 0.30 | 0.18 40% 0.47 57%
41 100 1.25 31[0.75; 5.25] | 0.30 | 0.22 27% 0.35 17%
51 25 1.25 100 [50 ; 150] 0.63 | 0.34 46% 0.88 40%
6 | 100 1.25 100 [50 ; 150] 0.63 | 0.47 25% 0.74 17%
7| 25 1.25 100 [25 ; 175] 0.63 | 0.34 46% 0.89 41%
8 1 100 1.25 100 [25 ; 175] 0.63 | 0.49 22% 0.77 22%
91 25 2.00 10 [5; 15] 0.15] 0.05 67% 0.16 7%
10 | 100 2.00 10 [5; 15] 0.15 ] 0.11 27% 0.19 27%
11] 25| 2.00 10| [25; 17.5] | 0.15 | 0.07 53% 0.21 40%
12 | 100 2.00 10 | [2.5;17.5] | 0.15 | 0.09 40% 0.16 7%
13| 25 2.00 100 [50 ; 150] 0.24 | 0.12 50% 0.33 38%
14 | 100 2.00 100 [50 ; 150] 0.24 | 0.18 25% 0.29 21%
15 25 2.00 100 [25 ; 175] 0.24 | 0.11 54% 0.31 29%
16 | 100 2.00 100 [25 ; 175] 0.24 | 0.17 29% 0.28 17%

Table 2: Results of the p-value curves respect to dy(a)

The influence of the sample size can be seen by comparing the 1st with the 2nd and the 3rd
with the 4th panel. In both cases the length of the interval [ag;; ag,] is cut in half, switching
from the curves of the parameter sets with sample size n = 25 (PS 1 and 3) to the curves
of the parameter sets with n = 100 (PS 2 and 4). Therefore, the larger the sample size
is, the smaller is the interval [ag; Ggy]. One can get the same results considering the values
in Table 2, especially comparing the percentages of the deviations of ay and ag, from a,
respectively. Only the third group shows a somewhat different behavior, which might be
explained by the randomness of the data. To decide which model should be used, the value
Qo should to be considered. In the 1st and 3rd parameter set with n = 25 a dispersion
parameter index ag = 0.41 or 0.47 must be accepted to hold the Poisson model. But if one
is willing to accept only a value @g, = 0.16 or 0.18, then the effort is justified to switch from
the Poisson to the negative binomial model. For the other parameter sets with n = 100 the
interval between @y and @, is much smaller, so that the area in which no decision can be
taken, is reduced. In these cases one has to decide whether the value ag, is low enough to

accept and to validate the Poisson model. Comparing the first column of panels in Figure 6
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with the second column one gets informations about the influence of the range of the means.
Since the left panels are quite similar (the right panels respectively), we can conclude, that
the range does not influence the shape of the p-value curves with respect to dy(a). Since
it is difficult to interpret the magnitude of dy(a) we now present the results with regard to
d(a) which gives the maximal change in variances when changing from a Poisson model to a

negative binomial model.

p-value curves respect to d(a)

As in Table 2 we summarized all results of the values dg, = % 2?21 dyy,; and do; = % 2?21 dyy,
(cut points of the curves with levels P = 0.05 and P = 0.95), and their deviations d — dy

and dg, — d in percent in Table 3 for all parameter sets.

Discrimination Validation
of Poisson of Poisson

PS n | SN(a, i) i range true dy | true d — dy, dou | dou— true d
interval u; d in % in %
1 25 1.25 3 [1.5 ; 4.5] 2.41 1.63 32% 2.63 9%
21100 1.25 31 [1.5;4.5] 2.33 | 2.06 12% 2.69 15%
31| 25 1.25 31[0.75 ; 5.25] 2771 2.19 21% 4.06 47%
41100 1.25 31[0.75 ; 5.25] 299 | 2.43 19% 3.25 9%
51| 25 1.25 100 [50 ; 150] 94.50 | 52.31 45% 132.49 40%
6 | 100 1.25 100 [50 ; 150] 94.50 | 73.28 22% 114.06 21%
71 25 1.25 100 (25 ; 175] 108.55 | 56.17 48% 142.89 32%
& | 100 1.25 100 (25 ; 175] 102.79 | 80.45 22% 125.31 22%
91 25 2.00 10 [5; 15] 3.23 | 1.84 43% 3.57 11%
10 | 100 2.00 10 [5; 15] 3.23 | 2.70 16% 3.89 20%
11 25 2.00 10 [2.5 ; 17.5] 3.84 | 2.22 42% 4.80 25%
12 | 100 2.00 10 [2.5 ; 17.5] 3.61 2.70 25% 3.82 6%
13| 25 2.00 100 [50 ; 150] 38.45 | 19.80 49% 54.64 42%
14 | 100 2.00 100 [50 ; 150] 36.62 | 28.79 21% 46.14 26%
15| 25 2.00 100 [25 ; 175] 42.38 | 18.99 55% 52.97 25%
16 | 100 2.00 100 (25 ; 175] 42.38 | 31.30 26% 50.49 19%

Table 3: Results of the p-value curves respect to d(a)

In Figure 3, which shows the first group of parameter sets, the true value of d is shown
with a vertical dotted line, while the values dy, and do, are shown with a vertical solid line.

The horizontal solid lines represent the p-values P =0.05 and P = 0.95. The p-value curves
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of the other groups are given in Sikora (2002, page 107-110). Comparing again the 1st with
the 2nd and 3rd with the 4th parameter set, we can see the influence of n, since the 1st and
3rd panels show the curves of parameter sets with n = 25 and the 2nd and 4th panels show
curves of parameter sets with n = 100. In both cases the length of the interval [dy; do,] is
roughly cut in halves when switching from the 1st to the 2nd and from the 3rd to the 4th
panel. Considering the percentages of deviations of dy; and dg, from d, we can find the same
behavior as in Table 2. The larger n is, the smaller is the deviation. Only the deviation
do, — d in Parameter Set 1 does not behave in this way, which can be seen in panel 1. In
Group 3 (not shown here) we observe also some asymmetric behavior of the data. To decide,
which model should be used, the value dg, has to be considered. Comparing all 4 panels, the
maximal value is dg, = 4.06 in Parameter Set 3. Accepting at most a deviation of 4 in the
variances of both models, the Poisson model can be accepted in all 4 cases. This situation
changes in Group 2 and 4 (see values dy, in table 3). In these groups a Poisson model can not
be accepted, since dy, takes on values of 50 and more, which indicates a maximal variance
of the negative binomial model 50 times larger than the maximal variance of the Poisson
model.

The different results between the groups can be explained by the large i = 100 in Group
2 and 4, which leads to very large values dg,, so that the Poisson model must be rejected.
To get informations about the influence of the range of j;, we compare the 1st with 3rd and
2nd with 4th parameter set. The results in Table 3 confirm, that the larger the range of yu is
(PS 2 and 4), the more the curves are moved to the right. The consequence of this behavior
is, that in parameter sets with a large range of u, the Poisson model is more difficult to
validate, since dg, takes on larger values.

Comparing now the first two groups with the last two groups to get results about the
influence of the signal to noise ratio, we can not find any remarkable differences in the %
deviations from the true discrepancy for similar zi and same sample size n. We conclude that
it is not the signal to noise ratio which influence the results of the test, but only the value
of fi. The larger [ is, the larger is dy, and the more the Poisson model must be rejected in

favor of the negative binomial model.
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Summarizing the results of the simulation study, we see that the asymptotic test with
rejection area (2.4) is too liberal in small samples, a modification of the rejection area to
(6.2) gives a reasonable size a— level test in small samples with n > 100. A higher sample
size produces steeper power functions and reduces the interval between discrimination and
validation of the Poisson regression model when p-value curves are used. Finally, the signal
to noise ratio has little influence both on power curves and p-value curves, while a larger j

makes the tests based on (2.4) or (6.2) less liberal.
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