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Abstract

We consider a Poisson model, where the mean depends on cer-
tain covariates in a log-linear way with unknown regression param-
eters. Some or all of the covariates are measured with errors. The
covariates as well as the measurement errors are both jointly nor-
mally distributed, and the error covariance matrix is supposed to
be known. Three consistent estimators of the parameters — the
corrected score, a structural, and the quasi-score estimators — are
compared to each other with regard to their relative (asymptotic)
efficiencies. The paper extends an earlier result for a scalar covari-
ate.



1 Introduction

The Poisson regression model is one of the basic models used to ana-
lyze count data, Cameron and Trivedi(1998), Winkelmann(1997). The
response variable Y has a Poisson distribution with a parameter A that
depends log-linearly on a vector of covariates X: log A = By + 8, X. The
regression parameters 3 = (3o, 3, )" are to be estimated.

When working with this model, it is often assumed that the covariates
are measured without errors, and then maximum likelihood (ML) leads
to consistent and asymptotically efficient estimates of the regression pa-
rameters. It is, however, well-known that the presence of measurement
errors U in the covariates destroys this nice picture, for the linear model
see Schneeweiss and Mittag (1986), Fuller(1987), Cheng and Van Ness
(1998), Wansbeek and Meijer (2000). The naive ML estimator, which
does not take the errors into account and works with W = X + U in place
of X, is asymptotically biased.

In order to eliminate this bias, several methods have been proposed, see
Cameron and Trivedi (1998), Carroll et al (1995). Most of them depend
on the assumption that the error variances and covariances are known, an
assumption that we also adopt.

The corrected score estimator is based on the log-likelihood function
(or, alternatively, the score function) of the error-free model corrected for
the measurement error. This approach has been promoted by Stefanski
(1989) and Nakamura (1990); for its application to the Poisson model see
Carroll et al (1995). This approach does not utilize the distribution of the
covariates X . It is therefore a so-called functional method.

By contrast, structural methods work with the assumption that the
distribution of X is known, possibly except for a finite number of unknown
parameters. Here we assume that X is Gaussian. A well-known method
within this class is based on a quasi-score function that is constructed us-
ing the conditional mean and variance of ¥ given W, Armstrong (1989),
Caroll et al (1995), Thamerus (1998). The resulting (structural) quasi-
score estimator is consistent and asymptotically normal. We here propose
another, simpler, structural estimator that only uses the conditional mean
of Y given W. It can be constructed either by solving an appropriate un-
biased estimating equation or, equivalently, by maximizing a criterion
function, both based on conditioning ¥ on W. The resulting structural
estimator may not be efficient as compared to the quasi-score estimator,



but it is much simpler, and it also serves as an intermediate type of es-
timator when it comes to comparing the relative efficiency of corrected
score and quasi-score estimators.

The purpose of the paper is to compare the asymptotic covariance ma-
trices of the three consistent estimators of 5 mentioned above: corrected
score, structural, and quasi-score estimator. It turns out that the covari-
ance matrices can be ordered according to the Loewner order relation,
the corrected score estimator having the largest covariance matrix. This
result holds true for any values of the error variances.

For small error variances the covariance matrices tend to become equal
up the order of squared error variances. This result generalizes a corre-
sponding result for the scalar case found in Kukush at al (2001).

The paper is an extension of the scalar case, see Shklyar and Kukush
(2002), to the case of a vector valued covariate X. The elements of X
need not all be measured with errors, some can be free of errors. It is
an advantage of this extension that error-ridden and error-free covariates
can be treated simultaneously, see also Augustin (2002).

Section 2 serves to introduce the Poisson model. In Section 3 the cor-
rected score estimator is introduced and its asymptotic covariance matrix
is determined. The same is done for the structural estimator in Section
4, and in Section 5 the two covariance matrices are compared. A further
comparison with the quasi-score estimator is accomplished in Section 6.
Section 7 deals with small measurement errors, and Section 8 concludes
with some additional remarks.

2 The model

We consider the joint distribution of an integer valued random variable
Y and a p-dimensional random vector X. X is normally distributed with
mean vector u, and a positive definite covariance matrix X,:

X ~ Nz, Xz).

The conditional distribution of Y given X is a Poisson distribution with
parameter A, which is the conditional expectation of Y given X:

A = E(Y|X).



The dependence of A on X is given by
A= \(X, ) = exp(Bo + B, X),

where 3 = (80,8, )", Bo and B, being the unknown parameters of interest
(and T is the transposition sign).

We assume that all or some of the components of the covariate vector
X cannot be observed directly. Instead we observe the p-dimensional
surrogate variable W, which is related to X by the equation

W=X+T0,

where U is an unobservable measurement error vector, which is assumed
to be independent of X and Y. We further assume that U ~ N(0,X%,)
and that ¥, is known. If a component of X can be observed without
measurement, error, the corresponding component of U vanishes and the
corresponding row and column of ¥, are zero. Thus ¥, need not be
positive definite.

We observe n independent realizations of (Y, W) denoted by (Y;, W;),
1 =1,...,n, from which 3y and 3, are to be estimated.

Apart from By and j,, there are also the nuisance parameters u, and
¥, which typically have to be estimated as well. This can be done easily
by computing

fr =W := Xn:(Wi - Wi =W)T,

S|
S|

Xn:Wi and flw =8, =
i=1

and setting fi, = fi,, and f)m = f)w — ¥, assuming that the latter matrix
is positive definite. Here, however, we suppose that p, and 3, are known.
This assumption is convenient when it comes to comparing the asymptotic
covariance matrices of various estimators of 5. The assumption may be
appropriate for cases where the distribution of X has been studied with
a lot of data in advance of the main study of interest.

We suppose that the true value of 3 lies in the interior of a prespecified
compact subset © of RPH+!,



3 The corrected score estimator

3.1 The estimator
The log-likelihood of the error free model is given by

n

Qr(b) =) [Viln A(X;,b) — A(X,D)] (1)

i=1

with b = (by,b,) " € © and A(X;,b) = exp(by + b, X;). If we replace the
unobservable variables X; by the observable surrogates W;, we arrive at
the criterion function for the so-called naive estimator, which is found by
maximizing

n

Qnaive(b) = > _[Viln A(W;,b) — \(W;,b)], b€ O.

i=1

The resulting estimator Bnaive would be the ML estimator if W were
measured without errors, i.e., if W = X, and in this case it would be
consistent. But as X; has been replaced by W;, the estimator Bnaive is
inconsistent. To construct a consistent estimator, we have to correct for
the measurement error. Let us denote a typical term of the right hand
side of (1), dropping the index i, by

q(X,Y,b) =Y In A(X,b) — A(X,b).
We are looking for a “corrected” function geor(W, Y, b), such that

E (¢eor (W, Y,0)|X,Y) = q(X,Y,b),
see Carroll et al (1995), Chapter 6. Such a function is given by

Geor = Y In \(W,b) — exp (—1b) Zy,bs) A(W, b) (2)
because
E[ln A\(W,b)|X] = E(bo + b, W|X) = by + b, X = In \(X,b)

and

E[N(W, b)|X] = exp(by + b, X)Eexp(b, U) = A\(X,b) exp (1b, Z,b,) ,



see also Lemma 1 below. The corresponding corrected criterion function
is
Qoor(D) = Y [ViIn A(W;, b) — exp(—13b] Suby ) A(W;,b)]
i=1

and the estimator Bcor is a measurable solution to

Beor € arg max b).
/BCOI" g be(“) QCOI‘( )
Note that Bcor is a solution to the corrected unbiased estimating equation

0
%Qcor(b) =0

It is therefore called a corrected score estimator. This estimator is strongly
consistent, and \/n(Beor — 3) converges in distribution to N (0, Xcor), where
Yecor can be found by the following sandwich formula.

Define the corrected score function by

S Y,0) = £aeor (W, Y:0),

and let S = S(W,Y, ) and

oS
A__EW, B—COVS. (3)

Then, see Kukush et al (2001),
Yeor = A 1BAT. (4)

We are going to evaluate this matrix. We will see that A is nonsingular.

3.2 A lemma

In the sequal, we will often use the following easy to prove lemma and its
corollaries

Lemma 1. Let W ~ N(uy,2y) and let f be an arbitrary function for
which the following expectation exists. Then, with A\(W,b) = exp(by +
by W),

E[f(W)X(W,b)] = exp(bo + by fru + 2b) Dby )E[f(W + Zyby)].  (5)



1
Proof. Let Z ~ N(0,I). Then W and p,, + £3Z have the same distri-
bution and therefore

E[f(W)NW,0)] = E [ (10 + S62)Nptu + SHZ, )]
— (2mt /f(uw +Shz) exp (bo + 0] + 5] Sz — $272) dz
= (2m) 7% exp (bo + by pw + 167 Tuwba)
x /f(uw +T22) exp 16— 220,) 7 (2 — Eébm)] dz
= exp (bo + b] ftw + L7 Suby) E[f (s + S22 + Suby)],

which is equal to the right-hand side of (5). ¢

Lemma 1 has two corollaries. The first one follows from Lemma 1 by
applying it to the conditional distribution of W given X, which is W|X ~
N(X,X,), and by replacing p,, and ¥, with X and ¥,,, respectively.

Corollary 1. Let W|X ~ N(X,X,) and let f be an arbitrary function
for which the following expectation exists. Then, with A(W, b) = exp(bo +
b W),

E[f(W)AW,b)|X] = exp (3b] Subs) MX,DE[f(W + E,b,) | X].  (6)
For the second corollary, simply note that A\2(W,b) = A\(W, 2b).
Corollary 2. With the assumptions of Lemma 1,
E[f(W)X*(W,b)] = exp(2bo + 2b, pus + 2b, Sube)E[f (W + 28,b,)] (7)
and with the assumptions of Corollary 1,
E[f(W)A? (W, )| X] = exp(2b; Suby )N (X, DE[f (W + 28ub,)| X (8)

3.3 Evaluation of A
We have

_ Y — e 382 \(W, )
o= ( VIV — (W = 48, e 405 58 A1, 9 ) ©



and

0S _1gT
a5~ ° 20 2ule (W, B) (10)

1 (W - Euﬂz)T
AW =SuBe (W =) (W —5,8,)T =%, |-

Taking the expectation of (10) and applying Lemma 1 with b = 8 and
noting that p, = p, and X, = ¥, + ¥, we find

A = PotBs tat3By Saba
(i, ez )
W+ 3.8 (W+ZpBe)(W + 5u8:) T — By,
—  Bo+By tat 3B, Tulbe (11)

() s )
Mo + 2z (Nx + 290695)(/%0 + 2xﬂz)T + X,

Note that A turns out to be symmetrical. Inverting A, we get from (11):

Al = o (BotB; patEB, Buba) (12)
X <(Uz+2z5z)—r E;1 (He+X2P2) +1 _(Ezlﬂz'i'ﬂm)—r) .
_(Eglﬂz + B:) E;1

3.4 FEvaluation of B

Hereafter, in symmetrical matrices, we will often write down only one of
the two corresponding symmetrical entries.
We have from (9) with A = \(W, ) :

g VW'
—2Y e~ 384 Db ) —Y(2W — ,8,) " e 28 Buba )
4+ o0 Subs )2 +(W = S,8,) T e Bs Bube )2
887 = V2WwwT
“YWW = Sufe)” + (W —ZyfB) W]
x e~ 382 Zubs )\

+(W - Euﬁw)(W - Euﬂz)T e_BIE”BE )\2
(13)



We observe that ES = 0. This follows by applying Corollary 1 with b = 3
to the evaluation of E(S|X). As to the various parts of S in (9), we find

E(Y|X) = (X, 8),
e~ 20 2B BINW, B)|X] = A(X, B),
E(YW|X) = E[E(YW|X,Y)|X] = E(Y X|X) = A(X, §)X,
o3IVl B[(W — 2, 8,) AW, )| X] = A(X, B)X
and then E(S|X) = 0. Hence B can be written as
B=ESST. (14)

Applying Corollary 1 and 2 (8) with b = §, we find from (13) with A :=
A(X, B):

E(SST|X,Y) =
Y2 _ 2V V2XT —Y(2X +3,8:) T\
4 eBTELBL )2 +efa Tubs (X 4+ %,8,) T2
V2(XXT +%,) (15)
—Y[(X + ZuB)X T + X(X +Suf,) TN
—2YT,\

+ 0% ZuBe [(X + 5,8, )(X + Zufe) T + D] A2
Remember that by the properties of the Poisson distribution
E(Y?X) = A(X, B) + X*(X, B).

Therefore, taking the expectation of (15) with respect to ¥ and using
again the abbreviation A = A\(X, 8), we get



T _ 1 X7
Elsstix] = ’\<X XXT+ZJU>

—1+ B2 Zubs —XT —BT's,
+ eB;EuBm (X + Euﬂz)T

2
+A (XXT+%,)

(X +2,8:)X T + X (X4X,8.)T] — 2%,
+ 878 [(X 4+ Bu8,)(X + SuBe) T + Bu

1 X7
= A T
X XXT+3,

Bl SuBa _ 2 1 XT+B;Eu
+(e 1)>\ < o (X + Euﬁz)(X + Euﬁx)—r + Z:u

5 (0 0
A (o 5887 2)'

Applying again Lemma 1 and Corollary 2 (7), but now with W re-
placed by X ~ N(p.,X.), we finally get

B = E[E(SS'|IX)]=
= exp (Bo + By tte + 38, SaBa)
“ ( 1 (fte + TafB) T )
o (e + D Be) (e + Zefe) " + Su
+exp(260 + 267 pto + 28] o B,) (€% 0P _1)
y ( 1 e + (S + Z)8.1 7 )
o e 4 (S + 22)Ba] [t + (Bu + 52)Ba) | + S

+ exp(250 + 2ﬂ;p’z + 25;—21&10) <8 EﬂﬁfﬁTzﬂ) . (16)

3.5 Change of basis

In order to simplify the expressions for A and B, see (11) and (16), we
introduce

9= pie + 325

10



and

_ (1 g7
(o)

Then
A=RTAR (17)
with 1 0
Ar = exp (Bo + B, pe + 38, SaBe) <0 296) (18)
and
B=R'B|R (19)
with

1 0
B = exp (B + 8 s + 55728) (g )

+exp(280 + 28] o + 28] Ty Ba) (% ZuP= —1)
x ( 1 B7 S )
Yuwle Ewﬁmﬁ;rzw + X

+ eXP(QBO + 26;11% + 26;295690) <8 EuﬂzOﬂTEu> - (20)

Here we used the identity
1 0\ /1 T 1 g™\ (1 (g+h)T
g I)J\h AhT+H)\O0O I ) \g+h (g+h)(g+hT+H)"

3.6 Final expression for X,
From (4), (17), and (19) we have

RYeorRT = A7 By ALY
and hence, by (18) and (20),

_ T 18T 1 0
RECOrRT —e (60+Bm Mm+231 Emﬂm) <0 E;lzw2;1>

T -1
BT DB _ B;—Emﬁz) 1 Be LuwXy
+ (e (§ < Ez_lzwﬁmﬁ;l—zwzm—l + 2;121”2;1

8T 5.6, (0 0
+e (0 Em12u5z5;2u2m1>' (22)

11



4 A simple structural estimator

4.1 The estimator

The corrected score estimator is constructed without using the distribu-
tion of X. (In the previous section we used the distribution of X only in
order to evaluate the asymptotic covariance matrix of the corrected score
estimator B.or.) There is, however, a completely different approach to
the construction of consistent estimators, which utilizes the distribution
of X, here specifically the fact that X ~ N(u.,X.). The idea is to set up
unbiased estimating equations with the help of the conditional mean and
possibly also the conditional variance of Y given X. We call estimators
originating as the solution to such estimating equations structural esti-
mators because, in the theory of measurement error models, a model with
a well-specified distribution for the variable X is often called a structural
model.

A simple structural estimator can be defined via the following criterion
function. Denote the conditional expectation of Y given W by

EY|W) =: m(W, ) (23)
and replace A\(X;,b) in (1) with m(W;,b), then

n

Qs(b) = Y _[Vilnm(Wi,b) — m(W;, )] (24)

i=1

can be used as a criterion function, which yields a consistent structural
estimator as a measurable solution to

bs € argmax Qs (b).

As by assumption f is an interior point of ©, the minimum is eventually
(i.e., for sufficiently large n) found by solving the equation

0Qs(b) _ Z": Y; —m (Wi, b) dm(Wi, b)

b mvi b e (25)

This is an unbiased estimating equation. Indeed, owing to (23),

0Qs(b) _
2 (220, ) =0

12



for b = 3. Consistency of BS can be inferred from the general theory of
unbiased estimating equations, see, e.g., Heyde (1997). However, a simpler
proof can be given via the criterion function (24) along similar lines as
the conventional consistency proof for the ML estimator in an error-free
model, see also Shklyar and Kukush (2002).

The structural estimator is also asymptotically normal:

V(s — ) — N(0,%,)

with an asymptotic covariance matrix which can be computed by a sand-
wich formula similar to (4). To this purpose, we denote a typical term of
(24) by

gs(W,Y,b) =Y Inm(W,b) — m(W,b), (26)

where the index ¢ has been dropped, and define the structural estimating
function for 35 by

Y — m(W,b) Om(W, b)

Ss(W,Y,b) = . 27
( ) m(W, b) b 27)
Let Sq := Ss(W,Y, B) and let
A = —Egﬂ—sjs_, Bs = cov S (28)
Then Ay is nonsingular and
Y = A7'BAT. (29)

Before we are going to evaluate this matrix we have to determine m(W, §).

4.2 The conditional mean

As X and U are Gaussian, the conditional distribution of X given W =
X + U is also Gaussian:

X|W ~ N(uW),T),

where
T=%—%.2.'8, =%, -2, 2.'%, (30)

and
p(W) = 2,50y + S, 51 W, (31)

13



Obviously, (W) is a normal random vector:
p(W) ~ N (e, S: 55" S,). (32)
Now we consider the conditional mean of Y given X. We first have
EY|W) = EEY|W, X)[W] = EEY[X)[W] = E[MX, 5)[W].
Applying Lemma 1 with b = 3 to X |W in place of W, we finally get
m(W, B) = exp (Bo + B, (W) + 35, TB:) - (33)

For future reference, we also compute the conditional variance of Y given
W, denoted by v(W, 8), in a similar way.

U(Wa ﬂ) = E[Y2|W] - m2(Wa ﬂ) = E[A(Xa ﬂ) + )‘2(X7 ﬂ)|W] - m2(Wa ﬂ)a

and, applying again Lemma 1 and in addition Corollary 2 (7) to X|W in
place of W, we get

v(W, ) = m(W, B) + (% 7% — 1) m*(W, §). (34)

4.3 Evaluation of A,
By (27) and (33) we have

5= 0 =m0 (1 1) (35)

and

08 _ oy . 0 L ! omW. )
_W =—(Y w, ﬂ))aﬁ‘l’ </1'(W) + Tﬁm> + </1,(W) + TBz) opT -

Because of (23) the first term vanishes when taking the conditional ex-
pectation given W, and, using again (33), we get

0Ss
- <_ 987

W) = m(W,p) (36)

1 W e Y.

* <M(W) + T8y (W) + TB,) (w(W) +TB,) "

14



In order to compute the expected value of (36), we need a further
corollary of Lemma, 1.

Corollary 3. With the assumptions of Lemma 1 and with p(7W) as in
(32) and m(W, B) as in (33),

]E[m(Wa B)f{N(W)}] = €xp (BO + B;Um + %B;Emﬁx) (37)
XE{f[u(W) + £, 57" 2. 8.1}

and

E[m(W,8)* f{iu(W)}] =
exp[260 + 2B, pie + B, (Z2 + 25:3,"52) ]
x E{f[p(W) + 25,3, S, 8]} (38)

Proof. Apply Lemma 1 with u(W) in place of W and with by = 8y +
%ﬂ;Tﬂz and b, = 3, for (37) and with by = 28 + 8, TS, and b, = 283,
for (38), respectively. Finally substitute T' from (30). ¢

Now we can take the expectation of (36) and get, because of (28) and
again using (30) and (31),

A, = PotBanat3BI a0 (39)
< 1 (Nx + 2xﬁx): )
Mo + Bz Be (Nz + Exﬁx) (Nx + Exﬁz) + 29021_111295 -

4.4 Evaluation of B
By (35) we have

B , 1 (u(W) +TB:) "
SSSST =Y -m(W, )] (N(W) + T8, (W) +TB) (W) + Tﬂz)—r> .

Because E{[Y — m(W, 8)]?|W} = v(W, ), we get with (34)
E[S.ST W] = [m(W, 8) + (575 — 1)m?(W, 8)]
T ) 787
WW) +TBs (u(W) +TB8) (W(W) +TBz)" )

15



where the term with m(W, §) is the same as the right-hand side of (36).
Then, using (37) and (38) of Corollary 3, we get by (28) and (30)

T
Bs = AS + (1 — €_B;—Tﬁm) 62BO+26;|—”E+26;|—EEBE <l ZZ) (40)

with 2 = pp + (Z, + 2,3,'8,)3, and Z = 22" + £,5.15,.

4.5 Change of basis

We use the same matrix R as in Section 3.5 in order to simplify A5 and
Bg from (39) and (40), respectively. We have, see (21),

As=RTA:R (41)

with
Ay = ePotBT et 3B SaBa (é 21221&) , (42)

and
By = R"ByR (43)

with

By = A, + (1 _ e—BITBz) 0280+28] 1o +28] T2 8o

y 1 CADIS i) 3 m
DI i DG D Y0 M) VNG A D % i YIS D % Vit Y A
4.6 Final expression for 3

From the sandwich formula (29) and from (41) and (43), we have RERT =
A;'By Ayt and hence, by (42) and (44),

T _ —(Bo+BT et 387 TuBa) (1 0
RYR =e ’ (0 $o18, N0
.
AR (1_ —BITBE) 1 B (45
te ¢ B BuBT +55'm,51) (4D)

16



5 Comparison of corrected score estimator
and structural estimator

After having derived explicit expressions for the asymptotic covariance
matrices of SBeor and fs, we can now compare the relative (asymptotic)
efficiencies of these two estimators. We have from (22) and (45)

R(Zeor—2s)RT
T —1
— BB (eBIEuﬁm _1) L ) Sa Xt
SIS 8: S, BRI S,S + 5718, 8
5T5.6. (0 0
te <0 z;lzuﬁmﬁgzuz;)

OS2 (1 _ e—BzTTBz) ( 1 —cy ) _
Be BuBy + 27 i

If ¥,8, =0, then X, = Xs. We shall prove that otherwise X, > X.
We change the basis once more. Let

_ (v B
o~ (3 %)

Then .
R(Zcor — B5)RT = €% 28 DT FD, (46)
where
= (eﬁgmz _ 1) 1 B TuZ;!
DIED YNNC D e YNIC MG AID YHD Yme S BB Ymnd Y Vi

0 0
+ (0 EmlEuﬂzﬂ;EuEm1>

1 0
_ 1_6—BITBE)< B >
( 0 %1%, xt

17



To derive this formula, one may use (21) with g replaced with §,. Rear-
ranging terms we get

BITuBe _ 9 4 ¢—BITube (eﬁjzuﬁm _ 1) BTE, Tt

F=1( srs.5 -1 Bz Tufay—1 : a2y "
(e 2 ZuPz _ 1) Em Yufy €Peu mzm EUBmﬁw Euzw
e=Ba TBe _ o—B, Lube 0
+ 0 (e572u8 — 2.4 ¢=AIT82) 571w, 200
=: F1 + F2- (47)

Let us first consider F;. As

1 — e B Zube .
F = Ba ZuBa ( _ Bl Zu B T 71)
1=¢€ E;lzuﬂz 1—e y BrXuXr ),

F is positive semidefinite, and F; = 0 if ¥, 5, = 0. As to F5, let us first
note that because of (30)

S, - T =3,5,'S,.

Consider two cases: If ¥,,8, = 0, then 8] 2,8, = 3] TB, = 0and F» = 0.
If 8, # 0, then 8] %,8, > B TB, and hence

e BaTBa _ =B Suba 5 ().
Also, by the property that e* > 1+ x for  # 0,
B Tubs _ 9 4 =B TBe 5 3Ty 3 — BTTH, > 0.
Therefore F; is positive definite in this case, and so are F' and Yo — X.

We thus have proved the following main result of the paper.

Theorem 1. Let ¥, u,, and ¥, > 0 be known. If ¥,8, = 0, then
Yeor = X, otherwise, if ¥,8, # 0, then X, — 3 is a positive definite
matrix.

Note. In general, Y., — X5 is positive semidefinite. If all elements of
the vector X are error-prone and the errors are linearly independent a.s.,
then Y., — ¥ is positive definite if, and only if, 5, # 0. More generally,
if some elements of X are free of measurement errors and the errors of

18



the remaining elements are linearly independent a.s., then X, — ¥g is
positive definite if, and only if, for at least one error-prone element of X
the regression coefficient does not vanish. In this sense BS is more efficient
than feor.

6 The (structural) quasi-score estimator

The structural estimator BS defined in Section 5 is a member of a wider
class of linear structural estimators, viz. those which are given as the so-
lution to an unbiased estimating equation that is linear in the Y;. Indeed,
the estimating function (27) for f; is linear in Y. Within this class, an
optimal estimating function can be constructed using not only the condi-
tional mean function m(W,b) as in (27), but also the conditional variance
function v(W, b) of (34), see Heyde (1997). It is given by

Y — m(W,b) Om(W,b)

Sas (W, Y,0) = o(W, b) b

(48)

and is called (structural) quasi-score function. The corresponding quasi-
score estimator [y is a measurable solution to

> Ses(W;,Yi,b) =0, beO.

i=1

Note that B4 is not defined via a criterion function. Nevertheless one

can show that qu is consistent and asymptotically normal, see Kukush et
al (2002).

V(B = B) — N(0,Zqs)
with an asymptotic covariance matrix which is given again by a sandwich
formula. Let Sy := Sqs(W, Y, ) and
0Sqs
0BT’

Ay =—-E Bys = ESqsS,

as>

then
Sgs = A BgsAgs' -
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However, for a quasi-score estimator this reduces to
Sgs = B (49)

because

Ay = qu:E< 1 Bm(W,ﬂ)m(W,ﬂ)>,
v

(W,8) 08 BT

as can be easily seen from (48).

According to Heyde (1997), Sqs is optimal within the class of linear
(in V') estimating functions. As Ss belongs to this class, the difference
Y — Xgs is positive semidefinite. But we can say more:

Theorem 2. Let ¥,, u;, and ¥, > 0 be known. If ¥,8, = 0, then
Yy = Xgs; otherwise, if 3,5, # 0, then ¥3 — X5 is a positive definite
matrix.

Proof: If ¥,8, = 0, then also T8, = 0 and, according to (34),
v(W,B) = m(W,[), so that, by (27) and (48), S¢s = Ss and hence
Sgs = .

Now suppose ¥, 3, # 0. According to (29) and (49) we have to prove

ATTBATY > B! (51)
where, by (27) and (28),
1 Om Om
=2 (5 550r) o
v Om Om
Bs=E (W{Tﬁ&?) (53)

and By is given by (50). Here and in the sequel we abbreviate m(W, 3)
by m and v(W, 8) by v. (51) is equivalent to

A PBAL

=

> (Ay * Bge Ay *)! (54)
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Let

—Aié 1 Om
W= m 9B
and
v
Vo = —.
m

Then, by (50), (52), and (53), inequality (54) is equivalent to

1 —1
T LT
E(vpww') > [E(voww )] (55)
with v9 > 0 and E(ww ') = 1.

According to the Matrix Inequality Lemma of the appendix, (55) is
true if we can show for any two vectors « and y that if y "w = voz " w a.s.
then z = 0.

From (33) we get

and therefore

-1 1
w= A"} Jm (H(W) | m) . (56)
From (34) it follows that
vo=1+ (eﬁwTTB“c —1) m. (57)

Now, by the definition of T, (30), T8, = ¥,%,'¥,53, and, as %, is
nonsingular, the assumption X, 3, # 0 implies T3, # 0. Because T is
positive semidefinite, it follows that

e The _1 > 0,
From the definition of m, (33), we therefore get

vy = 1+ ceB;U(W)
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with a constant ¢ > 0.

Now suppose that for some vectors z and ¥

yT’U} = Vo l‘TUJ a.s.

By (56) and (57) this can be written as

1 T 1

with yo = As_%\/r_ny and zo = As_%\/mm. As p(W) has a density in
RP, see (32), this equality holds true for (Lebesgue measure) almost all
u € RP in place of u(W) and by continuity for all u € RP; i.e., we have,
rearranging terms,

=a)” (g ) = ol (s ) 69

for all 4 € RP. But since the left hand side of (58) is linear in p, whereas
the right hand side is exponential, (58) can only hold true if o = 0 and
thus x = 0.

This shows that the condition of the Matrix Inequality Lemma is sat-
isfied, which proves the theorem.

7 Comparison under small errors

Although, according to Theorem 2, the quasi-score estimator qu is more
efficient than the corrected score estimator Bcor, it can be shown that
their asymptotic covariance matrices are approximatly equal if the mea-
surement errors are small. To be more precise, Kukush at al (2001)
showed for the scalar case, where X was a real-valued variable, that
Seor = Bgs + O(ol) for 02 — 0. This can be generalized to the vec-
tor case of the present paper. The question then is whether this equality
also holds true up to a higher order of o2 or whether the difference of ¢,
and Y. shows up already at the order of of. It will be shown that the
latter is the case. We can also give an explicit formula for the difference
of Yeor and X5 up to this order.
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In order to be able to deal with the vector case, we split a common
factor o2 from ¥, writing
Y, =a2Q,

and let 02 tend to zero keeping €2, fixed. (The factor o2 could be, e.g.,
%tr ¥.). To simplify the notation, we introduce the abbreviations

Y= B Qb 0= 0B, b= BT, Qubs
and note that , due to (30) and because X} =¥ 1 + O(c?),
B, TBy = oy — ¢ + O(a®).
We then find from (47)
e — 246 g2 (e —1) 6T
perene (L T (i g
with
fi1 = o0 1+ ¢+0(%) _ om0y
fa1= fng =0
For = (e"27 _o4 efo2v+a4¢+0(06>) (S 402810, 501,
Using the expansion
e’ =1+ ao® + 1a’c* 4+ 0(0%),

we finally get with some algebra

DG+ o tos)

= 'Fy + 0(c").

F=o* + O(a®).

Under the assumption ¥, 8, # 0, we have ¢ > 0, and hence Fy is positive
definite. In the following theorem the relative (asymptotic) efficiencies
of Bcor and Bs are compared to each other for the case of small error
variances. Let Gy = €% ®»8+ R=1 DT Fy DR~ where R and D are defined
in Sections 3.5 and 5, respectively.
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Theorem 3. Let ¥, = 02Q,. Then, when ¢? — 0 with €, fixed,
Yeor — Bs = 0*Gy + O(09)

and G is positive definite if ¥,8, # 0. (Otherwise Gy = 0). Also
Seor — Bgs = 0 G1 + O(c®)

with a positive semidefinite matrix G1, which is positive definite if 3,3, #
0.

8 Conclusion

We compared three consistent estimators of the parameters of a Poisson
regression model with measurement errors. The asymptotic covariance
matrices of the estimators (but not the estimators themselves) are equal
if, and only if, ¥,8, = 0. In the typical case, where the error variables
are linearly independent, this condition means that the regression coeffi-
cients corresponding to error-prone covariates are all zero. Otherwise, if
at least one error-prone variable has a non-vanishing regression coefficient,
the covariance matrices are strongly ordered with regard to the Loewner
ordering such that
Yoor > Xg > Ygs.

The corrected score estimator Bcor is constructed without regard to the
distribution of the regressor variable X. It is therefore robust against any
misspecification of that distribution. On the other hand, both BS and qu
depend on the distribution of X. If X is not Gaussian, these estimators
will be asymptotically biased, just as the naive estimator. It is only when
the asumption of normality for X is correct that 3 and 4 are consistent.
In that case they are more efficient than Bcor, and, in fact, qu is the most
efficient one. Still Bcor might be the preferred estimator in all cases where
one cannot be sure about the distribution of X.

9 Appendix: A matrix inequality
Lemma Let v be a positive random variable and w a random col-

umn vector in R™ with E(ww') = I,. Assume E(iw'w) < oo and
E(vw"Tw) < oo, then (in the Loewner oder)
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—1

E(vwwT) > {]E(%ww—r)} . (%)

Assume further that, for any two vectors =,y € R™, the equality y w =
ve'w a.s. implies = 0 (and therefore also y = 0), then the > sign in

(x) can be replaced by the > sign.

Proof: First note that E(%ww—r) is p.d. and therefore invertible.
Indeed, z"E(Lww ™)z > 0 for any z € R™, and 2 "E(2ww " )z = 0 implies
w'z =0 a.s., but then E(zTwwz) = 2"2 = 0 and thus = = 0. Now let

q:= [E(%ww—r)} - % —Vow.
Then .
E(qq") = E(vww ") — {E(%ww—r)] ,

which is p.s.d..

Now suppose there is an x € R™ such that
1 -1
¢ Evww )z =z" [E(—ww—r)} x.
v

Then 2" E(gq" )z = 0 and consequently z "¢ = 0 a.s. or equivalently

1 -1
z! {]E(—ww—r)] w=vz' w a.s.
v

By assumption this implies z = 0 and thus the > sign in (x) can be re-
placed with >.
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