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Abstract

This paper studies Cox‘s proportional hazards model under covari-
ate measurement error. Nakamura‘s (1990) methodology of corrected
log-likelihood will be applied to the so called Breslow likelihood, which
is, in the absence of measurement error, equivalent to partial likeli-
hood. For a general error model with possibly heteroscedastic and
non-normal additive measurement error, corrected estimators of the
regression parameter as well as of the baseline hazard rate are ob-
tained. The estimators proposed by Nakamura (1992), Kong, Huang
and Li (1998) and Kong and Gu (1999) are reestablished in the special
cases considered there. This sheds new light on these estimators and
justifies them as exact corrected score estimators. Finally, the method

will be extended to some variants of the Cox model.
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model, error-in-variables, measurement error, proportional hazards

model.

1 Introduction and sketch of the main argu-
ments

The most popular model for analyzing survival data is Cox’s (1972) propor-

tional hazard model. For every unit i,2 = 1,...,n, the corresponding hazard
rate A(t|.X;) is related to the vector X; of covariates by
At X)) = Ao(t) - exp(XiP), (1)

where throughout this paper X; is assumed not to depend on time. The
baseline hazard rate Ao(t) can be left completely unspecified making the
model semiparametric and therefore quite flexible.

The common random censorship model is used: rather than always observing
T;, only the pair (Y;, A;) is available where Y; = min(T}, C;) and A; is the
indicator function of {7; < C;}. The censoring variable C; is stochastically
independent of 7T; and describes the maximal time span which unit ¢ can be
in the study.

Let m < 1 < ... < 7; < ... <7 be the distinct observed true failure
times, ordered in increasing magnitude. Further let D(7;), j = 1,..., k, with
|D(7;)| =: dj, be the set of all units failing at 7;, and define the risk set R(r;)
to be the set of all units being alive immediately before 7;, j = 0,1,...,k,
70 := 0.

Cox (1972) proposed to estimate the parameter vector § by maximizing the
so called partial likelihood, which does not involve A\g(t). Following Peto’s
(1972) adjustment for ties, one has

d eXP(Zz‘eD(TJ) (5'X5))
d.

PL = .
[ZiER(Tj) exp(8'X;)]%

(2)

J=1

Then the partial likelihood estimator BPL is obtained as the root of the deriva-
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tive of

k

mPL) => [ Y #Xi—diln| Y exp(FX) (3)

J=1 \ieD(r;) 1€ER(T5)

with respect to 3; i.e., one has to solve

zk: Z Xo—d, ZiER(Tj) X - exp <B§3LX1'> 0 )

j=1 \ieD(r;) Zien(m exp (@%Xz‘)

For inference on the baseline hazard rate customarily the Breslow estimator
(Breslow, 1972, 1974)

A Br _ dj
. (t)_j;t > exp(Fpy - X) ©)

iER(Tj)

of the cumulative baseline hazard rate Ag(t) = fg Mo(u)du is used. From this
an estimator for Ag(¢) can be derived by appropriate smoothing (cf. Ramlau-
Hansen, 1983). Asymptotic properties of the estimator are established in An-
dersen and Gill (1982) by embedding the problem into the theory of counting
processes.

In many applications, the accurate values of the covariates X; are unascer-
tainable — surrogates W; have to be used instead, for instance, imprecise
measurements or improper operationalizations of X;. Neglecting the differ-
ence between X; and W;, and just plugging in W; instead of X;, may lead to
a severe bias in the analysis. Measurement error modeling, also called error-
in-variables modeling, is serious about this fact and develops procedures to
adjust for measurement error (see Carroll, Ruppert and Stefanski, 1995, and
Cheng and Van Ness, 1999, for comprehensive monographs on this topic).

In the last years also a vivid discussion (e.g., Buzas, 1998, Hu, Tsiatis and
Davidian, 1998, Kong, 1999, Huang and Wang, 2000, and the references
below) has taken place how to adjust for measurement error in the Cox model
(see also Augustin and Schwarz, 2002, for a survey and for a comparison of
the basic methods).
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Special attention has been paid to the work by Nakamura (1992), who had,
in a previous paper (Nakamura, 1990), developed a powerful methodology
for functional measurement error correction by the notion of corrected score
functions and corrected log-likelihood (cf., also, Stefanski, 1989, Buonac-
corsi, 1996). From Stefanski (1989) a necessary condition for the existence of
a such a corrected function can be concluded: the underlying log-likelihood
and score function have to be entire functions in the complex plane. This
condition, however, is violated in the Cox model: the log-partial likelihood
(3) as well as the estimating equation (4) derived from it possess singular-
ities in the complex numbers. For this reason, Nakamura (1992) proposes
approximate corrections based on the first and second order Taylor expan-
sion of the left hand side in (4), which are entire functions. Using heuristic
arguments, it is convincing that this procedure reduces the bias compared to
naive estimation, and Nakamura also reported some simulations supporting
this conjecture. Surprisingly, much stronger asymptotic properties hold: the
estimator based on the first order correction is consistent and asymptotically
normal, as was shown by Kong and Gu (1999). Additionally, Kong, Huang
and Li (1998) managed to derive a corresponding estimator of the cumula-
tive baseline hazard rate. Both result are extended in Kong and Gu (1999,
Section 5) to non-normal homoscedastic measurement error.

The non-existence of an exact correction of partial likelihood estimation has
generally been understood to imply that Nakamura‘s methodology is not
applicable to the Cox model. This conclusion, however, is premature. As this
paper shows, Nakamura’s concept can be applied in a straightforward way
to the so called Breslow likelihood, which is, in the absence of measurement
error, equivalent to partial likelihood and provides the forgotten basis of the
Breslow estimator of the cumulative baseline hazard rate. An exact corrected
likelihood is obtained that allows for estimation of the regression coefficients
G as well as of the cumulative baseline hazard rate under a general error
model, which, for instance, contains (mixtures of) normals. In particular,
a corrected cumulative baseline hazard rate estimator under heteroscedastic
normal measurement error is derived.

Nakamura’s first order corrected estimator and the baseline hazard rate esti-
mator proposed in Kong et al. (1998) and Kong and Gu (1999) are reestab-
lished in the cases considered there — a fact which gives new and strong
support to these estimators. It is shown that Nakamura’s first order estima-
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tor can be understood as an ezxact corrected estimator, and so, for instance,
its consistency becomes much less surprising. Moreover, the point of view
taken here very much justifies the baseline hazard rate estimator introduced
in Kong et al. (1998), which was gained there by genuine intuition. That
estimator is not one estimator among possibly many others, it is the conse-
quent generalization of the Breslow estimator arising from the methodology
of corrected log-likelihood.

Additionally, the method proves successful in adjusting for measurement er-
ror in some related models, where the hazard rate is represented by a cer-
tain smooth function (cf., e.g., the polynomial approaches of Taulbee, 1979,
Ciampi and Etezadi-Amoli, 1985, the spline approach of Whittemoore and
Keller, 1986, and the econometric models of Flinn and Heckman, 1982, and
of Gritz, 1993).

This paper is organized as follows: Section 2 briefly describes the error model
and recalls the basic ideas of the concept of corrected log-likelihood. Section 3
derives the exact corrected log-likelihood, which in Section 4 is applied to
some special cases considered in the literature. In Section 5 the corrected
log-likelihood for some variants of the Cox model is constructed.

2 Measurement error and the concept of cor-
rected log-likelihood

2.1 Modeling the measurement error

Evidently, measurement error corrected inference is only possible under know-
ledge (or assumptions) on the relationship between the true, but unobservable
variables X; and the surrogates IV;.

Throughout this paper an additive error model is considered, i.e., for i =
1,...,n,

Wi=X;+U; (6)

where U;, with E(U;) = 0 and finite second moments, is independent of X,
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Ty and A;, I = 1,...,n, and of U, | # i.! Additionally, the measurement
errors U; are taken to be independent among each other. The distribution
of U; must be known (or must have been estimated consistently, for instance
from validation data). Here a mild additional assumption has to be made:
the distributions are such that the moment generating functions My, (a) =
E (exp (a’'U;)) exist and are two times differentiable with respect to a, at least
in a sufficiently large domain to make the expressions below well-defined for
‘realistic’ ranges of # and X;.

This model covers the standard case of normal measurement error, but ad-
ditionally offers a substantially broader scope. For instance, it contains all
error distributions with bounded support as well as the very flexible class of
finite mixtures of normals (see, for instance, Everitt & Hand, 1981, p. 28f.),
who give an impression of the huge variety of different shapes which can be
produced by the mixture of two normals).

Notice further that the variables U; were not required to be identically dis-
tributed. Hence the method developed can also deal with heteroscedastic
measurement error, which is often suggested by subject matter considerations
(cf., for instance, Willett, 1998, pp. 33-48, for nutritional epidemiology).

2.2 Corrected log-likelihood

Consider the estimation of a parameter ¢ based on a sample Y = (Y1,...,Y,)
of possibly vector-valued observations in a regression model with covari-
ates (Xi,...,X,) = X and surrogates (Wy,...,W,) =: W. Denote by
1X(Y, X, ) and by s¥(Y,X,9) the log-likelihood and the score function
of ¥, conditional on Xi,...,X,, after having observed Yi,...,Y,. Since
Xi1,..., X, are unobservable, SX(?, X, ) will be called the ideal score func-
tion below.

Let 1X(Y, W, ) and s¥ (Y, W,9) be the corresponding naive log-likelihood
and the naive score function which arise from 1*(Y, X, ) and s*(Y, X, )
by replacing X with the matrix of surrogates W. Then, E(s*(Y,X,9)) =

!'Note that the formulation is chosen such that it is not necessary to distinguish in
notation between correctly measured and error-prone components of the covariate vector.
If the j-th component X;[j] is measured without error then U;[j] = 0.
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0 at the true parameter value ¥y, but, in general, the absolute value of
E(s¥(Y,W,¥,)) is bounded away from zero, even for sample size going to
infinity. As a consequence, the root of the naive score function s* (3?, W, 9)
is an inconsistent estimator of ¥.

Measurement error correction removes this deficiency by constructing unbi-
ased estimating functions in the observable variables Y and W, i.e. functions
sW (Y, W,¥) such that E(s" (Y, W,9)) = 0. Then, under mild regularity
conditions, standard asymptotic arguments (cf., for instance, Caroll, Rup-
pert and Stefanski, 1995, Appendix A, Fahrmeir and Tutz, 2001, Appendix
A2) can be applied to show that the corresponding root Jis a \/n-consistent
and asymptotically normal estimator of ).

Nakamura (1990) and Stefanski (1989) (cf. also Buonaccorsi, 1996) developed
independently a general method to arrive at unbiased estimating functions.
One of its main advantages is that it is a so called functional approach (cf.,
e.g., Carroll et al., 1995, Chapter 1), i.e., no assumptions concerning the
distribution of the vector X; of true covariates have to be made. The X;’s
may be non-random or random, but even if they are random their distribution
does not play any role in the correction procedure.

The essential idea is to use the ideal score function
s¥(Y, X, 9)
as a building block and to look for a function
sV (Y, W, 0)
with the property that
E(s" (Y, W,0)|X,Y) =s¥(Y, X, 9). (7)
Every such function is called a corrected score function.

Indeed, by construction and by the law of iterated expectation,

E(s" (Y, W,0,)) = E(E(s" (Y, W,0,)|X,Y)) = Es¥(Y,X,9)) = 0.

Often it is advantageous to get there by a circuitous route, using the log-
likelihood and looking for a function [ (Y, W, ) with

EQY (Y, W,9)|X,Y) =1X(Y, X, ). (8)
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Then, again under appropriate regularity conditions,
- o -
sY(Y,W,9) := %IW(Y,W,ﬂ) (9)

is a corrected score function, and so IW(?,W,ﬂ) is called a corrected log-
likelihood.

More generally, the methodology applies in the same way, if s¥ (?,X,ﬂ)
is an arbitrary unbiased estimation function instead of the likelihood score
function.

Within this framework also estimators of the asymptotic variance of the cor-
rected estimator U are available from the standard theory of estimating func-
tions (cf., e.g., the summaries in Serfling (1980, Chapter 7), Caroll, Ruppert
and Stefanski, 1995, Appendix A).

3 The exact corrected log-likelihood for the
Cox model — general form

In this section the corrected log-likelihood in its general form will be derived.
To prepare for this, some early work on the Cox model has to be recalled.
Breslow’s (1972, 1974) likelihood construction, which was originally devel-
oped as a justification of (4) and to obtain a baseline hazard rate estimator,
will prove to be of great importance in the context of measurement error
modeling. It will allow a straightforward and powerful application of the
methodology of corrected log-likelihood.

Breslow shifts, for every 7 = 1,...,k, all censoring times occurring in the
interval [7;_1,7;) to 7;_1 and assumes piecewise constant hazard,

/\g(t)E/\j>O, Tj_1<t§7'j, ]:1,,]€ (10)

Then, based on the observed values t1,...,t, and d1,...,9, of Y7,...,Y, and
of Ay, ..., A,, the likelihood

n

e (Oattexp ()" exp (—exp (3% - [ Nwyia) ) 1)
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arising under independent censoring from Cox’s model (1) yields the log-
likelihood
k

In ﬁBr = Z dj In )‘j + Z 5,X7, - )\j(Tj - Tj—l) Z exXp (ﬁ/Xz)
j=1 ieD(1;) i€R(75)
(12)
Differentiating with respect to § and to A;..., A\; leads indeed just to the
partial likelihood equation (4) and to the Breslow estimator (5).

Notice that, in contrast to (3) and to (4), the log-likelihood from (12) does
not contain any singularities ruling out the existence of the corrected log-
likelihood or the corrected score function. Indeed, the methodology described
in Section 2.2 can directly be applied with ¥ = (81, , By, A1, -+, Ax) and
Y, = (Y;,A;), i = 1,...,n. This yields well-justified corrected estimators
for the regression parameters as well as for the baseline hazard rate under
heteroscedastic, possibly non-normal measurement error.

Theorem 3.1 Under the error model from Section 2.1,

lW(?,W,f}):Z<dﬂn)\j+ Z BWi = (7 = 71) Z %)

j=1 ’iGD(T]') iER(Tj)
(13)
is a corrected log-likelihood for Breslow’s log-likelihood (12).

The corresponding corrected estimators of the regression parameters (3 and
the cumulative baseline hazard rate Ao(t) are 3* solving

Z( > wi- 4 . > KZ»(B*;WZ»,MUi)> =0 (14)

j=1 \ieD(r;) Zie’R(Tj) M i€R(75)

Mo, ()
" K5 Wi M) = P (m - %ﬁ) S )
and Aj(t) with l

LCEDY . S (16)
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Proof: For the first part one has to confirm (8), the second one then follows
from (9). The details of the calculation are given in the Appendix. The es-
sential point is that, by (6) and by the independence assumptions formulated
in Section 2.1,

E (exp(FWIX. ¥) = exp(5'X) - My, ()

and
E (ﬁ’WﬂX,?) — 3'X,.

4 Some applications of Theorem 3.1

In this section Theorem 3.1 will be applied to some special cases. This will
distinguish several estimators which have previously been proposed in the lit-
erature as exact corrected log-likelihood estimators. Additionally, a solution
for the practically important extension from homoscedastic to heteroscedas-
tic normal measurement error will be developed.

4.1 Justification of previously proposed estimators

First the case of homoscedastic measurement error is considered, where the
error variables U; are identically distributed with My, () = My(5). Then
Theorem 3.1 justifies the proposal of Kong and Gu (1999, p. 964f.).

Corollary 4.1 (Homoscedastic measurement erro;') In the case of ho-
moscedastic measurement error, the estimators 3* and Aj(t) are obtained as
the root of

oMy (B)

k /

2ier(ry) Wiexp(B'Wi) 33

2\ 2 M T e W) 1)

and as

A* dj - My(3)
Aolt) = ; 18
o j;t Zien(m exp(3*W;) (18)
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respectively.

In the literature homoscedastic normal measurement error is customarily
assumed, where U; ~ N(0,Xy),i = 1,...,n, My(8) = exp (%B’Eyﬁ), and
% In My(8) = Xy - 8. Then one obtains

Corollary 4.2 (Homoscedastic normal measurement error) If addition-
ally all Ujs are normally distributed with covariance Xy, then the estimator
for B is the root 5* of

Z > Wi—d

Jj=1 ’iED(Tj)

(ZiGR(Tj) W, - eXP(ﬁ Wz) B EUﬁ) —0. (19>

Yier(ry) eXP(O'Wi)

The corresponding cumulative baseline hazard rate estimator is

R 1., n d;

A(t) =exp | =68" 25" | - J . 20

() p<2ﬁ U@) P ST (20)
iERTj

Corollary 4.2 is puzzling in this context. The estimating equation for (3 result-
ing from Theorem 3.1 coincides with Nakamura’s (1992) proposal: what was
derived as a crude first order approximation now turns out to be an exact cor-
rected score function. This helps to understand the appealing mathematical
properties like consistency and asymptotic normality as well as the astonish-
ing power in a comparative simulation study (Augustin and Schwarz, 2002,
Section 5).

The second lesson from Corollary 4.2 addresses baseline hazard rate estima-
tion. It distinguishes the estimator (20), which was introduced by Kong et al.
(1998) and by Kong and Gu (1999), as the consequent generalization of the
Breslow estimator to the situation under homoscedastic normal measurement
error.
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4.2 Heteroscedastic normal measurement error

Keeping the assumption of normality, but returning to the practically very
important situation of heteroscedastic measurement error, i.e. considering
the case U; ~ N(0,Xy,), a straightforward extension of (19) would be to use
the estimating equation

k /
Zien(f-) Wi - exp(3'W;)
LY Wi+ S8 —d; ’ =0
( ( + Uzﬁ) ZiER(Tj) exp(ﬁ’Wi)

j=1 ’iED(Tj)

However, the methodology of corrected log-likelihood leads to another pro-
posal. Applying Theorem 3.1 yields the estimating equation

Z( 2 Wi - exp(8 W)

€D Tj !
€D(tj) ZzeR(T;‘) exp<0.5ﬁ/2Uiﬁ)

(21)

exp (8'W;)
(Wi — Xy, —
ie%;rj) exp(0.5 5'Zu, ) ( i) ) 0

for the regression parameter f3.

Additionally, Theorem 3.1 tells how to extend (20) appropriately to obtain
a corrected estimator Aj(t) of the cumulative baseline hazard rate. The
corresponding generalization of the Breslow estimator is

A d

Ay(t) = -~

5(t) j;tz exp(B W)
i€R(75) exp(0.5 ﬁ,EUZﬂ)

5 Measurement error correction in some vari-
ants of the Cox model

The likelihood based approach taken in this paper also proves successful in
dealing with some variants and generalizations of the Cox model. Straight-
forward is the extension to the case considered in Kalbfleisch and Prentice
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(1973) (cf. also Kay, 1977, p. 229), where the intervals of constant hazard are
given exogenously in advance.

Several authors have studied variants of the Cox model where in (1) the
baseline hazard rate is modeled as

/\O(t) = g(nv t) ) (22>

with a smooth, known function g(-) and a parameter vector n of finite di-
mension. Specific examples motivated by biometrical applications are the
polynomial approaches of Taulbee (1979) and of Ciampi and Etezadi-Amoli
(1985), as well as the spline approach of Whittemoore and Keller (1986),
each developed to obtain a flexible but smooth estimator of the baseline haz-
ard rate. Representations in the spirit of (22) are also of great interest in
econometrics, where they are used to model and test specific dynamic effects
in labor force data (cf., e.g., Flinn and Heckman, 1982, Gritz, 1993).

Defining G(n,t) fo u)du, and assuming again time-independent co-
variates, the likelihood (11) of n and [ becomes

n 5
c-11 (g0n.t) - exp (X)) exp (= exp (3X) - Gln.t))  (23)
=1
leading to the log-likelihood
InL = Z ; - (ln (gn, ;) + B'XZ) —exp (6'X;) - G(n, t;) . (24)
i=1

This likelihood is such that the techniques used in the proof of Theorem 3.1
can be applied in a very similar way. This allows powerful measurement error
corrections in all the variants characterized and exemplified above.

Prop. 5.1 Under the error model from Section 2.1,

Sob (elne) +5w) - “BEE Gy )

is a corrected log-likelihood for the log-likelihood (24).
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Finally, the parameterization

g(n,t)y=n-t""

with real-valued, nonnegative n deserves some attention. In this case the
Cox model (1) specializes to the Weibull model with dependence parameter
n and covariate effects n~1 - 3. Then Proposition 5.1 extends the results of
Gimenez, Bolfarine and Colosimo (1999) on Nakamura’s correction method
in the Weibull model under homoscedastic normal measurement error to the
general error model considered here.

6 Concluding remarks

This paper applies the method of corrected log-likelihood to Breslow’s like-
lihood for the Cox model, yielding measurement error corrected estimators
under a general error model containing heteroscedastic and non-normal mea-
surement error. In the special cases which have been considered in the lit-
erature, the estimators proposed there are reestablished; they obtain a neat
justification as exact corrected score estimators.

The correction procedure belongs to the class of functional methods which
manage to adjust for measurement error without making any distributional
assumptions on the true, but unobservable vector of covariates. This may be
of great importance, for instance, in biometrical application where exposure
variables often are distributed in a way which is difficult to be handled by
standard distributions.

The main result was given in terms of the moment generating function of
the error distribution. On the one hand, this general form allows for a very
flexible modeling of the error, if knowledge on its distribution is present
(for instance in the case of validation data). On the other hand, if such
knowledge is lacking, Theorem 3.1 provides a rich framework to perform a
comprehensive sensitivity analysis.

Acknowledgements [ am grateful to Helmut Kiichenhoff and Hans Schneeweif3
for their very valuable comments.
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Appendix: Detailed Proof of Theorem 3.1

Firstly, (8) has to be confirmed.

E (zw(?,w,mx,?)

— E(i((djlnAjJr > 8w

Jj=1 iED(Tj)

lGR(T]‘)

- E(Z (djlnAjJr Y BX+Uy)

J=1 i€D(rj)

(15— 7j_1) - Z exp(ﬂ’(Xi‘i‘Ui))) Xﬂ')

iER(Tj) MUZ <ﬁ)

Z(d]ln)\—FZﬁX-l-z Ui) | X,Y)

Jj=1 1€D(7;5) 1€D(7;5)

A=) 3 WI@@@W»X,?)) .

Because Uj; is independent of X;, Ty and A, [ =1,...,n,

E (exp(mﬂx, 3?) = E(exp(3'U;)) = My, (53)

and

E(SUIX.Y) = E(@U;) =
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Therefore

E(zw(?,w,mx,\?)) - Z(djlnAj+ Y o

Jj=1 iED(Tj)

—N(mj—=7) - ) eXP(ﬂ'Xi))

’L'GR(T]')

= IncP",

and (8) is shown.

The second part applies the fact that, according to (9) corrected score func-
tions can be derived via differentiation with respect to the parameters. Start-
ing with Ay, ..., Ag, one has

(Y, W, 1) d; exp(8'Ws) :
= | L - (r;—7_1)- —= |, Jj=1,...k,
8/\j /\j I ! iGRZ(Tj) MUi (6)
and the corresponding root is
. d;
Aj = xp(FT) (26)

(75— 7j-1) - ZiGR(Tj) My, ()

Then, in dependence on (3,

t k
. . d.
Ao(t):/ Y N L cusrydu =) ey - (27)
0 j=1 IZEDY exp(5'Wi)
1€R(T5) MUZ' (ﬁ)

For the regression parameter one obtains

W
W = O+ Z Wi_)\j<7-j_7-j71)
1€D(15)
W, - exp(BWi) - My, (8) — 25 My (5) exp(8'W;)

2

’iER(Tj)

(My,(53))? ’
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which yields, together with (26), the estimating function

Wi

20

k dj /
Z Z Wz - exp(B8'W;) Z oXp <ﬂ WZ) (MUL(/@)

j=1 \ieD(r)) ZiER(Tj) My, (B) i€R(7y)

9B

)



