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Abstract

This article presents a modified Newton method for minimizing the Gen-
eralized Cross-Validation criterion, a commonly used smoothing parameter
selection method in nonparametric regression. The method is applicable to
higher dimensional problems such as additive and generalized additive models,
and provides a computationally efficient alternative to full grid search in such
cases. The implementation of the proposed method requires the estimation of
a number of auxiliary quantities, and simple estimators are suggested. This
article describes the methodology for local polynomial regression smoothing.
Keywords: local polynomial regression, generalized additive model, Newton
method.

1 Introduction

Nonparametric regression techniques are popular statistical tools for exploratory
analysis and model building. While these techniques are useful in univariate regres-

sion problems, it is in higher dimensional situations that they can provide the most



benefit to the data analyst. One popular class of multidimensional nonparametric
regression techniques are the generalized additive models and additive models, in-
troduced by Hastie and Tibshirani (1987) and extensively discussed in Hastie and
Tibshirani (1990). The local scoring and backfitting algorithms implemented in the
gam() routines in S-Plus provide computationally efficient methods for jointly es-
timating the additive component functions of such models. Recently, Kauermann
and Opsomer (2000) proposed local likelihood backfitting as an alternative for gen-
eralized additive model fitting.

The regression function to be estimated in generalized additive models is of the

form

E(yley,...xq) = p=gla+m(z) + ... +7(2)}, (1)
where ¢(-) is a known link or response function, y is the response variable, x, ..., z,
are given covariates and (), £ = 1,...,q, are unknown but smooth additive

effect functions. If the link function g(-) is the identity function and y is normally

distributed, then model (1) reduces to an additive model.

One particular concern in fitting generalized additive models, and indeed in
multi-dimensional smoothing in general, is the selection of the “right” values for
the smoothing parameters. Fitting a generalized additive model with ¢ covariates
requires the selection of ¢ different smoothing parameters, one for each of the smooth
component functions 7, (-). A widely accepted criterion for smoothing parameter se-
lection in this context is generalized cross-validation or GCV, originally proposed
by Craven and Wahba (1979). For the purpose of this article, we will assume that
the smoothing parameter values minimizing the GCV for a particular dataset are
an appropriate smoothing parameter choice for that dataset. Our approach can be
extended to other smoothing parameter selection methods such as the commonly

used Akaike criterion.

Hastie and Tibshirani (1990), p. 159 discuss a version of the GCV criterion for
generalized additive models based on the deviance. In this article, we will use the
asymptotically equivalent formulation of O’Sullivan, Yandell, and Raynor (1986).
Both definitions are exactly equal for the additive model case. Let h = (hy,..., hy)"
represent the smoothing parameter vector over which are we are minimizing the
GCV. For a random sample of observations y, . . ., y, following model (1), the GCV
objective function can be defined as
> viys — fu)”
n{l —df /n}>’

GCV(hy,. .. hy) (2)



where the v; are weights to be further specified, fi; are the estimates of the mean
function at the observation points, calculated using h, and df a measure of the
complexity of the fitted nonparametric model (also dependent on h). The adjust-
ment df is used to make the GCV criterion asymptotically unbiased for the Mean
Squared Error of the nonparametric estimator. Hastie and Tibshirani (1990) refer
to the adjustment df as the degree of freedom of the estimator, by noting that it
generalizes the degrees of freedom of a parametric model, and we will use that same

convention here.

For ¢ < 2, minimization of (2) is in practice usually carried out by a full grid
search. For larger values of ¢, this grid search approach rapidly becomes computa-
tionally expensive, since the full generalized additive model needs to be refitted for

each choice of values for h.

Some efficient algorithms are available for smoothing parameter selection for ad-
ditive models. Gu and Wahba (1991) propose a modified Newton procedure for
minimizing GCV when smoothing splines are used. Their method does not carry
over directly to kernel-based smoothers, the nonparametric regression method dis-
cussed in this article. Hastie and Tibshirani (1990) suggest the BRUTO algorithm
which is based on iterative univariate minimization of the additive model GCV crite-
rion. While applicable to general linear smoothers, BRUTO can be slow to converge
if the covariates display significant concurvity (see Opsomer and Ruppert, 1997 for
a discussion of concurvity and its effect on the asymptotically optimal bandwidths
for additive models). Opsomer and Ruppert (1998) propose a bandwidth selection
procedure for additive models that relies on a plug-in approach instead of GCV
minimization. The method is also computationally difficult, even though the com-
putation burden does not increase as fast as for GCV when model dimension ¢
increases. However, none of these methods extend readily to generalized additive

models.

In this article, a modified Newton procedure for minimizing (2) for local regres-
sion, including additive and generalized additive models, is proposed. We focus on
local linear regression as the smoothing method, but the general approach is directly
applicable to other kernel-based smoothing methods as well. The basic idea is to
solve an approximation of the GCV score equations by an iterative Newton-type
procedure. As in Fischer scoring, the Hessian matrix of the GCV criterion required
for calculating the iteration step size is replaced by an estimate of the expected

Hessian matrix. Both the score equations and the expected Hessian matrix contain



terms that cannot be computed from the data. For these terms, the article therefore

proposes estimators that can be readily calculated.

In Section 2, the basic approach is explained for the univariate regression case.
Sections 3 and 4 extend the proposed GCV minimization to the additive model and

generalized additive model, respectively.

2 Simple Smoothing Models

We explain the approach by considering the univariate regression model y; = p(x;)+
€, 7 =1,...,n with the ¢; independently N (0, 0?) distributed. In this case, the GCV
can be minimized efficiently in practice through a grid search procedure. We only

present this case to explain the method in a simple setting.

We estimate g = (u(zy),...,u(x,))" by the linear smoother g, = S,y with
Yy = (y1,---,9,)" and S} a linear smoothing matrix calculated with bandwidth h.
We assume that S}, is the smoothing matrix resulting from a local linear fit. The
bandwidth A is chosen by minimizing the GCV function

GOV (h) = 75?1__’21 (Si)_/ rﬁ)z (3)

In order to use a Newton algorithm, we propose to minimize GCV'(h) by solving

the first order derivative equation

_ O _ 5 —h oS,
ooV 2 (w—n)Shr (Y)Y “h)“<ahh>

oh  n | (I—uSn/mP T a{l—u(Sn)/n)?

=0. (4)

Since S}, is a linear smoother, it is easy to see that o,/ (0h) = 0S},/(0h)y, so that
the derivative of S}, is the only unknown quantity in (4). For local linear regression,
the elements of S}, are (see e.g. Fan and Gijbels, 1996)

-1
Sh,ij = (170) (th,ikXisz;g> wh,inija
k

where wy iy = W{(xy, — x;)/h} denotes the kernel weight calculated from the uni-
modal kernel W (-) with h as bandwidth and X7}, = (1,2 — ;).

We will use the following convenient approximation for the elements of S}:

Sus ~ K (U5 [inhs @)}, )
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where f(x;) denotes the design density and K (-) is an equivalent kernel of order
2. In particular, it follows that [ K(z)dz = 1 and [2?°K(z)dz = pp(K). Using
approximation (5), one finds

8Sh,ij N K’ (m;x]) wi;wj

— — 71 .
oh nh2f (x;) W Shase

Note that this implies tr{dS}/(0h)} = —tr(S))/h. For the full matrix derivative
0S8}, /0h, we construct an estimator by employing a second smoothing step. Let h
be a second bandwidth with 7 = o(h), i.e. h tends faster to zero than h, and let
K (-) define a second kernel of order 2, with K(-) not necessarily equal to K (-) (as
for K (-), this can also be achieved by using local linear regression). Using K(-), we

build a smoothing matrix §; with entries Sﬁ,z’j ~ K{(x; — x;)/h}/{nhf(z;)}, and

let R; be defined by Rﬁ,ij = Sﬁ,ij (z; — x;)/h. Matrix multiplication and standard

smoothing arguments yield

Sy = e SR () B () e
- e (i)

where we assumed that [ 2K (2)dz = 1.
With matrix N, defined as N, ;; = [ShR;}]zj (x; — :vj)/iz, the approximation

oS

S h™ (N, — Sp) (6)

follows. For a given choice of the second bandwidth ﬁ, expression (6) provides an
estimator for 0S5),/0h that can be used in (4).

Solving (4) by applying a Newton algorithm also requires the calculation of the
second order derivative. As in Fischer scoring, the ezpected second order derivative is
used instead to improve numerical stability of the algorithm. Assuming that we can
interchange the order of the integration and differention, the objective is therefore
to calculate O°’E{GCV (h)}/(0h)®. The expectation of the GCV function can be
approximated by

n2

E{GCV(h)} = [0*{n — tr(28), — S§,87)} + b} b] (% + 2tx(51) +.. ) :



with b, = E(p),) — p = Spp — p denoting the smoothing bias. A similar reasoning
as above shows that
otr(2S), — SyST)
oh

Moreover, the squared bias bfbh for local linear regression has the asymptotic order

h?, so that 0 (b} by)/(0h)* ~ 12b; b, /h?. Using these approximations, we find
O*E{GCV (h)}

(0h)*

—h~'tr(2S), — S, 8T). (7)

1
W{202tr(25h —8,87) +12b] b, }. (8)

Since the bias by, is unknown, we replace it by the plug-in estimator by, = Shit, —
L. Expression (8) therefore provides an estimate for the expected second order

derivative that can be used in the GCV minimization.

We propose the following Newton-based algorithm for minimizing the GCV cri-

terion.
Generalized Cross Validation by the Newton algorithm:
i Let ho be an initial bandwidth and set i, = hy. Choose h; = o(h;) used in (6)
by setting e.g. hy = hfﬂ.

ii Fort=1,2,... calculate the update h;y; by
OGCV(ht)/82E{GCV(ht)}
oh (Oh)?

using (4), (8) and the approximations proposed above.

hiyr:=hy —

iii Repeat step ii until changes in GCV(h) are negligible.

It is interesting to note that a simple first order approximation for GCV (hyy) is

available by the Taylor expansion
OGCV (hy)\” / *GCV (k)
oh oh? '

This allows to predict the amount of reduction of the generalized cross validation

function gained by moving from h; to hy;1. Moreover, since the second order deriva-
tive (8) is positive, it becomes obvious that GCV (h;;1) < GCV(hy), at least ap-

proximately, with equality if the first order derivative (4) is zero.

Example:
For illustration we apply the algorithm to a simple example. We draw n = 100
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observations from the model y; = pu(z;) + ¢ with ¢ ~ N(0,0.5?) and u(z;) =
2x; + cos(mx;), where x; are skewly distributed from a triangular distribution, i.e.
z? are equidistant in [0,1]. Figure 1, left plot, shows the data and the true curve.
The right plot shows the function GCV (h) for a local linear fit of the data. The
steps of the Newton algorithm are indicated by the numbers 0 to 3, for two different
starting points. The algorithm converges quickly to points close to the minimum. It
does not reach the GCV minimum exactly since 0S},/(0h) is estimated by (6), which
is based on an asymptotic approximation. For practical purposes, however, this is
sufficiently close to the true GCV minimizer to result in a fit p, that is virtually

indistinguisable from the one calculated at the GCV minimum.

In order to see the performance of the procedure, we repeat the simulation 100
times and record the optimal bandwidth A, which minimizes (3), and the estimated
bandwidth h; resulting after 5 steps with the Newton procedure. We again use
two different starting values hy. Figure 2 shows h,y, plotted against h; for the
two starting values used above, and the corresponding values of GCV (h,,) against
GCV(h;). By comparing the two lower plots, it appears that a starting value based
on undersmoothing converges faster to the minimal value. This is likely due to the
shape of the function GCV(h), as well as to the fact that in the case of a large
starting value, the plug-in estimate of the bias does not perform well. This in turn
leads to a rough approximation of the second order derivative, which steers the step
size in the Newton algorithm. The two upper plots also indicate a tendency towards
oversmoothing in the Newton-based method. However, as shown in the lower two
plots, the bandwidth values selected by the proposed method result in GCV scores
that are almost identical to those found with the optimal grid-search bandwidth.
Hence, this slight oversmoothing does not appear to result in a degraded bandwidth
selection procedure. Overall, this simulation experiment illustrates that the Newton

procedure serves as an appropriate GCV bandwidth selector in this simple case.

3 Additive Models

In this section, we extend the results from the univariate case to normal response
additive models of the form y = o+ py(z1) + ... + py(z,) + € with € ~ N(0,0?).
For identifiability reasons, we assume that the component functions p(-) have zero

mean in the sense [y (zk) fr(xg)dry = 0, with fi(-) as design density for zj. Let



¥y = (y1,...,y)" and x = (w14,...,20)", k = 1,...¢ denote a random sample,

where (z;1,...,%;,) is randomly drawn from the joint design density f,(-) for i =
1,...,n. We consider the additive model estimator
By = SZ,hk (¥ — 1 y) 9)

for p, = {pw(@1r), - - -5 pr(@ne) ', with iy, = 3, [, an estimator for the remain-
ing ¢ — 1 functions and S}, = (I —11'/n)S}, as centered smoothing matrix, I
denoting the identity matrix, 1 = (1,...,1)" and S, a smoothing matrix as given
in (5) with bandwidth h;. Joint estimation of the component functions py, ..., fi4
is most often performed by iterating (9) over k. In the additive model context,
this is referred to as the backfitting procedure (Hastie and Tibshirani, 1990). For
simplicity we abbreviate Sy, by S) and assume § = 0 in the following. Equation

(9), combined into the backfitting algorithm, can be jointly written as
Mp, = Sy, (10)

~ ~ ~ * *T *T
where u,.:(u{w__,u?)T,S :( 1 7"'75(] )T and

I s - &
s, I --- S}
M — .2 | '2

It is possible to write the & component estimators as g, = Q,y, where Q, =

M"*S§:(I — 8*,) with M"™ denoting the k-th n x n block diagonal matrix of
M " and S*, =3, S;. The estimated mean fi = ¥, fi,, is obtained by Q,y =
> r Q.y. Note that M and i depend on the entire bandwidth vector b = (hy, ..., hy),

even though this is suppressed in the notation.

The direct generalization of GCV criterion (3) to the additive model would be

to use

Gov(h) = W= 'y -n)

n{l —Q,/n}?
However, the matrix @, is difficult to compute, since it requires inverting the ngxngq
matrix M. We therefore propose selecting h by minimizing an approximation to
this criterion, i.e.

GOV(R) = n{(ly - 5) éi’séii}z- 1




This was also proposed by Hastie and Tibshirani (1990) for additive model band-
width selection. If the covariates x1,...,7, are independent, this approximation
to the degrees of freedom is asymptotically justified, as can be derived using the
arguments in Opsomer (2000). In the presence of correlation, the approximation is
likely to overestimate the true degrees of freedom of the model. See Buja, Hastie,

and Tibshirani (1989) for a further discussion of this approximation.

Differentiation of (11) with respect to hq, say, yields

aGCV(h) 2| (y — ﬁ)TaQ}% . (y— )" (y — p)tr <%—i{> 12
Oh, oon |l (1= tr(S3)/n)? n(l — 3, tr(S%)/n)? '

As in the previous section, we find an approximation to (12) that can be used in the
derivation of the minimization algorithm. Note that we again find tr(0S7/0h;) =
—tr(S7)/h1. The derivative of O /(0hy) is obtained by differentiating both sides of
(10) with respect to hy. This yields

o 081 . 08 0S;
ohy ohy ﬁh—ly
0o 0 - 0 . ol 0
M-—— = 13
: . He ohy : ( )
0O O e 0 0
so that
on 0S8’ N
a—hl = P, o, (y l‘l'fl) (14)

with P, = (I — 8*)M*". The derivative 983/(0h,) = (I — 117 /n)0S,/(0h,)
can now be estimated as in the previous section using approximation (6), setting
ill = O(hl).

In order to apply the Newton procedure we derive now an approximation for the

expected second order derivative. Taking expectation gives

%Ztr(sk) + ...} (15)

1
BGOV(R) = [o{n — (2@, ~ Q.Q0)} +b1b.]( +
k
where b, = E(ft) — p=Q,p — p is the overall bias. Analogously to what we
did for the degrees of freedom of the GCV, we approximate tr(2Q, — Q+Q£) in
(15) by >, tr(2S} — S,‘;S;T) which holds in an asymptotic sense if the covariates

x = (x1,...2,) are independent.



Before differentiating (15), we consider the bias b, in more depth. Assume for

the moment that g, =37, . is known so that the estimate

i)’k\fk =Sy (y—p_y) (16)

is a univariate smooth component with g, a non-random offset. We refer to f,

as the “oracle” estimate of p,, (Kauermann and Opsomer, 2000). Using the relations
Bog—i, = Si(y—p_p) +Si(p_, — p_y) and (9), it is easily seen that

My~ ) = (Bue— ) (17)

where fi,_o = (fiy .-, By )" Let now by, = E(fi,) — p;, be the bias for the k-th

component and by, = E(fy ;) — py = Sy, — Ky, be the “oracle” bias. Taking

expectation on both sides of (17) provides the bias relation

Mb, = b, ., (18)
with by = (b, ..., b, )" and bey_s = (b ,,...b, )", so that
b+:Zbk == P1b1|_1+...quq|_q:I61+...Bq (19)
k

with l~)k = Pby 1 and P}, as defined above. The oracle bias by_; depends only on
the bandwidth A, and in the case of local linear fitting, by—r = Op(h;). As shown in
Opsomer and Ruppert (1997) for the case ¢ = 2, the matrices Py, k = 1,...q are of
asymptotic order O(117 /n) when M is invertible and under a number of technical
regularity conditions. The same order can be derived for ¢ > 2 using the results in
(Opsomer, 2000). Hence, by = O,(h3) follows and (19) is a decomposition of the
bias in components of order O(h2), k = 1,...,q. Differentiating the bias then yields

T~ ~T
Fbb,  0’byby 9%by,

~ _ ~T~ ~T~
O = ()’ + 2(8}%)2@,c ~ h;%(12b, by + 4b, b_y,) (20)
9°blb T
8hk+aht ~ 8(hrhi) by by (21)

by using the same reasoning as in the previous section.

The above results can now be applied to calculate an approximation of the second

order derivative of (15). Making use of (7) one finds
O’E{GCV (h)} 1 {02 0*tr(28; — S S7) . a?zﬂbh}

Q

oh;, n oh;, oh;,
1 9 «T v =T~ =T~
R~ nh2{2a tr(Sy Sy) + 12b, by + 4b, b_} (22)
PE{GCV(h)} 1 (&bibi) 8 5 (23)
Oh, Ohy, n \ Ohoh, ) ~ nhyhyg tC

10



Calculation of (22) and (23) requires the estimation of the bias components by. As
in the previous section, we make use of the plug-in estimates by, = Q.1 — By, which,
together with (18) and (19), provide estimates for by, k = 1,. .., q. Direct calculation
of the matrices Q, and Py, k =1, ...q, is numerically expensive and can be avoided
by applying the backfitting idea, i.e. one can calculate Q, = S} (I — X, ., Q,) and
Py, =1-3%,, P,S, by iteration over k = 1,...q. It is easily checked that at
convergence, Q, = M"™S*(I — 8*,) and P, = (I — §*,)M". In practice, a
small number of iteration loops is sufficient to obtain reliable approximations for
Q. and Pj. One should also keep in mind that the calculation of P, and Q) is
only required to get an estimate for the step size of the algorithm. This means that
fast and rough approximations of the matrices are usually sufficient to achieve a

reasonable performance of the algorithm.

The above results can now readily be applied to define a multivariate version of
the Newton GCV procedure.

Generalized Cross Validation by the Multivariate Newton algorithm:

i Let hg = (ho1,...,hog) be an initial bandwidth and set h; = hy. Choose

h, = (7%1, e th) such that hy, = o(hy) forr=1,...,q e.g. set hyy = hfrﬂ.

ii Fort=1,2,... calculate the update h;; by

62E{GCV(ht)}] - laGCV(ht)]

ees = Be - [ (0h)(0h)T oh

using (12), (14), (22) and (23) and the approximations proposed above.

iii Repeat step ii until changes in GCV (h) are negligible.

During simulation experiments, it was found that the numerical stability of the
algorithm was improved by reducing the step size in the first steps of the algorithm
by a multiplicative factor ¢, with 0 < § < 1. This adjustment is particularly useful
when the initial values h( correspond to oversmoothing, since in this case the bias
in not estimated reliably by the plug-in estimate. For bandwidth h close to the

optimum a step size reduction is not an issue.

Example:

We study the behavior of the proposed method through a simulation experiment.

11



We generate data from the bivariate additive model y = py(x1) + po(z2) + € with
pi(x) = 2? and po(z) = x + 0.3cos(mz) and € ~ N(0,0.3%). The covariates z;
and zy are drawn from a truncated bivariate normal distribution on [—1,1]* with
correlation 0.5. Figure 3 shows the function GCV(hy, hy) for a local linear fit for
a sample of size n = 100. The steps of the Newton algorithm are indicated by
0 to 4 for four different starting points. The algorithm converges quickly to the
minimum as desired. We repeat this simulation 100 times. In Figure 4 we plot
GCV(h,p) = min{GCV(h)}, calculated from a 7 x 7 grid, against GCV (h;) for the
3rd and the 5th step of the Newton algorithm using h = (0.4, 0.4) as starting value.
As in the univariate case, the procedure appears to work well and converges very
fast, i.e. after about 3 steps of the Newton algorithm, the value GCV(h,;) is close
to the minimal one. In this and other simulation settings, a step size adjustment of
0 = 0.5 performed satisfactorily.

We now consider a more general setting by simulating from y = py (z1)+p2(22)+¢;
with py(z) = 2P and pe(z) = x + 0.3 cos(¢mz) for different values of p and ¢g. The
covariates are drawn from a bivariate normal density with mean (0,0), standard
deviations o7 = 0y = 1, correlation p and truncated to [—1,1]*. We simulate from
the following settings: p = 1,2, ¢ = 0,1 and p = 0,0.5 with sample size n = 200
and a simulation size of order 150. In Table 1 we give the empirical correlation
cor{GCV (h),GCV (hoy)} after 5 steps of the Newton procedure and GCV (hyp)
calculated on the 7 x 7 with hy € {0.05,0.125,0.2,...,0.5} for £ = 1,2. As in
Figure 4 the correlation is nearly 1 meaning that the Newton procedure reaches the
minimum after a few steps. For the two setting (a) p = 2,¢ =1 and p = 0 as well
as for (b) p = 1, = 1 and p = 0 we plot the selected bandwidths exemplary in
the histograms shown in Figures 5 and 6. For setting (a) the histograms are very
much alike. In contrast, for setting (b) the theoretically optimal bandwidth for A, is
infinity, since the effect is linear. This can not be accomplished in grid search, but
in contrast, the Newton procedure chooses a large value for h; in most simulations.
For demonstration purposes, we grouped bandwidths chosen larger than 0.5 in the
category [0.5,0.6] in the histogram in Figure 6. The Newton Procedure in this
setting clearly uncovers the linear parametric structure of the simulation setting. A

similar behaviour was observed in other simulation settings.

Example:

We demonstrate the procedure on a literature data example giving the atmospheric

12



ozone concentration in the Los Angeles basin 1976. The data are described in
Hastie and Tibshirani (1990) who use them to demonstrate different bandwidth
selection routines. Covariables considered are vh (millibar pressure height, measured
at location 1), wind (wind speed), humidity, temp (temperature), ibh (temperature
inversion height, measured at location 1), dpg (pressure gradient from Los Angeles
airport LAX), ibt (inversion temperature at LAX), vis (visibility) and doy (day
of the year). We start the Newton procedure using for hg the empirical standard
deviations of each covariate. The steps of the algorithm are shown in Table 2.
A step size reduction using ¢ = 0.3 was applied to stabilize the performance of
the algorithm. The final curves are visible from Figure 7. Comparing the plots
with the procedures used in Hastie and Tibshirani (1990) shows similarities with
the fits obtained by fitting an additive model with 4 degrees of freedom for each
smooth component, except of the clear linear shape chosen for vh, humidity and
ibh The odd shape for wind is determined by the influential point at 21. Overall,
the Newton procedure proves to behave rather satisfactory in this high dimensional
example, allowing to obtain bandwidths close to the minimal value of GC'V (h) after

already 5 steps.

4 Generalized Additive Models

In this section we extend the Newton-based GCV minimization procedure to gen-
eralized additive models of the form (1). The response y for the given predictor
n=a+y(x)+ ...+ 7(x,) is distributed according to density f(y|n) which is

assumed to be of exponential family form

floln) = exp (210

where # = 6(n) denotes the natural parameter corresponding to the expectation

n c(y,¢>) , (24)

h(n) and ¢ as dispersion parameter which assumed to be known. For simplicity of

notation we restrict the presentation to natural links function, i.e. we assume 6 = 7.

Hastie and Tibshirani (1990) propose fitting this model with local scoring, a
method combining additive model backfitting with a Fischer scoring-type iteration.
Because local scoring does not allow a closed-form representation of the estimators,
even as an asymptotic approximation, we cannot directly apply the same approach

of differentiating and approximating the GCV derivatives as in the previous two
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sections. We will therefore derive the method for the local likelihood estimator of
Kauermann and Opsomer (2000), since this estimator has a closed-form asymptotic
approximation. Local scoring and local likelihood estimators are closely related
in both an asymptotic and an algorithmic sense (see Kauermann and Opsomer,
2000 for details) and lead to almost identical fits in practice. Hence, even though
the proposed bandwidth selection algorithm cannot be rigorously justified for local
scoring, it can be applied for that case as well with no substantial modification in

the computations, and should perform equally well.

We introduce the necessary notation. Let V' = diag(vs,...,v,) be a diagonal
matrix, where v; = —9%log f(y|n)/(0n)* = 9°b(0;)/(00;)*¢~" = Var(yi|n;)¢* and
ni = a+ >, Vk(zik). Here ¢; is the dispersion parameter corresponding to the ith
observation. Let v, = (ye(@1x),-- -, V(znk))? and define the weighted smoothing

matrix S, with elements
Siij = (1,0)Fr w i (hi) Xk

with wy;;(he) = W{(zk; — ki) /Iy } for some kernel function W(-), Xf’ij = (1, —
rp;) and Fp; = 3, wk,ijUij,z'ij,ij- Let Sy = (I — 117V /¥, v;)S), denote the
centered smoothing matrix (note that in the homoskedastic case, this centering
adjustment reduces to that of the additive model in Section 3). The entries of S ;;

can again be approximated by

Sei ~ K(%ﬁ) [{nhyor (o) fi(zie) (25)

where K (-) denotes a kernel of order 2 and vy (zi) = [v{a+>; ve(vr) } e (v g |Tir)dz _y,

is the conditional variance function given xz;,. Finally, let
r syv ... SV
M = : : . (26)
s,V sV - 1

We refer the reader to Appendix A for the formal definition of the local likelihood
estimators for the component functions in (1). The essential result from local like-
lihood estimation is that, similarly to equation (10), one can asymptotically derive

a linear form of smoothing, given by

M7, = Si(l, + Vn) (27)
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withl, = (ly1,- -+ lyn) ", Ly the score of the ith observation, and S = (S} ..., 8% ).
Since ¢g(-) is assumed to be the natural link function the ith element of the score
vector equals the residual ,; = (y; — j;)/¢;. From (27) it is possible to write the

approximation

n-n~Q.(,+Vn), (28)

with @, =X Q, and Q;, = M*S;V (I — 8*, V) defined similar as in the previous
section, but using the generalized smoother matrices as in (26). The approximation
(28) justifies treating the local likelihood estimator as a weighted additive model.

The generalized additive model GCV criterion is now given by

- LV, AV (y - )
GV = i @ VmE © el spusv)nE 2

where ® = diag(¢,...,¢,) and i,, = & '(y — ) with o = g(7). The degrees of
freedom approximation in the denominator can be justified using the same reasoning
as for the additive model criterion (11), and expression (29) reduces to (11) for the

identity link and normal homoskedastic errors.

As in the previous sections, we propose a Newton-type procedure for efficiently
minimizing this function. Note first that Sj and V in (29) both depend on the
unknown parameters through v;,2 = 1,...,n, so that plug-in estimates have to be
used to calculate (29). The derivative of (29) is

vl e 5T (08
GOV(R) 2 LV o . LV an“(ah,f) (30)
oy n | U= seu(Sp/ny | n{l— x,u(S;)/n}? |

where dl,/0h, = —® 10 /0h, = —V 7, /Oy

Using the first order approximation g ~ g+ V®(n —n) and differentiating both
sides of (27) as in (13) provides
07, 0;
~ P,—{l
oh, B,

+ V;?k}a

where Py, = (I — §*,V)M"*. The derivative 087 /0h;, is again approximated as in
(6) in Section 1 which in turn yields an estimator for 0GCV (h)/0hy.

15



For the second order derivative, we obtain from (28) in first order the approxi-

mation
E{GCV(h)} ~ tr{®-2Q.V®+QVQ,V®}+b Vb, /n

where by = E(n, —n). As in the previous section, we approximate the term
tr{2Q . V® - QVQ,V®} by ¥, tr{28 VP — SiTVS+V<I>}. Using the results
in Kauermann and Opsomer (2000), (18) can be shown to hold approximately in
the generalized additve model as well. Hence, the bias decomposition from before
provides b, = ¥, by, with by, = Pby_, with by, = E(’?k‘fk — ;) as 'oracle’ bias.

Hence, as in (20) and (21) one obtains

G E{GCV (h)}
o

1
n—%{w%r@s,{v -5, VSV (31)

+12b, Vby, + 4b, Vb 1.}
PE{GCV(h)} 1 (a%ivm) 8

~T ~
~ - ~ b Vb 32
Oh, Ohy, n \ Oh,oh, nhohy ©F (32)

In complete analogy to the previous section, we can now develop a Newton algorithm
for bandwidth selection. The only difference occuring here is that quantities involved
depend on the unknown variance matrix V. One therefore has to replace V in
each step of the algorithm by a plug in estimate using the current estimate with
bandwidth h;. Moreover, using approximations as above, a plug-in estimate for the
bias is obtained from by = Q, V7 — 7, so that with using (18) and (19) and plug-in

estimates for M and P a plug-in estimates for b, results.

Example:

We apply the procedure to binary response data. The outcome variable describes
the occurrence of chronic bronchitis (y=1 for yes, y = 0 for no) at workers employed
in a mechanical engineering plant in Munich, Germany (see Kiichenhoff and Carroll,
2000 for a previous analysis of the data). As explanatory variables we consider the
average dust concentration at the worker’s workplace, 1, and the exposure time x,.
To control for the effect of smoking we base our analysis on smokers only. The data

are available from the data server at http://www.stat.uni-muenchen.de.

We fit the model P(y = 1|z1,25) = logit™ {a + 71 (21) + 72(w2)} and start the
Newton procedure with h = (hq, he) chosen as the empirical standard deviations of

x1 and x5, respectively. As a second set of starting values we use 1/4 of the empirical

16



standard deviations. A step size reduction was used for the first setting only, to cope
for the effects of oversmoothing. The steps of the routine are plotted in Figure 8
where we show GCV (hy, hy) calculated on a grid of points. Obviously, the Newton
procedure behaves satisfactory also in the binary case by moving quickly towards
the minimum of GC'V'. This holds for both starting values. The final estimates are
shown in Figure 9. In particular, a saturation of the exposure time after about 25

years becomes visible.

A Appendix: Local Likelihood Backfitting

We summarize some of the main ideas of Kauermann and Opsomer (2000) here.
Based on (24), the log-likelihood contribution of the jth observation as a function
of n is

Lin) = [y;0(n) = 010(n)}]/¢-
We define the score for the jth observation as [, ; = 0l;(n)/0n evaluated at the true
parameter value for the jth observation. The local likelihood estimators Jy(xy;), k =
1,...,q,i=1,...,n are defined as Jx(zx;) = (1,0)8,,;, where the 3,, are the solu-

tions to the system of non-linear score equations
n
T ~
> Wiij X kijln (X g ijBri + 1-15) = 0 (33)
j=1
fori=1,...,n, k=1,...,q, subject to identifiability constraints for the ~(-).

Let 7y_j represent the oracle estimator vector for the kth component function
evaluated at the observation points, and let I, = (I,1,...,l,,)". (Kauermann and
Opsomer, 2000) show that

Y-k = Sply + SV (34)

and provide the following relationship between the oracle and the full local likelihood

estimator

M(’?- - 7.) ~ :7\/-|7- — Yo (35)
where as above v, = (7], .., 7)), Yejme = (V|15 >V n)" and M as given in
(26). Approximations (34) and (35) directly lead to (27).
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Figure 1: Simulated data with true curve and design density as ticks (left plot),
GCV (h) with steps of the Newton procedure, indicated by 0, .. .3, for two different

starting values.

19



a) b)

h_t (Newton-Raphson)
0.050.100.150.200.25
h_t (Newton-Raphson)
0.050.100.150.200.25

0.050.100.150.200.25 0.050.100.150.200.25
h_opt h_opt

C)

L0 Lo

™ ™

o o
= Q =8
| ¢ | ™
£ o £ o
I v T
AN (QV

@ o 3 o
o o

AN (QV

o o

0.20 0.25 0.30 0.35 0.20 0.25 0.30 0.35
GCV (h_opt) GCV (h_opt)

Figure 2: Bandwidth h,, which minimizes GCV (h) plotted against h; resulting
from the 5-th step of the Newton algorithm for starting values a) hy = 0.05 and b)
hy = 0.3. Lower two plots show GCV (hey) plotted against GCV (h;), for starting
values ¢) hy = 0.05 and d) hy = 0.3.
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Figure 3: Generalized Cross Validation Function GCV (h) and Newton steps, de-
noted by 0 to 4, for 4 different starting points.
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Figure 4: GCV (hgy) plotted against GCV (h,) with h; as a) 3-rd and b) 5-th step

of the Newton algorithm.
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p:
gq=0 g=1 ¢

995 .998
990 .996

p=
=0 ¢=

996 .998

995 .996

Table 1: Empirical correlation cor{GCV (h), GCV (hoy)} for different simulation

settings each based on 150 replicates

step GCV | vh wind humidity temp ibh dpg ibt vis  doy
0 17.65 | 105 2.29 19.9 14.4 1803 35.7 76.7 79.3 106.1
1 16.16
2 1575 . . . . . . . . .
3 15,59 | 473 2.79 47.6 9.50 4905 37.5 115 69.7 45.6
4 1548 | . . . . . . . . .
5 1541|988 3.00 69.5 8.46 7623 389 133 66.9 41.6

Table 2: Value of GCV'(h) for ozone data and the first 5 steps of the Newton

procedure.
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Figure 5: Selected Bandwidth forp =2, ¢ =1, p=0.
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Figure 6: Selected Bandwidth for p = 1, ¢ = 1, p = 0 (Bandwidth >0.5 are set
displayed in group [0.5, 0.6]).
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Figure 7: Fitted Generalized Additive Model for
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Figure 8: GCV (hy, hy) for brochitis data.

27



gamma(log(DUST))
-0.4 -0.2 0.0 0.2 0.4 0.6

gamma(EXPO)
-25-20-15-1.0-05 0.0 0.5

-2

0 2 4 10 20 30
log(DUST) EXPO

Figure 9: Fitted Generalized Additive Model for bronchitis data.
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