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Abstract

Gaussian Markov random field (GMRF) models are commonly used to
model spatial correlation in disease mapping applications. For Bayesian
inference by MCMC, so far mainly single-site updating algorithms have
been considered. However, convergence and mixing properties of such
algorithms can be extremely poor due to strong dependencies of parame-
ters in the posterior distribution. In this paper, we propose various block
sampling algorithms in order to improve the MCMC performance. The
methodology is rather general, allows for non-standard full conditionals,
and can be applied in a modular fashion in a large number of different
scenarios. For illustration we consider three different applications: two
formulations for spatial modeling of a single disease (with and without
additional unstructured parameters respectively), and one formulation for
the joint analysis of two diseases. The results indicate that the largest
benefits are obtained if parameters and the corresponding hyperparame-
ter are updated jointly in one large block. Implementation of such block
algorithms is relatively easy using methods for fast sampling of Gaussian
Markov random fields (Rue, 2001). By comparison, Monte Carlo estimates
based on single-site updating can be rather misleading, even for very long
runs. Our results may have wider relevance for efficient MCMC simulation

in hierarchical models with Markov random field components.
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1 Introduction

There has been much recent interest in Bayesian hierarchical models in spatial
epidemiology, as reviewed in Clayton and Bernardinelli (1992) and Wakefield,
Best and Waller (2000). Such models provide a flexible way of handling spa-
tial correlation in the data and can easily be combined with other models,
such as models for measurement error of additional covariates (Bernardinelli
et al., 1997) or for temporal and spatio-temporal correlation (Waller et al.,
1997, Knorr-Held and Besag, 1998, Knorr-Held, 2000). Furthermore, they can
be extended to model jointly the geographical variation of two or more diseases
(Knorr-Held and Best, 2000).

Many of the formulations used for spatial data are based on Gaussian
Markov random field (GMRF) models. Statistical inference in such models
is typically done by Markov chain Monte Carlo (MCMC) simulation methods,
mostly by single-site updating, that is updating each parameter one by one in
turn. However, it is well known from MCMC simulation in the related class
of dynamic or state-space models that such single-site updating can have very
poor convergence and mixing properties. Several authors have therefore sug-
gested to block update the parameters in dynamic models (most of them using
the Kalman filter/smoother), including Carter and Kohn (1994), Fruhwirth-
Schnatter (1994), Shephard and Pitt (1997) and Knorr-Held (1999), see also
Wilkinson and Yeung (2001) who propose block updating in (nested hierarchi-
cal) linear models. An alternative way to improve mixing has been proposed
by Gamerman (1998), who suggested to reparametrize the dynamic model to a
priori independent system disturbances.

Similar problems with single-site updating occur in spatial models, where
parameters are also correlated a priori. However, block updating has rarely been
considered, because the lack of a (temporal) order in GMRF models makes it
less obvious how to design fast algorithms for simulating from such a block
at once. However, Rue (2001) has recently described a very efficient way of
simulating from GMRF models, even if this involves a large number of param-
eters. Furthermore, he shows how to extend the method to non-Gaussian full
conditional distributions, which involve GMRF terms. Such full conditionals
typically arise when GMRF models are combined with non-normal observation
models in a hierarchical framework, as in disease mapping, where Poisson or

binomial observation models are combined with latent GMRF models for the



unknown disease risk parameters.

In this paper we extend Rue’s methodology in several ways and describe
how block updating can be implemented in three typical disease mapping ap-
plications. We expect potential improvements in mixing through blocking only
for the parameters within the block(s), so we test a whole range of possible
blocking algorithms, including the two extreme cases single-site updating and
updating of all or nearly all parameters in one block. Our blocking algorithms
can roughly be categorized into two types: those which sample latent param-
eters jointly, but hyperparameters separately; and those which sample latent
parameters and the corresponding hyperparameters in one block. Joint updates
of parameters and hyperparameters are novel and turn out to be very important
for reliable MCMC simulation in such models.

In more complex hierarchical disease mapping models there are often addi-
tional unstructured parameters or even more than one GMRF component. We
describe how to update all these unknown parameters in one block, possibly
even with the relevant hyperparameters. This is possible in rather complicated
settings with thousands of parameters. Our methods are also applicable if ad-
ditional linear constraints are imposed on the GMRF components, a scenario
where single-site updating is impractical due to degenerate full conditional dis-
tributions. We apply our algorithms exclusively in a disease mapping context;
however, as we will note in the discussion, the proposed methodology can be
used in many other areas of application.

Section 2 describes basic ideas underlying our algorithms in a generic fash-
ion to indicate that the proposed methods have wider relevance in general hi-
erarchical Bayesian models with GMRF components. This general framework
includes so-called dynamic or state-space models for time-series or longitudinal
data, for which block sampling algorithms based on the Kalman filter (“forward
filtering-backward sampling”) have been proposed in the literature (Carter and
Kohn, 1994, Frithwirth-Schnatter, 1994). In Appendix A we discuss the rela-
tionship between the algorithms based on the Kalman filter and Rue’s (2001)
Cholesky-factor approach for Gaussian dynamic models. We conclude that in
some situations the algorithms turn out to be essentially identical, but in gen-
eral the Cholesky-factor approach is conceptually simpler and computationally
more efficient.

In Section 3, we compare empirically a number of different block sampling

algorithms for three specific spatial models. Details about model-specific im-



plementations can be found in Appendix B. The first model, which is the sim-
plest formulation, combines a Poisson likelihood with an intrinsic GMRF model
for the unknown log relative risk parameters. The second model extends the
first by adding additional unstructured parameters to the formulation and has
been proposed in Besag, York and Mollié (1991). Both formulations, which are
commonly used in epidemiological applications, are applied to data on Insulin
Dependent Diabetes Mellitus in 366 districts of Sardinia (Bernardinelli et al.,
1997). The third model we consider, a so-called shared component model, is built
for a joint analysis of two diseases and includes three latent GMRF components,
one which is shared by both diseases and two which are disease-specific, plus
bivariate unstructured parameters for each district. Such a formulation has
recently been proposed by Knorr-Held and Best (2000) and involves additional
identifiability constraints on two of the three GMRF components. Here we test
our algorithms on data on oral cavity and oesophageal cancer mortality in the
544 districts of Germany, already analyzed in Knorr-Held and Best. In all three
models additional hyperparameters enter which are treated as unknown and are
assigned with suitable hyperpriors. Section 4 finally provides a discussion and

outlines a number of other areas where block updating might prove beneficial.

2 Block simulation in GMRF models

This section starts with a review of the algorithm for simulating from a GMRF
(Rue, 2001). We also sketch how Rue generates GMRF samples as an ap-
proximation to a non-standard full conditional distribution which involves a
GMRF. This allows us to block update all parameters in more complex hier-
archical models. In disease mapping applications, the precision matrix of the
GMREF typically depends on one or more additional hyperparameters, and we
then describe a way to produce a joint sample of parameters and hyperparame-
ters. Finally we discuss how these methods can be extended if additional linear
constraints are imposed on the GMRF.

Let = be a multivariate Gaussian random variable with regular precision

matrix Q and mean g = Q7 'b, i.e.
1
m(x) exp(—EmTQm +blx). (1)

Such forms often arise for full conditional distributions in hierarchical models



by combining the relevant product terms of the posterior distribution. The
precision matrix  implies a conditional dependence structure for the compo-
nents of & with @;; = 0 if and only if z; is conditional independent of z;, given
all the other components of x. If );; # 0, then z; is termed a neighbour of
z;. In disease mapping applications, the components of £ may correspond to
district-specific risk parameters and x; will be a neighbour of xz; if districts ¢
and j share a common border. Of course, other definitions may be used as well.

Our methodology is not restricted to the adjacency graph defined by the
contiguities of the n districts; if the hierarchical model consists of more param-
eters, then & may contain more than n parameters. The adjacency graph is
then a subgraph of a larger one defined by the conditional dependencies of the
components of z. For example, the model by Besag et al. (1991) involves n
spatially structured and n additional unstructured parameters. For this model
we will describe and implement a block update of all 2n parameters.

The algorithm by Rue (2001) proceeds in two steps. In a first step, the
nodes of the graph are reordered so that the corresponding precision matrix
has minimal bandwidth. For a given graph, this step has to be performed just
once. For example, for the adjacency graph defined by the 366 districts in
Sardinia, the bandwidth reduces from 244 to 36 after reordering. The precision
matrix of the original and of the reordered graph can be seen in Figure 1.
Incidentally, Sardinia is divided into four provinces, which are easy to spot in

the original graph.
— Figure 1 around here —

The reordered graph forms the basis for the application of a numerically
efficient way of sampling from 7(2). The core of this “Cholesky-factor” algo-
rithm (CFA) is a numerically efficient Cholesky decomposition of the reordered
precision matrix Q into LL” which makes use of the band structure of Q. Sub-
sequently, n independent standard Gaussian random variables z are generated
and three systems of linear equations based on the Cholesky-factor matrix L
and the vector b are solved in order to produce the desired sample ; € = p+u
where LTu = z, Lv = b and L”p = v. This step can also be implemented
in a numerically efficient way, as the (lower) bandwidth of L is equal to the
bandwidth of the reordered precision matrix ). There is a close connection
between this approach and the Kalman-filter for dynamic models, which we

discuss in Appendix A.



In the first level of all models considered, disease counts are assumed to be
conditionally independent Poisson with mean equal to known expected counts
times an unknown relative risk. The log relative risk is then factorized into
unknown parameters, so that the corresponding full conditional distributions
are non-standard. For block updates of such non-standard full conditional dis-
tributions, we use a quadratic approximation to the non-Gaussian likelihood
part of the full conditional, as described in Rue (2001). This allows us to use
a GMRF sample as a proposal distribution in a Metropolis-Hastings step. The
approximation could be based on a local Taylor expansion around the current
value of x. Alternatively, it could be chosen to provide a more global overall
fit in order to yield higher acceptance probabilities. Even for a large number
of parameters in the block (around 1,000, say), the acceptance rates of such a
Metropolis-Hastings proposal are typically around 20 - 50%.

Suppose now that the precision matrix @ of the GMRF depends on addi-
tional hyperparameters 8. We generate a joint Metropolis-Hastings proposal
(6,x) by first simulating from some (arbitrary) proposal distribution for 6,
possibly depending on the current value of 8, but not depending on «, and sub-
sequently sampling the GMRF 7(x|@) as described above. The proposal (8, )
is then accepted or rejected jointly. Calculation of the acceptance probability
will now involve the evaluation of the normalizing constant (which depends on
Q, hence on @) of the density (1). This constant can be computed easily as a
simple by-product of the sampling algorithm based on the diagonal elements
of the Cholesky-factor L, as described in Rue (2001). Again, m(x|@) does not
have to be a GMRF; in this case we compute a GMRF approximation to m(x|@)
as above and use a sample from this approximation as a Metropolis-Hastings
proposal.

In many applications @ is an unknown scalar precision parameter 6 times
a known structure matriz (Clayton, 1996). Here we use a specific proposal for
0, multiplying the current value of 6 with a random variable z proportional
to 1+ 1/z on [1/f, f], where f > 1 is a tuning constant. This proposal has
the advantage that the proposal ratio in the Metropolis-Hastings acceptance
probability equals one.

The proposed block updates are easily extended to the case where the
GMREF is subject to a linear constraint Ax = ¢ by appropriate correction
of the corresponding unconditional sample (Rue, 2001). For updates of  with-

out @, computation of the prior density m(x|Ax) can be based on the identity



m(x|Ax) = n(Az|z)r(x)/m(Ax). As both 7(Az|z) and 7(Ax) are identical
for the current and the proposed value of @, the prior ratio in the Metropolis-
Hastings acceptance probability reduces to the ratio of the unconstrained den-
sities m(x). However, for joint updates of & and additional hyperparameters
0, the normalizing constant of 7(Ax), which typically depends on @, has to be

taken into account as well.

3 Applications

3.1 Model 1

A common formulation to incorporate spatially structured heterogeneity in
disease mapping is to assume that the observed disease counts y; in district
i =1,...,n are conditional independent Poisson with mean e; exp(n;), where
e; are known expected counts and 7); are the unknown log relative risk param-
eters, which are assumed to follow a GMRF. The most popular choice is a
non-stationary “intrinsic autoregression”

m(nlk) o< k°F exp(=5 Y (m: = m;)°) 2)

irvj

although other formulations are possible, e.g. Cressie (1992). In (2), i ~ j
denotes all pairs of adjacent districts 7 and j. Formally, n follows a (singular)
multivariate Gaussian distribution with mean zero and precision KK, where
the i-j-off-diagonal element in the structure matrix K is —1 if district ¢ is
adjacent to district 7 and zero elsewhere. The i-th diagonal element in K is
equal to the number of neighbouring districts of district . The formulation can
be extended by additional weights, see Besag et al. (1991). This prior leaves
the overall level of the GMRF unspecified, as only differences of log relative risk
parameters enter in (2). An equivalent representation would be to include an
additional intercept with an improper flat prior and a restriction imposed on
the GMRF to have mean zero (Besag and Kooperberg, 1995).

Note that some authors use n instead of n — 1 for the degrees of freedom
for £ in equation (2). One would not expect that this choice really matters in
practice, at least not for large n. However, there can still be surprisingly large
differences, as illustrated in Knorr-Held (2001). We use n—1 degrees of freedom
because of the rank deficiency of K with only n—1 non-zero eigenvalues. For the

precision parameter x we adopt the usual conjugate gamma prior G(c, d), with



density (k) o< k! exp(—dk), where ¢ and d are suitably chosen constants.

We now report results of the algorithm for a dataset on Insulin dependent
Diabetes Mellitus (IDDM) in Sardinia (n = 366). This is a sparse dataset
with a total of 619 cases (median of 1 per district), where spatial smoothing
is essential to get a realistic picture of the underlying risk surface. We set the
hyperparameters to ¢ = 0.25 and d = 0.0005, which has been suggested by
Bernardinelli et al. (1995) as a vague prior choice.

We have implemented three sampling schemes: scheme 1 is a single-site
algorithm; scheme 2 performs a block update of n and generates « separately;
and scheme 3 updates n and & jointly (“hyperblock”). Details can be found in
Appendix B. Block updates in scheme 2 have acceptance rates of 74%. Here
we have used a Taylor-approximation for the non-Gaussian terms in the full
conditional distribution. In scheme 3 we have tuned the scaling parameter f of
the proposal for x so that the acceptance rates were slightly below 30%. Both
scheme 2 and 3 did slightly more than 200 iterations per second on a DEC
Alpha, whereas the single-site algorithm was approximately six times faster.

For each of the three schemes we ran a chain of length 100,000 (including
an initial burn-in period). For each district, we computed estimates of the
posterior mean relative risk and the posterior probability of a relative risk above
1.0. These quantities are routinely calculated in disease mapping applications.
As can be seen from Figure 2, there are surprisingly large differences in the
distribution of the estimates for the different schemes. One would not expect

such discrepancies for MCMC estimates based on 100,000 iterations.
— Figure 2 around here —
— Figure 3 around here —

Figure 3 gives a plot of posterior samples (we have stored every 100th iter-
ation) of the overall variation of the n parameters, measured as the logarithm
of the sum of the squared differences > (n; — n;)?, versus log k for the different
schemes. It can be seen that the thg ]quantities are highly correlated which
indicates that there are very strong dependencies between the log relative risk
parameters 17 and the hyperparamter x. Note that the posterior distribution
for log k is rather skewed with one long tail towards large values of k. Appar-

ently, the two sampling scheme which update 1 and x separately have severe

problems with mixing in this tail. The other tail of the distribution (low values



of k) is shorter and seems therefore less problematic. Any MCMC algorithm
with separate updates of x may get stuck in the tail where x has very high
values. Note that - for these runs - samples from scheme 1 seem to slightly
overrepresent this tail, while in contrast scheme 2 does not fully exploit this
tail. This can also be seen from Figure 4, which gives trace-plots of log k (again
every 100th iteration, same runs) for the three different schemes. It is obvious
from that figure that the mixing of s for scheme 3 (with virtually independent

samples) is much better than for the other two schemes.
— Figure 4 around here —
— Figure 5 around here —

A more detailed comparison of the risk estimates is shown in Figure 5.
Here the estimates (relative risk in the first column, posterior probabilities in
the second) from scheme 1, 2, and 3 (first, second, and third row) are plotted
against those obtained from a longer run (1,000,000 iterations) with scheme
3. It can be seen that the estimates from scheme 1 and 2 do not completely
agree with those obtained from the longer run. Scheme 1 estimates slightly
underestimate the variation of the relative risk parameters because this run
was oversampling the long tail of the posterior distribution of x and high values
of k correspond to virtually no variation of the relative risk parameters. For
scheme 2 an opposite effect can be seen, because this run was undersampling
the tail of k. We finally note that the runs presented here are not extreme cases
but are typical for the amount of Monte Carlo error associated with the three

different schemes.

3.2 Model 2

The model proposed in Besag, York and Mollié (1991) extends the formulation
of Section 3.1 by adding district-specific parameters accounting for additional
unstructured heterogeneity. Rue (2001) has described a way to simulate from
this model in the original parameterization by Besag et al.. He uses a block
update for the spatially structured parameters and single-site updates for all
other parameters and hyperparameters. Here we follow Carlin and Louis (1996,
p. 308) and reparametrize the model in order to facilitate the implementation
of our blocking algorithms and to improve the performance of the MCMC algo-
rithms. A similar approach has been used already by Besag et al. (1995) for a

10



Bayesian age-period-cohort model. One of the advantages of the reparametrized
model is that the full conditional for the spatially structured parameters is now
multivariate Gaussian, so updating can be done with a simple (multivariate)
Gibbs step. Also, in the original parameterization, there may be mixing prob-
lems with large (negative) posterior correlations between the spatial and non-
spatial parameters for districts with a strong likelihood contribution. Finally, it
is easier to design a block update of all (structured and unstructured) parame-
ters in the reparametrized model, as the likelihood terms enter for only half of
the parameters.

The reparametrized model can be written as a three-stage hierarchical model
where, in the first-stage responses y; are conditionally independent Poisson with
mean e; exp(7;), in the second-stage ) is multivariate Gaussian with mean u and
diagonal precision matrix AI, and in the third-stage, u follows a Markov random
field with precision matrix kK. For A and x we adopt the usual (independent)
gamma hyperpriors, say A ~ G(a,b) and k ~ G(c,d). We now report the results
for the same Sardinia data as in model 1. We have set a = ¢ = 0.25, b = 0.00025
and d = 0.0005, which has been suggested by Bernardinelli et al. (1995) as a
vague prior guess. Results for the more informative prior setting ¢ = ¢ = 1.0,
b =0.01 and d = 0.02 are briefly reported later.

In total, we have implemented 13 algorithms which differ in the way they
form the blocks, and have also tested mixtures of those. To describe the different
blocking schemes, we use the following notation: Let [n] denote an algorithm
which updates n as a block and all other parameters by single-site. Similarly,
[, A] denotes blocking of n and X and [n, A], [u, ] blocks § with A and u with .
The different schemes are listed in Table 1. In the single-site algorithm, we use
a log-gamma proposal for updating 7);, similar to model 1. For block updating
of n without w, we just propose n log gamma variates and accept/reject them
jointly. For block updates of n and u, we again use a Taylor-approximation for
the non-Gaussian likelihood terms.

We also implemented other algorithms which we do not report; A bivariate
block update of (n;,u;), 7 = 1,... ,n and a Metropolis adjusted Langevin algo-
rithm (e.g. Besag et al., 1995), which proposes to update all parameters in the
direction of the gradient of the log-posterior). The first algorithm did not im-
prove much over single-site, while for the latter the convergence was notoriously

slow.

— Table 1 around here —
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For each scheme, we ran the algorithm for 100,000 iterations, following initial
burn-in and tuning periods. Acceptance rates for blocks of 7 have been around
76%, and for blocks of u and 1 around 70%. Figure 6 gives trace-plots of log
and log A for all 13 schemes. Here we have plotted every 100th iteration.

— Figure 6 around here —

Our main findings are indicated in Table 1, and can be summarized as

follows:

1. All schemes which did not jointly update w and « produce rather unreli-
able relative risk estimates due to high posterior correlations between u
and k; similar to scheme 1 and 2 in model 1. Furthermore, even in scheme
3, 6 and 9 the parameters u and & still showed rather poor mixing with
increased Monte Carlo simulation error and corresponding high variabil-
ity of the relative risk estimates. Mixing of x was satisfactory only in

schemes 12 and 13, see Figure 6.

2. Block updates of n without A (schemes 4, 5, 6) did not improve over the
corresponding single-site updates of n (schemes 1, 2, 3), see Figure 6.
This is not really surprising, as the 7;’s are conditionally independent,
given u and A. However, a joint update of § and A (schemes 7, 8, 9) gives

better mixing of A, but not of the other parameters.

3. Joint updates of u and 1 improved the mixing of these parameters. This
indicates that there are high correlations between 7; and u;, at least for
some districts. Indeed, these correlations vary between 0.77 and 0.96 with
a median correlation of 0.89. For this example, the spatially structured
component dominates the estimated risk surface (posterior median of log x
equal to 3.3) with less variability of the spatially unstructured parameters,
indicated by larger posterior values of the precision parameter A (posterior

median of log A equal to 6.5).

This indicates that - for this dataset - reliable results can essentially only be
achieved with block updates of all parameters (scheme 13). However, a problem
with scheme 13 is that it is not immediately clear how to design and tune an
appropriate proposal for k and A, before sampling u,n|x,A\. We have used
independent proposals with similar spread as those used in scheme 11 and 12

respectively. A promising alternative to scheme 13 is a mixture of schemes 11

12



and 12, which gives very similar results to scheme 13 and has the advantage that
the spread of the proposal distribution for each hyperparameter can be tuned
separately. The mixing is very similar to that of scheme 13, as can be seen in
the last trace plot in Figure 6. We finally note that for the more informative
prior setting for k and A the results are qualitatively similar with slightly better

mixing of k and A.

3.3 Model 3

The third model we consider is a so-called shared component model and has
recently been proposed (in a slightly different formulation) by Knorr-Held and
Best (2000) for a joint spatial analysis of two diseases. The key idea is to sepa-
rate the latent risk surfaces of the two diseases into three (spatially structured)
components, one which is shared by both diseases, and two which are disease-
specific. An additional scaling parameter § allows for a different magnitude of
the shared component for each of the two diseases. While Knorr-Held and Best
use so-called cluster or partition models (Knorr-Held and Rafer, 2000) for the
three spatial components, here we use GMRF models instead. Furthermore, we
add bivariate Gaussian random variables to the formulation to account for un-
structured heterogeneity in the spirit of the (reparametrized) Besag et al. (1991)
model.

Let u be the shared component and v1 and vs the specific components for
disease 1 and 2 respectively. Each of the three components is assumed to follow
independently a GRMF (on the same graph) with precision parameters s, v,

and vs respectively. To ensure identifiability, the additional restrictions

Zvli =0, and ngi =0 (3)
i i
are imposed on the specific components.

Let n; = (n1i,72:)7 be the log relative risk parameter vector in district
1 for disease 1 and 2 respectively. We now assume that 7; is conditionally
independent bivariate Gaussian with mean (u;-d+v1;,u;/d+v2;)T and precision
matrix A. Disease counts yg4, for disease d = 1,2 in district ¢ are assumed to
be conditionally independent Poisson variables with mean ey exp(ng;). For a

motivation of this model see Knorr-Held and Best (2000).
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For A we adopt a Wishart prior with parameters a¢ and B, i.e.
7(A) o |A[*3/2 exp(—tr(BA)),

to allow for possible correlation between components of n;. For k, v1 and v, we
choose the usual gamma hyperpriors with parameters (c, d), (e1, f1) and (es, f2),
respectively. The logarithm of the scaling parameter 4§ is finally assumed to be
normal with mean zero and variance 72.

Again, we have implemented a large number of different block updating
algorithms to sample from this distribution. Note that a complete single-site
algorithm is impossible, as the full conditional of any component vy will have
point mass one at the current value, to ensure the restriction (3). We have
therefore always used block updates for the disease-specific GMRF’s v; and vs.

We apply the different schemes to data on oral cavity and oesophageal
cancer mortality in the 544 districts of Germany, 1986-1990, already analyzed
in Knorr-Held and Best (2000). These data are not particularly sparse so we do
not expect such severe problems with single-site algorithms as for the Sardinia
data. Nevertheless, given the large number of parameters in the model, we still
hope to see improvements in mixing for the block algorithms.

For the analysis we have set a = 1.5, B = diag(0.01), ¢ = e; = e9 = 1.0,
d=fi = fo = 0.02 and 72 = 0.17. We report here only results from three
different block updating schemes. Scheme 1 updates u jointly with «, v, jointly
with v, and vs jointly with v5. We have tuned each of the proposals for the
hyperparameters to achieve acceptance rates of 25-30% for each of the three
blocks. Scheme 2 updates u, v; and vy in one block jointly with one of the
hyperparameters J, k, v; and vo in turn. This allows us again to tune each of
the four different block updates to have acceptance rates around 25-30% (Note
that the full conditional for [u, v, v2] is multivariate Gaussian, hence updating
of this block without a hyperparameter can be done with a Gibbs step). In
both schemes we use log-gamma proposals to update the 74;’s by single-site,
similar as in model 2.

The third scheme consists of block updates of all 2,720 parameters u, vy,
v2, 17 and 71y, again jointly with one of the hyperparameters in turn. Figure 7
gives the corresponding precision matrix of the GMRF on all these parame-
ters before and after reordering. The original order of the parameters is u,

V11, V21, M1, M21, U2, V12, V22, M11, 722,-... Acceptance rates for a block up-
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date [u, v1,v2,m;,Ny] without a hyperparameter are still acceptable with values
above 16%. Here we have used an approximation to the likelihood based on
Rue’s (2001, top of p. 335) proposal, which approximately doubles the accep-
tance rates compared to the conceptually simpler Taylor-approximation. We
have tuned the joint updates with each of the four hyperparameters to have ac-
ceptance rates around 10-13%. We note here that, in principle, we could easily
construct a move that updates all parameters together with more than one or
even all hyperparameters, but the choice of the scaling parameters of the pro-
posals for the hyperparameters is not obvious. Therefore, in the spirit of mixing
scheme 11 and 12 in model 2, we update only one of the hyperparameters in

turn, together with the whole parameter block.
— Figure 7 around here —

For each scheme, we ran a chain of 100,000 iterations, storing every 100th
sample. The different algorithms did approximately five iterations per second
for scheme 1, three for scheme 2 and two for scheme 3. Figure 8 gives trace-
plots of the hyperparameters d, x, v1 and v» for the different schemes. Despite
the lower acceptance rates of scheme 3, mixing seems to be slightly better than
for scheme 1 and 2, which can also be seen from the estimated autocorrelation
functions (not displayed). The elements of A did mix well in all three schemes,
we therefore do not display the corresponding trace-plots. Results from the
simpler scheme with block updates of v; and vy and single-site updates of all
other parameters (not displayed) have been roughly similar to those obtained
with the three blocking algorithms presented here. However, this can be dif-
ferent for sparser data, where we expect the blocking algorithms to show more

improvements.
— Figure 8 around here —

We finally note that the estimated surfaces w, v, and wvo, which are not
displayed, are qualitatively similar to those obtained with partition models
(Knorr-Held and Best, 2000). As one expects, the disease-specific components
are slightly less pronounced without the sharp edges identified by the partition

models.
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4 Discussion

This paper has demonstrated the use of block updating algorithms in Bayesian
hierarchical models for disease mapping. In the first two models considered, we
have shown that joint updates of GMRF parameters together with hyperpa-
rameters may be necessary to get reliable estimates of relative risk parameters
or related quantities. Such joint updates ensure better mixing and hence induce
smaller simulation error for parameters estimates. They prevent the chain from
getting trapped in long tails of the posterior distribution, which possibly leads
to unreliable estimates; even for rather long runs. These advantages seem to
very much compensate for the additional cost in computing time and coding.

Estimates based on single-site algorithms or even on blocks of parameters
without the hyperparameters, however, may be rather misleading, even for very
long runs. This is an alarming observation, as such single-site algorithms are
often used in epidemiological applications and it is common folklore that MCMC
runs just need to be long enough to overcome apparent problems with mixing
etc. However, we have shown empirically that this is not always the case.

In model 3 we have demonstrated that the blocking algorithms can also be
used in a more complicated setting with more than one GMRF. This was done
to illustrate that the proposed methodology is generic and can be applied in a
large range of different scenarios. Also it was shown that the methods allow for
proper incorporation of identifiability restrictions, which would be impossible
for any single-site algorithm.

Finally we have been able to design block update algorithms on a large
graph, induced by a complicated hierarchical model built upon three latent
GMRF’s plus exchangeable parameters and various hyperparameters. Of course,
there is always a limit for any blocking algorithm of non-standard full condition-
als, if the number of parameters considered gets very large. However, in disease
mapping algorithms, the number of districts rarely exceeds a few thousand, and
for such problems our algorithms seem to work fine.

There is a wide range of applications of the proposed methodology outside of
disease mapping applications. For example, Fahrmeir and Lang (2001) recently
described several formulations based on Markov random field priors for Bayesian
non- and semi-parametric inference in generalized additive models, see also
Hastie and Tibshirani (2000). Other applications are models for space-time
interactions based on GMRF priors (Clayton, 1996, Knorr-Held, 2000), models
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for agricultural field experiments (Besag and Higdon, 1999) or Bayesian versions
of age-period-cohort models (Besag et al., 1995). We also note here that the
block algorithms are not restricted to Gaussian MRF’s; the adoption of scale
mixtures of normals allows for many other distributional assumptions, including
the popular ¢-distributions, possibly even with an unknown number of degrees of
freedom, see Besag et al. (1995) and Besag and Higdon (1999). Finally we note
that a GMRF with a sparse precision matrix may also be used to approximate a
(stationary) Gaussian field, specified through a given correlation structure (Rue
and Tjelmeland, 2002). In geostatistical applications, the correlation matrix
of the Gaussian field might depend on a few unknown hyperparameters, and
it would be interesting to study if our proposed joint updates of the GMRF

approximation together with these hyperparameters are applicable as well.
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Appendix A The relation between the Cholesky-factor
algorithm and the Kalman-filter

It is well known that for the Gaussian dynamic or state-space model, ¢ =

1,....n

x| past ~ N(Gizi—1,%) (4)
Y |z past ~ N (Hyxy, Q), (5)

where x; is the (hidden) Gaussian Markov chain with k-dimensional states, Gy
is a k X k-matrix, H; is a [ x k matrix, X; is a k-dimensional covariance matrix,
y; are [-dimensional Gaussian observations with mean H;x; and covariance 2,

we can use the Kalman-filter to
1. sample exactly from 7(xy,... ,2,|Yyy,... ,Y,), and
2. compute the normalization constant for the same conditional density,

in terms of O(n) flops for fixed k£ and [. This sampling algorithm is usually
called the forward-filtering-backward-sampling (FFBS) algorithm. This Ap-
pendix discusses the relation between the FFBS algorithm (and its more recent
variants) and the Cholesky-factor algorithm (CFA) used in this report, for sam-
pling from the GMRF defined in (1). There is a close correspondence between
the two algorithms, as the Kalman-filter/smoother relates nicely to entries in

the Cholesky-factor of the precision matrix (Fahrmeir and Kaufmann, 1991).

The forward-filtering-backward-sampling algorithm

To simplify the notation, let y¢ = (yy,... ,y,) and define similarly }. A sample
from 7|y} can be generated by first doing a forward-filtering (FF) step using
the Kalman-filter and then a backward-sampling (BS) step (Carter and Kohn,
1994, Frithwirth-Schnatter, 1994). Similarly, the normalized likelihood can be
evaluated for any fixed state. The algorithm proceeds in two steps: In the

FF-step, we compute the filtering densities sequentially from ¢ =1 to n, by

r(@: | yl) = / r(@r | (@ | @)y, | 1) dmis.
LTi—1

The integration is trivial to do analytically since all involved densities are Gaus-

sian. We have now access to 7(x,|y) which is the starting-point for the BS-step
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which goes backward in time. The conditional independence structure of the
model implies that

T(Tn-1 | Tn, Y1) = T(Tp1 | wnay?il) oc m(&p 1 | ?/1171) m(@y | Tn1).  (6)

n—1

Note that 7(x,—1|y?™ ") is already computed in the FF-step, so (6) is easy to

compute. We continue the process backward in time using the obvious gener-

alization of (6) for general t =n — 1,... ,1, obtaining
1
w(@f |y) = w(@a|yt) [ wl@ |2t uh). (7)
t=n—1
1
= m(@n | yT) (x| @1, yh)- (8)
t=n—1

Note that (8) is sequential backward in time, hence ] can be sampled by first
sampling x,, then x,_; conditional on &, and so on. Further, we have access
to the normalized joint density, as the normalization constant is just a product

of n normalization constants of k-dimensional Gaussian distributions.

The Cholesky-factor algorithm

We now apply the Cholesky-factor algorithm (CFA) of Rue (2001) to the Gaus-
sian dynamic model defined in (4) and (5). No reordering of the vertices is
needed in this case. To simplify the discussion we assume 3; is non-singular
for all ¢. This assumption will be relaxed later on. Note that w(x}|y!) is
Gaussian (as defined in (1)) with block-tridiagonal precision matrix @ (with k-
dimensional blocks) and b(= b'') containing the contribution from the observed
data. The specific elements of Q and b are not needed for the following, so we
don’t give more details. Denote by L the block-triangular (with k-dimensional
blocks) Cholesky-factor of @ and let the ij’th block of L be L;;.

A sample from 7(z}|y}) can now be generated (compare Section 2) by
x? = u} + p} where u} is the solution of LTu} = 27 where the z;’s are
independent k-dimensional Gaussian with zero mean and covariance I, and the
mean pu7 is the solution of Lvf = b} and LT u? = v}. By writing out the

equations (the derivation is standard matrix-algebra) we finally obtain (with
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obvious changes when t = n)

Prec(uy | uiy,y7) = LttLg (9)
Blu |ufy,yl) = —Lp L, jue (10)
pe = —Ly" (v, - Lz:t—ll‘Hl)' (11)

Hence, the diagonal terms L;; of L are the Cholesky-factors of the conditional
precisions and the off-diagonal terms L;; 1 are related to the conditional ex-
pectations.

Note that (9), (10) and (11) simply compute all terms needed in (7), and
provide formula (8) itself. (The simplification from (7) to (8) is however not im-
mediate from (9), (10) and (11), but we omit the detailed argument here for sim-
plicity.) Hence, the FFBS algorithm using the Kalman-filter is equivalent to the
CFA, in the meaning that they compute the same conditional densities needed
in (7). The minor differences are that the CFA computes the Cholesky-factor
of the precision matrix for each ¢ (see (9)), while the Kalman-filter usually com-
putes the corresponding covariance matrix. The Kalman-filter also computes
the mean and covariance of @x;|y} for each ¢ in the FF-step, which introduce
minor redundancy since only the conditional densities in (8) are needed. The
CFA computes directly the conditional densities and nothing else.

The equivalence can also be used to derive the Kalman-recursions directly
from the sequence of precision matrices for x}{|y!, t = 1,...,n and their

Cholesky-factors, but we omit this detail here.

When do they differ?

The difference between the FFBS algorithm and the CFA becomes clear when

3}, is singular or we simply do not have a dynamic model to start with.
Singularity of ¥, is typically encountered when forcing a model into the

state space form (4). As an illustration, consider a standard auto-regressive

process of order p,

Ty — Q1T — — PpTp—p = € (12)

where ¢, ~ N(0,0?) and with observations y; ~ N (2, 7). To use the Kalman-
filter to sample x|y}, we put (12) into a state-space form with £ = p and rank

of 3; = 1 (to account for the deterministic relations). Using the state-space
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representation the precision matrix of 7|y} has dimension nk but only rank
n. It is easy and theoretically convenient to use deterministic relations to force
models into the state-space form, but it is quite hard to account for this in
an algorithmical implementation of the Kalman-filter. Further, it also slows
down the computation. Frithwirth-Schnatter (1994, Section 3) and de Jong
and Shephard (1995) suggested to apply the Kalman-filter only for the non-
deterministic part of (4), hence reducing the dimension of the model from nk
to n. Using the CFA, we do not encounter this problem at all as the precision
matrix for |y} is a band-matrix with bandwidth p, hence L is lower triangular
with the same bandwidth (Rue, 2001). The CFA does not rely on a dynamical
representation like (4), but only on the band-structure of the precision-matrix.

Although dynamic models are important, we are most interested in spatial
applications, where the Kalman-filter does not apply; The prior model (1) is
defined jointly and there is no “time” nor an easy-to-get forward representation
like (4). The CFA however can still be used, possibly after reordering of the
indices to obtain a small bandwidth in order to speed up the computation. The
CFA will still provide us with a representation like (8) defined backward in
“time”, with the correct joint density.

The CFA seems to be superior over the Kalman-filter, as it offers great
simplification conceptually, the same computer-code can be used for Markov
models in time and in space (or even in space-time), both on lattices and
graphs, and the algorithm can make use of efficient algorithms for computing
the (band) Cholesky-factorization and solving (band) linear systems. Although
the Kalman-filter can be coded using the same linear algebra software, the
efficiency will typically be less as the implementation will involves more calcu-
lations applied on k x k matrices repeated n times, instead of having the critical
calculation done on one large (band-)matrix of dimension nk.

Nevertheless, the FFBS algorithm is still very important, as it is valid not
only in the Gaussian case but for any model with the same conditional inde-
pendence structure as the state-space model. For example, the sequence of
unknown states in a hidden Markov model (for a recent review see Kiinsch,

2001) can be generated jointly with the FFBS algorithm.
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Appendix B Implementation details

We give specific details only for Model 1, as the block update schemes for Model

2 and 3 are based on the same ideas.

Model 1

The posterior distribution in this model is

m( i y) oo J[exp(m)” exp(=3eiexp(m))

_ K
x KOV exp(=2 3 (i —5)?)

i~j

x Kk Lexp(—dk).

For single-site updating (scheme 1), we sample x from its full conditional dis-

tribution G(c + (n — 1)/2,d + Y (m — n;)?/2) while for updating 7;, we use
i~

a log-gamma Metropolis-Hastings proposal as an approximation to the non-

standard full conditional (acceptance rates around 99%). More specifically, we

use the logarithm of a G(y; + u?/0?,e; + pi/0o?) random variable where p; and
2

i

exp(7;)|n,, k- These parameters are simple functions of the parameters of the

of are the mean and variance of the conditional (lognormal) distribution of

conditional (normal) distribution of 7;|n,_;, . For the intrinsic autoregression
(2), i = exp(ii; +1/(2ngk)) and 0? = exp(2il; + 1/(ngr)) (exp(1/ (i) — 1),
where 7); is the corresponding mean value over the n; districts that are geo-
graphically contiguous to .

To construct the block update in scheme 2, we start with the full conditional

for n,

wmln,y) ocexp | —5 3o =) + D i = Y eiexp(m) | (13)

in~j

We use a GMRF approximation to (13) as a proposal distribution in a Metropolis-
Hastings step. We replace the term exp(n;) by a quadratic approximation

around a suitable point 1}, for example by using Taylor expansion
1
exp(ni) ~ exp(n;) (1 + (i =) + 5 (i = 77?)2>
1
= cilof i+ ds(of i + constan (14)
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which defines the coefficients ¢; and d; (both depending on 7). Alternatives to
the Taylor expansion are possible, like defining ¢; and d; as those minimizing
the mean square error of the approximation in some interval (o< 1/y/k) around
n; (Rue, 2001). This approach usually improves the approximation and is
used for model 3. Hence, our GMRF proposal density for n, is a GMRF with
precision matrix Q = kK +diag(e;d;(n*)) and b= (... ,y; —eic;(n}), ... )T, see
equation (1). Let this density be denoted by 7(n|x,y,n*).

/

Let i’ be the current state and 0" the new proposal. We choose n* = n'.
The proposal 0" is then accepted with probability

win {1, n(n”|s,y) 70|k y.m") } _
m(n'|k,y) 70"k y,n')
In scheme 3, a joint proposal for k£ and 7 is constructed by first sampling a
proposal £” from a distribution proportional to (" + &')/(k"k') on [s'/ f, K f],
where ' denotes the current value and f > 1 is a tuning constant. (The
proposal k" can easily be generated by multiplying the current value s’ with a
variable z with density proportional to 1+ 1/z on [1/f, f].) Note that this is
a Metropolis proposal since the proposal ratio m(k'|k")/m(k"|k') equals unity.
Subsequently we sample the proposal " as in scheme 2 (given the proposed

value ") and accept/reject the proposal (k”,n") jointly with probability

e n(n",&"ly) T(n'|',y,n")
min ? ! ! g 1! " ! °
(', k' ly) T(n"|s",y,n')

In contrast to scheme 2, the proposal ratio now involves also the computation
of the normalizing constant of the GMRF, which depends on x' and k" respec-
tively. In an initial burn-in phase, we tune f so that the acceptance rates of

scheme 3 are around 25-30%.
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Model 2

The posterior distribution in this model is

m(nu kA | y) Hexp(m)y" exp(—zei exp(n;))

)

A
x A2 exp(—5 > (ni — ui)?)

)

x kY2 eXp(—g > (ui — u))?)
i~
X A% Lexp(—bA)
x Kk Lexp(—dk).
For separate updates of the hyperparameters, we sample x and A from their
full conditional distributions G(a + n/2,b + Y. (n; — u;)?/2) and G(c + (n —
i

1)/2,d + > (u; — u;)?/2), respectively. For updating 7;, we use a log-gamma
i~

Metropolis-Hastings proposal similar to model 1, with p; = exp(n; — 1/(2X))
and o2 = exp(2u; + 1/A)(exp(1/A) — 1). For block updating n we use n such
proposals and accept/reject them jointly.

For block updates of 4 we can implement a Gibbs step as the full conditional
is Gaussian with precision x K +AI and mean \(kK +MI) 'n. Similarly, the full
conditional for single-site updates of u;, we sample from its Gaussian full condi-
tional distribution which has precision n;x+ A and mean (An; +n;xa;)/(nix+ )

where u; is defined just as 7; in model 1.
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Model 3
The posterior distribution in this model is

2 2

(w0109, 6, v1,v2, 8,6 | y) oo [ [ expmai)?® exp(=> > esi exp(nai))
5

1
x A exp(—3 > [ (ma — (ui - 6+ v13))”

)

+ X2 (n2i — (u; )8 + v2;))?

+2X12(n15 — (wi - 6 +v13)) - (i — (ui /0 + v2;))])

n—1)/2 K 2
x g0/ exp(—§Z(ui—uJ-))

o]
1%
x "R e (=5 Y (s - vy)?)
i~vj
1)/2 Vo
x oy exp(= 5 3 (02— v)°)
i~

x  |A|""% exp(—tr(BA))
x K Lexp(—dr)

X 1/5171 exp(—fiv1)

X 1/52_1 exp(—faro)

x exp(~[log(d)]/(2r%))

for >, v1; = 0 and ), vo; = 0 and zero otherwise. For separate updates of
hyperparameters, we have used Gibbs steps from the corresponding gamma or
Wishart full conditionals. Updates of v1 and vo can easily be generated as both
full conditionals are Gaussian. For joint updates of parameters, possibly with
hyperparameters, we have written a generic update routine which can be called
by specifying which of the parameters with which of the hyperparameters one
wants to block. More details can be found in the user-manual in the library
GMRFsim, see http://www.math.ntnu.no/~hrue/GMRFsim. Joint updates of
parameters and hyperparameters always first propose a new value for the hy-
perparameter as in model 1 and 2, and then sample the parameter block, given
the proposed new hyperparameter values. We finally note a technicality. For
sampling from a GMRF under a linear constraint we usually sample from the
unconstrained version and correct the sample as described in Rue (2001). This
is the way we have updated v; and v2 in scheme 1. However, this requires the

unconstrained GMRF to be proper. For joint updates of uw, v; and ve (and
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possibly n; and 7,), however, the unconstrained GMRF is improper due to the
three implicit flat priors on the overall level. We have therefore a small value €
on the diagonal of the precision matrix to make it proper, and have corrected a
sample from this unconstrained GMRF as a Metropolis-Hastings proposal. In
the acceptance step, we then adjust for the modified proposal distribution, so

our algorithm remains valid.
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Q, original form, bw=244 Q, reordered form, bw=36
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Figure 1: Two precision matrices defined by the contiguities of the 366 districts of
Sardinia. Non-zero elements are indicated by small dots. Left: Original graph. Right:
Reordered graph.
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Figure 2: Boxplots of the estimated relative risks and posterior probabilities of all
districts for the three different schemes based on run lengths of 100,000 iterations each.
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Figure 3: Posterior samples of log( " (n; — n;)?) versus log(k).
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Figure 4: Trace plots of log k for the three different schemes.
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Figure 5: Comparison of estimates based on 100,000 iterations with scheme 1, 2, and 3
with those obtained with a longer scheme 3 run. First column: Relative risks. Second
column: Posterior probabilities.
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Index | Blocking Mixing

scheme n u A K

1 | (single-site) — — — —
2| [u] - - =
3| [u,K] - - - =
4| [n) - - - -
5| [n], [u] - - - -
6 [n]v [u7 K] - = =
7| [n, A - - + -
8 [?77 >‘]7 [u] - - t -
9 ["77 >‘]7 [uv KV] - - t+ -
10 | [n,u] o o — -
11 ["77 u, >‘] °© ° + -
12 | [n,u, K] + + - +
13 | [0, u, A\, K] + + 4+ +

Table 1: Summary of the performance of the different blocking schemes. The
categories are defined as “poor” (—), “moderate” (o) and “good” (+).
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Figure 6: Trace plots of log s (upper plot) and log A (lower plot) for schemes 1 to 13

and a mixture of scheme 11 and 12.
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Figure 7: The two precision matrices defined by the dependencies of the 2,720 param-
eters in model 3. Non-zero elements are indicated by small dots. Left: Original graph.
Right: Reordered graph.
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Figure 8: Trace plots of logd, log k, logr, and logvs
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