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The E�ciency of Adjusted Least Squares

in the Linear Functional Relationship

Discussion Paper ���

Alexander Kukush� SFB ���
Institut f�ur Statistik� Universit�at M�unchen

Erich Otto Maschke
Institut f�ur Statistik� Universit�at M�unchen

Abstract

A linear functional errors	in	variables model with unknown slope parameter and
Gaussian errors is considered
 The measurement error variance is supposed to be
known� while the variance of errors in the equation is unknown
 In this model a risk
bound of asymptotic minimax type for arbitrary estimators is established
 The bound
lies above that one which was found previously in the case of both variances known

The bound is attained by an adjusted least square estimator


Keywords� linear functional errors	in	variables model� H�ajek bound� asymptotic
e
ciency� adjusted least squares estimator


� Introduction

Suppose that a linear functional errors	in	variables model is given� with known mea	
surement error variance and unknown variance of errors in the equation
 Then
there exists a natural modi�cation of the least squares estimator� see e
 g
 Cheng and
Van Ness ������� p
 ��� which is consistent and asymptotically normal
 We call it
an adjusted least squares �ALS� estimator due to the paper Cheng and Schneeweiss
������� where it was developed in a more general setting� namely for a polynomial
regression


A natural question arises about asymptotic e
ciency of such an estimator
 A
result of the asymptotic minimax type for estimation in the linear functional error	
in	variables model with both variances known has been obtained by Nussbaum
������ and by Hasminskii and Ibragimov ������
 It was shown there that the bound
of H�ajek type is attained by the maximum likelihood estimator


In the present paper we follow the line of Hasminskii and Ibragimov ������ and

�



establish such a bound for the linear functional model with uncorrelated errors and
unknown variance of the errors of the response variable
 The asymptotic bound
is attained by the ALS estimator
 Thus the ALS estimator delivers the smallest
possible averaged losses� and it is asymptotically e
cient in the sense of Ibragimov
and Has�minskii ������


In the next section the linear errors	in	variables model is introduced and the ALS
estimator is presented
 It is shown that it is asymptotically normal uniformly with
respect to designs from a certain class
 In Section � the asymptotic minimax bound
is given
 In Section � it is shown that the bound is attained by the ALS estimator

The crucial calculations of the inverse Fisher information matrix in the corresponding
linear structural model are given in the Appendix� as well as an auxiliary convergence
result


� The ALS estimator in linear model

Consider a linear functional relationship with errors in the variables and without
intercept term�

yi � ��i � �i�

xi � �i � �i� ���

i � �� � � � � n� where ��i� �i� are i
i
d
 random errors with Gaussian distribution
 We
suppose that ��i� �i� have the expectation � and covariance matrix

� �

�
��� �
� v

�

with unknown v 	 �
 Thus we assume that the errors �i and �i are independent� and
the variance of �i is known� while the variance v of �i is unknown
 The design points
�i� i � �� � � � � n� are unobservable nonstochastic variables


In the model ���� the values v� ��� � � � � �n are nuisance parameters� the number of
which grows with the sample size
 We are interested only in the slope parameter �

The adjusted least squares �ALS� estimator of � is given by

�� �
xy

x� � ���
� ���

where xy � �
n

Pn
� xiyi� x

� � �
n

Pn
� x

�
i � see Cheng and Van Ness ������
 Under normal

distributions of errors� the denominator in ��� does not equal � a
 s
� therefore �� is
well de�ned by ���


Hereafter we use the denotations for averaged values like �� � n��
Pn

i�� �i�i� and
similar ones
 We want to show that the suitably normalized ALS estimators converge
in distribution to the normal law uniformly with respect to �� v and �i�s �see the

�



de�nition and properties of uniform convergence in distribution in Ibragimov and
Has�minskii �������


Introduce the class Fn of admissible design points �
�n� � ���� � � � � �n�
 Fix H 	 �

and a sequence f
ng� s
 t
 �
n
� 
n � �� n � �� �� � � �� and 
n � �� n��
 We set

Fn �

�
��n�

����� �n
nX
�

��k � H and
max��k�n ��kPn

� �
�
k

� 
n

�
� ���

Sometimes we need additionally that

lim
n��inf


n � n
lnn

	 �� ���

Under ���� for the r
 v
 ��k � �H����k� where �k are i
 i
 N��� ��� and �H 	 H� we have
a
 s
 for all n � n����

�

n

nX
�

���k 	 H�

and

max��k�n ���kPn
�
���k

� n

lnn
P� � ���

�see Appendix�
 Therefore in this case ���n� � ����� � � � � ��n� � Fn with probability
tending to � as n��


Note also that under ��� for a sequence 
n � nc� n � �� �� � � �� c 	 �� we have

�n� � �
�� � � � � 
n� � Fn� for all su
ciently large n


Lemma �� Fix K 	 � and an interval �v�� v�� � ������
 Then
��q

������ � v��� � ���v � ���� �

p
n� �� � ��� N��� ��

in distribution� uniformly with respect to j�j � K� v � �v�� v�� and ��n� � Fn� n � ��
where Fn is given in ���


Proof� Substituting ��� in ���� we have that

��
p
n� �� � �� �

p
n������ � �� � ��� � � ��� ���

� � ���

��
�

�����
�

��

� ���

Consider �rstly the denominator


E

�
��

��

��

�
���
n��

�

�



but �

��
� �

H
for ��n� � Fn� therefore ����� converges to � in probability uniformly for

��n� � Fn� n � �
 And

E

�
�� � ���
��

��

� �� n��

uniformly for ��n� � Fn� therefore ��� � ��� ���
� also converges to � in probability

uniformly for ��n� � Fn
 Thus the denominator of ��� converges to � in probability
uniformly for ��n� � Fn
 To prove Lemma �� it is enough to show that

�p
n

Pn
� �����i�i � ��i � ��� � � �i�i � �i�i�q
������ � v��� � ���v � ����� �

� N��� �� ���

uniformly for j�j � K� v � �v�� v��� ��n� � Fn
 Denote

�i � ����i�i � ��i � ��� � � �i�i � �i�i� i � ��

Then E�i � �� B�
n �

Pn
� D�i � ������� � v��� � ���v � ����� ��n


We bound Liapunov�s ratio

�

�B�
n�

���

nX
�

Ej�ij�� ���

For j�j � K� v � �v�� v��� �
�n� � Fn consider for instance the moments of the �rst

summand of �i


�B��
n ����

nX
�

Ej��i�ij� � const

�
Pn

� �
�
i �

���

nX
�

j�ij�

� const

�
max��i�n ��iPn

� �
�
i

����

� const 
���
n �

with 
n given in ���
 Similar calculations for other summands of �i show that Lia	
punov�s ratio ��� converges to � uniformly for j�j � K� v � �v�� v��� ��n� � Fn
 Now�
by Theorem �� from Ibragimov and Has�minskii ������� p
 ���� uniform convergence
��� holds
 This implies ���


Corollary� Let l be a bounded Borel measurable function which is continuous
a
 e
 with respect to Lebesgue measure
 Then

E�v��n�

��
�l
	

 ��

p
n� �� � ��q

������ � v��� � ���v � ����� �

�
A
�

�� E l���� ���

uniformly with respect to j�j � K� v � �v�� v��� ��n� � Fn� n � �� where �� 	 N��� ��


Hereafter E�v��n� denotes the expectation under the condition that �� v and

��n� � ���� � � � � �n� are the true values of unknown parameters in the regression model

�



���
 The uniform convergence ��� is an immediate consequence of Lemma � and of an
evident modi�cation of Theorem � from Ibragimov and Has�minskii ������� p
 ����
where the limit distribution P� does not depend upon �� and in this case the para	
metric set � may be arbitrary� not necessarily compact
 In the situation of Corollary�
P� � N��� �� and � � f��� v� �� � j�j � K� v � �v�� v��� ��n� � Fn for all n � �g� where
� � ���� � � � � �n� � � ��


� Asymptotic minimax bound

Here we follow the line of Hasminskii and Ibraginov ������
 In that paper it was
assumed that v � �
 But now we consider the model ��� with Gaussian errors
and unknown v � D��
 Denote by  the class of functions l�x� on IR� such that
l�x� � �l�x� � �� x � IR� and l�x� is nondecreasing for x 	 �


Theorem �� Fix l �  � � � IR� v 	 � and the set Fn of designs given in ���� ���

Then for every estimator �n which is based on observations coming from model ����

lim
���

lim
n��inf supjb��j��	jw�vj��	��n��Fn E�w��n�

��
�l
	

 H

p
n��n � b�q

������ � v��� �H�v � ����� �

�
A
�

�

� E l����� ����

where �� 	 N��� ��


Proof� LetH be a lower bound from ���
 Consider the sequence f��ig of i
i
d
 ��� �H�	
normal random variables� independent on f�i� �i� i � �g
 The variance �H is unknown�
we know only that �H 	 H
 In Section � it was mentioned that ���n� � ����� � � � � ��n� �
Fn� n � n��w�� a
 s

 Now� consider the problem of estimation of the parameters �H�
�� v on the basis of independent observations

xi � ��i � �i� yi � � ��i � �i� i � �� � � � � n� ����

Denote

! � �Hv � �H����� � v��� � ����

The observations ���� are Gaussian with density function

p�x� y� �� �H� v�

�
�

��
p
!
exp

�
� �

�!

h
x�
�
�� �H � v

�
� �xy� �H � y�

�
�H � ���

�i�
�

The Fisher information matrix I of the density has the form �see Lemma � in Ap	
pendix�

�I �
�

!�
A�

�



A �

	
B

� �H��! � ������ � � �H���� �v � ����� � � �H��� � �H � ��� ��

� �H���� �v � ����� � �v � ����� �
� �����

� �H��� � �H � ��� �� ����� � �H � ��� �
�

�
CA �

As detA 	 � �see Lemma � in Appendix�� the observations ���� satisfy Le Cam�s
LAN conditions with the norming factors n����I����


Denote z � ��� �� ���
 We are interested in

�I�������� � �I
�������� � �I

��������

� �I����z� I����z� � �I��z� z� � �I����� �
!� ������

�H�
� ����

see Lemma � in Appendix
 Introduce the class of bounded loss functions

 b � fl �  � l is boundedg�
and let

B �
�! � ������ �I

H�
�

with ! given in ����
 We apply Theorem �
��
� from Ibragimov and Has�minskii
������ to the model ���� with the loss function

w�x� � l��B����x���� l �  b�

where �x�� denotes the �rst component of the vector x � IR�
 Then by ���� we have

�X
�

�B�������i � �B����� �
�
H
�H

��
� ����

Taking into account ���� we �nd that for every estimators �n�

lim
���

lim
n��inf sup�jb��j��	jw�vj��	jh� 	Hj��� Ebwh

��
�l
	

 H � pn��n � b�q

�H�v � ����� � � v��� � ������ �

�
A
�

�

� Efl��B��������g 	 E l

�
H

�H
��

�
� ��
�

Here � is a standard normal random vector in IR�� and Ebwh denotes the expectation
under the condition that in the model ���� � � b� D�� � w� D��� � h


For h 	 H� P 	Hf���n� � Fng � �� n � � uniformly for �H � �h � ��� h � ����
�� �

h�H
�

 Because of the boundedness of l we have now for small ��

sup
�jb��j��	jw�vj��	��n��Fn�

Ebw��n�

��
�l
	

 H � pn��n � b�q

������ � v��� �H�v � ����� �

�
A
�

�

� sup
�jb��j��	jw�vj��	jh� 	Hj���

Ebwh

��
�l
	

 H � pn��n � b�q

������ � v��� �H�v � ����� �

�
A
�

�

�o���� n�� ����

�



Then the following chain of inequalities holds� see ���� and ����

lim
���

lim
n��inf sup

�jb��j��	jw�vj��	��n��Fn�
Ebw��n�

��
�l
	

 H � pn��n � b�q

������ � v��� �H�v � ����� �

�
A
�

�

� lim
���

lim
n��inf sup

�jb��j��	jw�vj��	jh� 	Hj���
Ebwh

��
�l
	

 H � pn��n � b�q

������ � v��� �H�v � ����� �

�
A
�

�

� lim
���

lim
n��inf sup

�jb��j��	jw�vj��	jh� 	Hj���
Ebwh

��
�l
	

 H � pn��n � b�q

������ � v��� �
�H�v � ����� �

�
A
�

�

� E l�
H

�H
���� E l����� �H � H � �

We proved ���� for all bounded l �  
 At last consider an unbounded loss function
f �  
 Denote by ��l�� l �  � the left hand side of the inequality ���� and by fc the
truncated function fc�t� � min�c� f�t��� t � IR� c 	 �
 The function fc belongs to the
class  b� therefore

��f� � ��fc� � E fc����� E f����� c� ���

This proves Theorem �


� Asymptotic e�ciency of the ALS estimator

Suppose for a moment that in the model ��� the variance v is known
 Then the
corresponding minimax bound can be obtained by a modi�cation of Theorem � if the
summand ������ under the root is canceled� see Hasminskii and Ibragimov ������

The additional summand ������ in ���� re"ects the lack of information in the model
��� with unknown variance


In the case of known v� the maximum likelihood estimator of � attains the cor	
responding bound� i
 e
 it is asymptotically e
cient in that case
 We show now that
in the case of unknown v� the ALS estimator attains the bound� but we prove it for
bounded loss functions only


Theorem �� Fix l �  b� � � IR� v 	 � and the set Fn of designs given in ���� ���

Then for the ALS estimator �� de�ned in ���� equality in ���� holds


Proof� Following the line of Ibragimov and Has�minskii ������� p
 ���� we induce
from Corollary of Lemma � that for l �  b�

lim
���

lim
n��inf sup�jb��j��	jw�vj��	��n��Fn� Ebw��n�

��
�l
	

 ��

p
n� ��n � ��q

������ � v��� � ���v � ����� �

�
A
�

�

	 E l����� ����

�



The function ��u� � up
A�
u�

� u � �� is increasing� and �� � H� for ��n� � Fn


Therefore from ���� we get

lim
���

lim
n��inf sup�jb��j��	jw�vj��	��n��Fn� Ebw��n�

��
�l
	

 H

p
n� ��n � ��q

������ � v��� �H�v � ����� �

�
A
�

�

� E l����� ��
�

But it follows from ���� that actually in ���� equality holds� and the theorem is
proved


Thus we showed for the model ��� that the ALS estimator �� is asymptotically
e
cient in the sense of H�ajek bound� i
 e
 �� attains the minimax bound ����
 This
means that� under suitable normalzation� �� has the least possible averaged losses
from imprecise estimation of �


� Appendix

��� Auxiliary matrix calculations

Consider a random vector X 	 N���#� with probability density p


Lemma �� Suppose that the entries of # are C�	smooth functions of �� and �
belongs to an open set G � IRd� and for each � � G the covariance matrix # is
nonsingular
 Then for each i� k � �� �� � � � � d�

��E �� ln p

��k��i
� tr

�
#��

�#

��i
#��

�#

��k

�
�

Proof� Let X be distributed in IRm
 Denote

l�x� �� � ln p � �m
�
ln����� �

�
ln det #� �

�
x�#��x�

We have

�l

��i
� ��

�
tr

�
#��

�#

��i

�
�
�

�
x�#��

�#

��i
#��x�

and

�
��l

��k��i
� tr

�
#��

�#

��k
#��

�#

��i

�
� tr

�
#��

��#

��k��i

�

�x�#�� �#
��k

#��
�#

��i
#��x � x�#��

��#

��k��i
#��x

�x�#�� �#
��i

#��
�#

��k
#��x�

�



Now�

��E ��l

��k��i
� tr

�
#��

�#

��k
#��

�#

��i

�
� tr

�
#��

��#

��k��i

�

�tr #�� �#
��k

#��
�#

��i
#��Exx�

�tr #��
��#

��k��i
#��Exx� � tr #�� �#

��i
#��

�#

��k
#��Exx�

� �tr
�
#��

�#

��k
#��

�#

��i

�
�

This proves Lemma �


Now� consider random variables� corresponding to the model ����� with slightly
di$erent denotations
 Let

� 	 N��� ��� �� � 	 N��� v�� � 	 N��� H�

be independent r
 v
 with positive variances� and

x � � � �� y � �� � ��

Here � is a �xed real parameter
 Then

�x� y�� 	 N���#�� # �

�
H � ��� H�
H� H�� � v

�
� ����

and

det # � ! � H����� � �H � ��� �v� ! 	 ��

#�� �
�

!

�
H�� � v �H�
�H� H � ���

�
� ����

The probability density p of random vector �x� y� depends upon the parameter
� � ���H� v� � IR
 ������
 ������


Lemma �� The Fisher information matrix I of the density p�x� y��� has the form

�I �
�

!�
A�

with

A �

	
B
 �H��! � ������ � �H�����v � ����� � �H����H � ��� ��
�H���� �v � ����� � �v � ����� �

� �����
�H����H � ��� �� ����� �H � ��� �

�

�
CA �

�



Proof� By Lemma �

��I�ik � ��E ��ln p

��k��i
� tr

�
#��

�#

��i
#��

�#

��k

�
� ����

Using ���� and ���� we have consequently

#��
�#

��
�

H

!

�
�H� v �H��

H � ��� ��H � ���� �

�
�

#��
�#

�H
�

�

!

�
v v�
���� �����

�
�

#��
�#

�v
�

�

!

�
� �H�
� H � ���

�
�

Now� a direct calculation of the entries of �I using ���� accomplishes the proof


Lemma �� The Fisher information matrix I of the density p�x� y��� is nonsin	
gular� and

�I����� �
!� ������

H�
�
������ � v��� �H�v � ����� �

H�
�

Proof� Due to Lemma � we have to show nonsingularity of A and to compute �A�����

Find the algebraic complements in A for the entries of the right row


A�� � !�! � ������ �� A�� � ��H��� �H � ��� ��!�

A�� � ��H���� �v � ����� �!�

Then

detA � a��A�� � a��A�� � a��A��

� �H��! � ������ �
�!� �H������ �v � ����� �
 �H � ��� �!

��H���� �H � ��� ��
��v � ����� �!

� �H�!��! � ������ �
� � ������ �H � ��� �
 �v � ����� ��

� �H�!��! � ������ �
� � ������ �! � ����� ��

� �H�!��

and detA 	 �
 Therefore I is also nonsingular
 At last

�A����� �
A��

detA
�
!� ������
�H�!�

and by Lemma �

�I����� � �!��A����� �
!� ������

H�
�

��



��� Proof of convergence ���

Lemma �� Let �k� k � �� �� � � � be i
i
 N��� �� distributed random values
 Then

max��k�n ��kPn
� �

�
k

n

lnn
P� �� ����

Proof� As
Pn

� �
�
k�n� �� a
 s
� ���� is equivalent to


n �
max��k�n ��k

lnn
P� �� ����

Find the d
 f
 of 
n
 A r
 v
 ��k has a d
 f
 F with density

f�t� �
�p
��t

e�
t

� � t 	 ��

Then max��k�n ��k has a d
 f
 F
n�t�� and the d
 f
 Fn of 
n equals to

Fn�t� � F n�t lnn�� n � ��

To prove ���� it is su
cient to show that for each � 	 ��

Fn��� ��� �� and Fn�� � ��� �� n��� ����

For t 	 � we have

Fn�t� � ���� ��� F �t lnn��
�

��F �t lnn� �n���F �t lnn�� � ABn

n �

Here An � e��� n��� and

lim
n��Bn � lim

z�
�
�� F �t ln z�

��z
� lim

z�
�
�f�t ln z� t

z

���z�

�

p
tp
��

lim
z�
�

zp
ln z

e�
t

�
ln z

�

s
t

��
lim

z�
�
z��

t

�p
ln z

�

�
��� if t � �
�� if t 	 ��

Therefore ABn

n � � if t � �� and ABn

n � � if t 	 �
 This proves ����� and ���� holds
true
 Lemma is proved
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