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Abstract

Despite a sophisticated research on modelling of survival data in the last years,
the most popular model used in practice is still the proportional hazards regression
model proposed by Cox (1972). This is mainly due to its exceptional simplicity. Nev-
ertheless the fundamental assumption of the Cox model is the proportionality of the
hazards, which particularly implies that the covariate effects are constant over time.
For many applications this assumption is, however, doubtful. Other, more flexible
approaches, which are able to cope with non-proportional hazards usually require non-
standard estimation techniques, which are often rather complex and thus not favoured
in application. Moreover, the selection of an appropriate test-statistic, to examine the
improvement of the fit, is not obvious. In this paper we propose a flexible, yet sim-
ple method for modelling dynamic effects in survival data within the Cox framework.
The method is based on Fractional Polynomials as introduced by Royston and Alt-
man (1994). This allows for a transformation of the dynamic predictor which leads
back to the conventional Cox model and hence fitting is straightforward using stan-
dard estimation techniques. In addition, it offers the possibility to easily verify the
existence of time-variation. We describe a model selection algorithm which enables
to include time-varying effects only when evidence is given in the data, in order to
construct a model, which is just as complex as needed. We illustrate the properties of
the approach in a simulation study and an application to gastric carcinoma data and
compare it with other methods (e.g. the residual score test and smoothed Schoenfeld
residuals of Grambsch and Therneau, 1994; natural smoothing splines of Hastie and
Tibshirani, 1993).
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1 Introduction

The statistical analysis of censored failure time data, (e.g. to investigate the prognostic
impact of different covariates on survival), is in practice usually performed by the regression
model of Cox (1972). This model is particularly advantageous in situations where only the
relative impact of a covariate on the hazard, but not the true hazard function itself is of

primary interest.

1.1 The Cox PH-model

For ease of notation, we assume that inference about a single covariate is of interest. The

Cox model defines the hazard function for failure as:

AX) = Ao(t) exp {#X}, (1)

where \g(t) is the baseline hazard and f is the regression coefficient describing the effect of
the covariate X. The power of the Cox model is in its semi-parametric character, since no
particular shape for the hazard function is specified, i.e. the baseline hazard \o(¢) can be
any arbitrary non-negative function of time. However it is presumed that the log hazard
ratio is additively associated to the covariates by the linear predictor $X. This in turn
leads to the assumption of proportional hazards (PH-assumption), which implies that the
ratio of two hazards, i.e. the relative risk RR(X) = A(¢|X)/Ao(t) = exp{5X}, is assumed
to be independent of time. With other words, the effect of a covariate measured at a
baseline time-point (e.g. surgery, first diagnosis, beginning of a treatment) is supposed to
stay unchanged during the whole observation period. It is obvious that this condition is
doubtful in numerous practical situations, e.g. a treatment effect may vanish over time or
the impact of a covariate may react with some delay, possibly disappearing after a while. The
consequence of incorrectly assuming proportional hazards is a questionable model inference

where the importance of a covariate might be misinterpreted or overlooked.

1.2 The Dynamic Cox model

To describe the dynamic development of an effect, the Cox PH-model can be modified to
a Varying-Coefficient Model (Hastie and Tibshirani, 1993). This leads to the dynamic Cox

model, where the effect is allowed to vary with time:

AtIX) = Ao(t) exp {B(1)X}, (2)



and hence the relative risk RR(X, t) = exp{3(¢)X} becomes a function in X and time ¢.
A variety of methods has been suggested to estimate the varying coefficient 3(t). The first
proposal already describes Cox in his original paper (Cox, 1972), where he extends his model

of proportional hazards by adding to the constant coefficient 5, a function of time:

A(tX) = Ao(t) exp {(fo + Prp(t)) X}, (3)

with (¢) is some arbitrary prespecified transformation of time ¢ and f; is a further regression
coefficient. On the one hand this extension offers a simple way to investigate consistency
with the PH-assumption by testing Hy : 5, = 0. In addition, the approach directly provides
an alternative model when the PH-assumption is rejected. However, the power of the test
respectively the goodness of the fit distinctly depends on the choice of the function ¢(t),
where typically only simple constructions are used.

A direct and common alternative is to fit a piecewise constant model in prespecified disjunc-
tive time intervals, which results in a step function for 5(¢). To obtain a smooth estimation,
Hess (1994) suggests to substitute the constant pieces of ((t) by basis functions of cubic
regression splines for a prespecified grid of knots.

Several authors introduced smooth estimators using penalty functions together with a smooth-
ing parameter, in order to control the trade-off between fit and roughness (e.g. Gray, 1992;
Verweij and van Howelingen, 1995). The most common approach in this class are the natural
smoothing splines of Hastie and Tibshirani (1993), where the partial likelihood, measuring
the fit, is penalised by the squared second derivative of the effect function. This results in
an cubic spline function with knots at each failure time-point, (Zucker and Karr, 1990).

An alternative method is given by Grambsch and Therneau (1994), who propose to study
scatter plot smoothers of the scaled Schoenfeld residuals (Schoenfeld, 1982) versus time.

A Bayesian approach is given by Sargent (1997), who defines a hierarchical Cox model with

state-space structure and uses MCMC-methods to estimate time-varying coefficients.

A main problem with all those proposals is, that they demand prespecifications, which do
noticeably influence the shape of B(t), (e.g. the number and location of knots, a smoothing
parameter or priori assumptions on the dynamic structure). Moreover, most of the non-
parametric methods require non standard estimation techniques and their application is not
straightforward. In addition, the selection of an appropriate test-statistic to verify the chosen

structural form is often not obvious, so that it is difficult to decide, whether the improvement



of the fit using (2) justifies the increase of the model’s complexity. However, to ensure that a
model reaches acceptance in practice, it is important to keep it as parsimonious as possible

and include time-variation only, when evidence is given in the data.

1.3 Testing for time-variation

A number of graphical and test-based procedures for exploring possible dynamic structures,
i.e. violations of the PH-assumption, have been proposed in literature. (For a broad collec-
tion on reviews and references see e.g. Hess, 1994; Hess, 1995.)

An informal but simple method is to examine, whether the constant estimator of the PH-
model lies within the standard error bands of a dynamic estimation, e.g. received by smooth-
ing splines (“SE-method”).

Beside graphical methods formal goodness of fit tests for Hy : 5(t) = [ are of particular
interest. Following the proposal of Cox, this could be done by estimating the modified pre-
dictor n(t) = (Bo + ¢(t)41)X of model (3) and testing the hypothesis Hy : 8; = 0, using the
common test statistics, (e.g. the likelihood-ratio statistic). Omnibus goodness-of-fit tests,
which compare the expected and observed frequencies of failures for a given partition of time
and covariate space, are suggested by Schoenfeld (1980), Moreau, O’Quigley and Mesbah
(1985) and Moreau, O’Quigley and Lellouch (1986). Hess (1994) notes that the cubic regres-
sion spline approach based on fixed knots allows for formally testing the PH-assumption, too.
Harrell (1986) recommends to test for correlation between residuals and failure-time, where
for non-monotonic time-dependencies an appropriate transformation of time has to be used.
Grambsch and Therneau (1994) present a weighted Schoenfeld residuals score test, regarding
B(t) = Bo + Prp(t) and testing Hy : 51 = 0. They show, that their test is equivalent to a
generalised least square test, and that its computation only requires the fit of the PH-model
under H, together with the corresponding Schoenfeld residuals. The disadvantage however
is, that the suspected departure from time-constancy has to be prespecified in (t).

An overview of different tests including a discussion of their performance is found in Ng’Andu
(1997). However, since all these tests require again a prespecification of the time-variation
by a functional form respectively a partitioning of the time-axis, they are in some way only
appropriate for testing on a certain structure of time-dependency. And even though some of
the tests are fairly thorough so that the prespecifications might not need to match the exact

time-structure of the effects to identify PH-violation, none of them provides an acceptable



alternative once departures from the PH-assumption have been detected. An alternative
is proposed by Gray (1994), who considers cubic regression splines together with penalty
functions, and presents a formal test on the dynamic effect structure, for which he derives
an asymptotic distribution. In broad simulation studies, he shows that the test is rather
powerful and robust to the number of knots. However, estimation and testing is based on
non-standard methods so that its application is not straightforward.

Consequently survival analysis within the Cox framework is usually realised in two separate
steps: First the validity of the PH-assumption is investigated based on simple prespecifica-
tions. Then, in absence of proportional hazards, an additional, more flexible model must be

determined to adequately fit the data.

In this paper we present a simple, yet flexible method based on Fractional Polynomials
(FPs), which enables to detect and simultaneously model dynamic effect-structures. FPs
have been introduced by Royston and Altman (1994), who use them to smoothly fit predic-
tors of the form n = f(X) in the Generalised Additive Models context. They are an extension
of common polynomials, constructed out of terms of the form #®), with the exponents (p)
selected out of a set of integer and non-integer values. This definition ensures a large va-
riety of possible shapes, including linear, bounded and asymptotic courses, (for details see
Royston and Altman, 1994). We propose the use of Fractional Polynomials in the context of
time-varying effects within the Cox model framework. Because of their flexibility, the FP ap-
proach allows the identification even of rather complex departures from the PH-assumption.
At the same time it provides a good fitting alternative when significant time-variation ex-
ists. Furthermore, this approach preserves the linear structure of the predictor, and hence,

implementation and inference is straightforward using the standard estimation techniques.

The paper is organised as follows: In the next section we give a formal definition of Frac-
tional Polynomials. We describe the use of these functions in order to estimate a dynamic
Cox model and identify temporal dependencies of the effects, using the usual partial like-
lihood approach and the likelihood-ratio statistic. In Section 3 we describe an algorithm
for multivariable modelling. This procedure takes a data-driven decision on the optimal dy-
namic structure and additionally allows for an iterative variable selection. Simultaneously,

the hypothesis of a change in the effect over time is tested. In Section 4 we illustrate the



properties of the FP approach with regard to its capability of identifying and modelling
dynamic structures. In a simulation study we analyse its testing-performance and compare
it a) with Cox’s proposal using simple time-transformations, b) with the residual score test
of Grambsch and Therneau and c¢) with the graphical SE-method using natural smoothing
splines of Hastie and Tibshirani. In an application to gastric-cancer data we use the pro-
posed algorithm to define a multivariable prognostic system and compare the outcome a) to
the Cox PH-model, b) to the Schoenfeld residuals smoother and c¢) to the natural smoothing
splines. Finally in Section 5 we discuss the advantages of the method, as well as its limita-

tions.

2 Method

The advantage of Cox’s modification of the PH-model lies in its simplicity of estimating and

testing dynamic effects. The extension for non-proportional hazards by

AX) = Ao(t) exp {BoX + Brp(1)X} (4)

can be regarded as the introduction of a new, time-dependent covariate Z(t) := ¢(t)X, con-
structed as an interaction term of the covariate X with time. The model can therefore be
estimated with the usual partial likelihood approach for models with time-dependent co-
variates. Nonetheless, its flexibility depends on the function (). Stablein et al. (1981)
proposes quadratic polynomials in order to model treatment effects that rise in the begin-
ning and decrease later. Gore et al. (1984) employ exponential functions to describe the
exponential decay of the relevance of certain covariates in a breast cancer study. Typically,
the choices are less subtle, e.g. In(t), ¢ or rank(t), and hence less flexible.

It is therefore a general objective to substitute ¢(t) by a more flexible function, which pro-
vides an appropriate and smooth fit for 5(¢) and can be generated by a data-driven algorithm.
In addition the advantages of using standard estimation and testing techniques should be

retained. This is achieved by Fractional Polynomial functions.



2.1 Fractional Polynomials

A Fractional Polynomial of degree m for a single continuous variable § > 0 is given by

ul0.0) = o+ 3 A0 )
j=

where m is a positive integer, 3; are regression coefficients and p; < ... < p,, are any positive

or negative real-valued exponents, (Royston and Altman, 1994). The logarithmic function

6®;) :=1n# is included for p; = 0.

The definition of FPs assures a wide range of flexible shapes. For p; € IV the function ¢, is

a conventional polynomial, while powers p; < 0 render asymptotic courses. The possibility

of repeated powers p; = ... = pg, ¢ < k < m additionally involve combinations with In 6.

E.g. a FP of degree m = 5 with powers p = (—0.5,0, 2, 2, 2) is defined as:

¢5(0,(—0.5,0,2,2,2)) = s + 51% + BoInf + B360% + 34,0*In 0 + 356%(In 6)2.

Royston and Altman (1994) introduce these functions in order to model additive structures.
In particular they give an example for fitting survival data in an additive Cox model. Also
Sauerbrei and Royston (1999) use the FP approach to study prognostic factors for oncological
data within the Generalized Additive Models-framework. We propose the use of Fractional
Polynomial functions in order to model time-varying coefficients in the dynamic Cox model
(2) by defining B(t) = ¢ (t) = Bo + 2=, B;t®9). Since the FP approach preserves the linear
structure of the predictor, it leads to the time-dependent covariate model
m
AQX) = Ao(t) exp {dm (1)X} = Ao(t) exp {HX + Zl BiZi(1)} (6)
j=
with constructed time-dependent components Z;(t) := t®)X. As survival time ¢ is positive,
t®5) is well defined for any p; € IR. Model (6) can again be estimated by the known partial
likelihood approach.

2.2 Estimation and verification of the dynamic structure

For the additive Cox model based on FP functions Royston and Altman could perform the
estimation of the regression coefficients directly, after computation of X%3), using the partial
likelihood method as for the Cox PH-model (1). In dynamic Cox models (2) the deter-
mination of (6) corresponds to the estimation of constant effects for the time-dependent

covariate Z;(t) := t®)X. This can be done by restructuring the data set, for which all

6



the risk sets at every failure time-point are matched with the appropriate values for the
time-dependent covariate and thus a “pooled” data set is obtained. Finally a regular, strati-

fied Cox PH-model is estimated by taking the different failure times as a stratification factor.

Fitting a model with FPs additionally requires to determine the optimal values of degree m
and of the powers pi,...,pn. A convenient and practical way to overcome this problem is
to set an upper limit m,,,, for the degree and choose the “best” powers out of a prefixed
set of possible powers P due to some goodness-of-fit criterion. Here we use the p-value
of the likelihood ratio statistic as a non-linear function of complexity and fit. Out of all
possible combinations of p; € P for all m < my,., the model with the smallest p-value is
selected. Note, that the restriction of the powers to a carefully chosen set P not only speeds

up computation, but also assures reasonable interpretations.

The selected “optimal” FP model is then compared to the PH-model, i.e. the PH-assumption
is verified by testing Hy : B(t) = . Since comparison with the PH-model is a nested
hypothesis testing problem, the likelihood ratio test for Hy : f1 = ... = [, = 0 can be
applied. We consider 2m degrees of freedom (df), counting one df for each FP coefficient f;
and one for each selected exponent p;. (For details on the degrees of freedom see Royston
and Altman, 1994.) The general effect of a covariate can be verified by testing Hy : f(t) = 0,
using 2m + 1 degrees of freedom. In addition to the tests, the resulting FP function can be
plotted along with the confidence bands to visualise the nature of the time dependency. Due
to the linearity of the FP-predictor n = foX + 37", Bjt(pi)X , also confidence bands for FPs
can be readily computed applying standard estimation techniques:

Using matrix notation, let B = (30,31, ...,Bm)’ be the regression coefficient estimates and
Z = (X, tPVX, ..., t®=)X)" be the matrix of values for the covariate and the time-by-covariate

interactions, so that 7 = BIZ. The (1 — «)-confidence band for the FP-predictor is given by
Al
Cli—a) = [B2Z * (xX3,: 2'32)"?]

where Y is assumed to be a large-sample covariance matrix for B and Xéf,% is the (1 — £)-

fractile of the y?-distribution with df = 1 + 2m degrees of freedom.



3 A model selection procedure for multivariable
analyses

For ease of presentation we have regarded so far only univariate predictors. An extension
of the model function to multivariate problems is however basically a question of notation.
Suppose that X is a set of ¢ covariates in arbitrary order. In the multivariable dynamic Cox

model with FPs the hazard rate is defined as:
q q m;
A(HX) = Ao(t) exp { D" Bi(t)Xi} = Ao(t) exp { D_[BXi + D Bit ") X;]} (7)
i=1 i=1 j=1

where the functions f;(t) = ¢n(t,p), ¢ = 1,...,q describe the time interactions of each
covariate effect. Model estimation can be realised following the backfitting-strategy pro-
posed by Hastie and Tibshirani (1990), obtaining the coefficients f3;; and the exponents p;;
iteratively. The backfitting-type procedure starts with fitting the predictor

mi q
m = BuXi+ > Bt PIX, + > BioXi,
j=1 i—2

by selecting an optimal FP for X;, choosing m; and py; (j = 1,...,m;) as described above
for the univariate case. The effects of Xs,..., X, are left time-constant in the first step,
and only By, ..., B4 are additionally estimated. Then the likelihood ratio test is applied to
assess the gain of fitting time-variation, i.e. the hypothesis Hy : 51(t) = 319 is tested. If the
time-varying effect of X, is distinct, the p;;’s of the first FP are fixed and the predictor

mi ms3 q
ne = BroXy + Y Bt PIX, + BaoXo + > Bat P2 X, + > BioXi,
j=1 j=1 i=3

is fitted by selecting my, py; for Xy as above. Note, that in this step only the powers p,; are
fixed, while all the coefficients B9, ..., Bim,s B20, - -, Boam, and Bsg, ..., By are re-estimated.
This is continued until 7, is achieved and optimal Fractional Polynomial terms are obtained
for all ¢ covariates.

In the next iterations the FP functions are similarly updated for each covariate X; fixing the
FPs of the remaining covariates. The algorithm can be stopped when the selected powers
pj, respectively the fit, do not change from one iteration to the next. If simultaneously a
selection of covariates is required, additionally the likelihood ratio test of Hy : (;(t) = 0,
t =1,...,q, can be investigated in each iteration. A covariate can then be omitted in one
iteration, if it does not provide sufficient improvement to the fit, and be re-entered and re-

tested in later iterations.



The order of the covariates is generally irrelevant, if the covariates are independent. For
dependent covariates however, the results of the algorithm may depend, like any iterative
procedure of this type, on the order of selection. In this case, further analysis of the finally
selected FP model - especially of its dynamic structure - has to be performed on a substance
matter basis, which possibly requires a reselection of the model. This is, however, a general

problem in multivariable analysis.

4 Application

To estimate the FP functions for the dynamic Cox models in all our applications, we re-
stricted the degree of the polynomials to m < 2 and fix the set of relevant powers to
P ={-2,-1,-0.5,0,0.5,1,2}. This follows a proposal of Royston and Altman (1994), who
give examples of the large variety of possible shapes, which FPs of this set can take. Our
own experiences confirmed, that for the description of time-variations (5(¢)) this setting is

sufficient for most practical applications.

4.1 Simulation Study

To analyse the reliability of the FP method, especially regarding its capability to detect
special violations of the PH-assumption, we performed a simulation study, where we gen-
erated 1000 samples of failure-time data out of five different scenarios. All samples consist
of two groups, a “baseline group” with X = 0 and a “risk group” with X = 1, of 100 ob-
servations each. To allow a precise simulation of temporal effect structures, the data were
generated in a logistic setting, where the ”baseline hazard of failure” at each time-point was
AX]t) = Ao = %. We simulated dynamic effects of the group variable X using five
different functions (compare Figure 1 (a)):

(1) a null model with no risk-effect: 5(t) = 0, (not plotted),

(2) a constant model with proportional hazards: 5(t) = 1,

(3) a linear time-dependency: 5(t) = —0.02¢ + 1,

(4) a steep quadratic time-dependency: 3(t) = —0.5 + 0.08¢ — 0.0008¢2,

(5) a flat quadratic time-dependency: [(t) = —0.5 + 0.04¢ — 0.0004¢>.



In addition, we considered a permanent probability for (right) censoring of P, = 0.005, which
resulted in a total censoring rate of less then a fourth. These settings produced survival data
with few bindings and rather long survival times, so that there were no objections against
employing a Cox model. (For the asymptotic equivalence of the discrete logit model and the
continuous Cox model, see e.g. Fleming and Harrington, 1991.) Moreover, the structure of

the data is very much the same as what is known from clinical studies.

For the simulated data sets (2)-(5) we determined the optimal FP functions and tested for
dynamic effect structures (see subsection 2.2) at a significance level of apy = 0.05. We then

compared the results with various other proposals:

e The extension (3) proposed by Cox using a) a linear transformation ¢(¢) = ¢, b) a

logarithmic transformation ¢(t) = In(¢) and c¢) a quadratic transformation p(t) = 2.

e The residual score test of Grambsch and Therneau (1994), using d) the Kaplan-Meier
transformation, and again e) the linear transformation, f) the logarithmic transforma-

tion and g) the quadratic transformation.

e The informal “SE-method” using the smoothing spline estimators from Hastie and
Tibshirani (1993), checking if the estimated effect 3y of the constant Cox PH-model
lies outside the 2- standard errors bands h) for any event point, and i) for more than

10% of the event points.

Figures 1 (b)-(e) show the proportion of cases, where the hypothesis of constant effects, i.e
the PH-assumption, was rejected. Hence, Figure 1(b) illustrates the consistency of the dif-
ferent tests. It shows, that the FP approach is slightly too liberal (apg_emp = 0.066), while
the test of Grambsch and Therneau is too stringent. The test of Cox meets the nominal
a-level the best. In contrast, the heuristic SE-method clearly far too often wrongly assumes
temporal structures, and even the relaxation to a 10% -limit causes an error of 60.9%. This is
not surprising, as it is well known that point-wise confidence bands do not allow for a global
interpretation. The degree of violation of the significance level is, however, remarkable.

Figures 1 (¢)-(d) present the power of the different tests for the three dynamic settings. In
the linear setting all tests detect the PH-violation about equally well. In the simulations,
where we used a steep quadratic function with a modus at time point 50, the power of the dif-

ferent tests do noticeably differ. With the FP approach, in 84.3% of the situations significant
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(a) effect structures (b) constant
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Cox.In 0.754 Cox.In 0.675
Cox.q 0.874 Cox.q 0.11
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(e) quadratic (flat)

FP : Fractional Polynomials

Co'j:’l gi'%g Cox.|: Cox’s Test with linear transformation
Cox.In 0.157 Cox.In : Cox’s Test with logarithmic transformation
Cox.q 0.194 Cox.q : Cox’s Test with quadratic transformation
GT.km 0.122 GT.km : Test of Grambsch & Therneau with KM transformation
GTl 0.128 GT.I: Test of Grambsch & Therneau with linear transformation
GT.n 0.149 GT.In : Test of Grambsch & Therneau with logarithmic transformation
GT.q 0.199 GT.q: Test of Grambsch & Therneau with quadratic transformation
H"_I"Tlg gzgg HT.0 : >0% outside 2*se bands of Hastie & Tibshirani’s s.-spline
: HT.10 : >10% outside 2*se bands of Hastie & Tibshirani’s s.-spline
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Simulated effect structures and the corresponding powers resp. error rates of
different PH-tests at a significance level of o = 0.05.

time-variation was detected, while the test based on Cox’s proposal as well as the score-test
of Grambsch and Therneau even in the best case only found significant PH-violation in
about 2/3 of the samples. Note, that the reason of the extremely low powers of these tests
when using the quadratic transformation ¢(t) = 2, is due to the missing linear term, which
should have been exactly prespecified to shift the modus of the effect-function from 0 to 50.
Of particular interest are the results of the simulations based on a flat quadratic temporal
function. Here the FP approach with its flexible functions is clearly superior (42.4%) to
the test of Cox and the score-test of Grambsch and Therneau, which could hardly detect
the time-variation with the predefined time transformations (power: 12.2% - 19.9%). The
interpretation of the SE-method for the dynamic settings is inappropriate due to missing

consistency.
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Table 1: Power resp. error rates for Hy : 3(t) = 0 at a significance level of a = 0.05

setting FP model Cox PH-model
Null model 0.092 0.052
Linear time-dependency 0.98 0.735
Steep quadratic time-dependency 0.924 0.548
Flat quadratic time-dependency 0.464 0.112

Table 1 shows for the null model and the three dynamic settings, how often the FP model
found any significant group-effect at a level of ayyq = 0.05, and opposes it to the results of
the Cox PH-model. While the FP approach is slightly too liberal when testing for a general
effect (otar_emp = 0.092), the Cox PH-model with its constant coefficient often oversees the
general group effect, when it varies over time. In the linear setting it was successful in only
73.5% of the samples, while the FP approach modelled an effect in 98%. In the simulations
based on steep quadratic time-dependencies, the PH-model succeeded only in 54.8%, while
the FP model showed an significant effect in 92.4%, and when the quadratic effect was flat,
the PH-model even found it in only 11.2% of the samples, compared to 46.4% for the FP
approach.

4.2 Gastric cancer data

For a study on prognostic factors and risk-group stratification in gastric carcinoma, at the
Klinikum Rechts der Isar of the Technische Universitit Miinchen, the survival of gastric
cancer patients was followed up after complete resection of the tumour. One major interest
of this study was to investigate whether the new tumour-biological factors uPA and PAI-1,
assessed in extracts of cancer tissue, provide additional information to prognosis beside es-
tablished factors, like age, percentage of positive lymph nodes, local tumour invasion and
metastasis (Nekarda et al., 1994). The urokinase-type plasminogen activator uPA and its
type-1 inhibitor PAI-1 belong to the plasminogen activator system, which has been reckoned

to play an important role in tumour cell migration.

295 gastric cancer patients were enrolled between the years 1987 and 1996. 108 of them died
during follow up. Time to death is used as failure time, measured in months. The median
follow-up time is 41 months. Table 2 gives a short description of the prognostic factors used
in the analysis. To simplify the clinical interpretation we restrict the analysis to binary or

binary coded factors. NOD.RATIO, T.SUB, uPA and PAI-1 were coded as binary factors
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Table 2: Prognostic factors analysed in the gastric cancer study
factor range coding interpretation
AGE 28-90 0: <65 Age at surgery
1: > 65
NOD.RATIO 0-97 0: <20 Percentage of positive
1: > 20 lymph nodes
T.SUB 1-7 0: <4 local tumour invasion
1: >4 (Japanese staging system)
METAS yes/no 0: no distant metastasis
1: yes
uPA 0.02-20.57 0: <5.94 urokinase-type Plasminogen
1: > 5.94 Activator
PAI-1 0.02-264.62 0: <4.13 Plasminogen Activator
1: > 4.13 Inhibitor Type 1

using cutpoints selected by optimisation of the log-rank-statistics, age was dichotomised at

the median.

Univariate analysis

The results of the univariate Cox PH-model for each binary factor are summarised in

Table 3, giving the factor’s effect [, the relative risk RR, its p-value from the likelihood

ratio test and the p-value for the test of Grambsch and Therneau.

Table 3: Results of univariate Cox PH-models

factor Cox PH-fit Schoenfeld residual test
Hy:8=0 Hy:p(t)=2p
I6] RR p-value p-value
AGE 0.18 1.20 0.36 0.002
NOD.RATIO 1.88 6.55 <0.001 0.223
T.SUB 1.55 4.71 <0.001 0.795
METAS 1.37 3.94 <0.001 0.880
uPA 1.09 2.97 <0.001 0.835
PAI-1 1.25 3.49 <0.001 0.975
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Figure 2: (a) Estimated Kaplan-Meier survival curves of the groups with AGE < 65 and Age
> 65. (b) FP function for AGE with 42 standard error bands. (¢) Raw and spline-smoothed
scaled Schoenfeld residuals for AGE, with £2 standard errors. (d) The natural smoothing
spline estimator of 5(t) for AGE with 95%-confidence limits.

All factors, except age, show a statistically significant impact on survival at a level of
a = 0.05. The Schoenfeld residual test, however, identifies significant time-variation for
the effect of age (p = 0.002).

The univariate FP approach confirms a significant decreasing effect for age (ppy = 0.005,
Protar = 0.01). Tts FP function 5(t) = —1.28 +4.94-¢7%° is shown in Figure 2(b). Short after
surgery the older patients (65 years and older) have a higher mortality rate. This difference is
declining with time and after about two years of follow-up the younger patients seem to have
a higher risk. For all other factors the FP approach results in time-constant effects. Figure
2(c) gives the scaled Schoenfeld residuals, together with a scatter-plot spline-smoother and
+2 standard error bands, which yield a similar dynamic structure. For further comparison
we additionally determined the natural smoothing spline estimator of 3(t) for age, given in

Figure 2(d), which shows an even sharper decline.
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Table 4: Results of a multivariable Cox PH model

factor Cox PH-fit Schoenfeld residual test
Hy:B;=0 Hy : Bi(t) = p;
Bi RR p-value p-value
AGE 0.25 1.28 0.230 <0.001
NOD.RATIO 1.50 4.47 <0.001 0.197
T.SUB 1.11 3.05 <0.001 0.054
METAS 0.07 1.08 0.770 0.408
uPA 0.95 2.57 0.002 0.029
PAI-1 0.88 2.4 0.004 0.413

Multivariable analysis

Table 4 shows the results of the Cox PH-model comprising all six binary covariates. The
percentage of positive lymph nodes and local tumour invasion turn out to be the strongest
prognostic factors, increasing the risk of death by 4.47 and 3.05. In addition, both prote-

olytic factors uPA and PAI-1 show statistically significant impact on survival.

Table 5: FP fit in multivariable analysis

factor Bi(t) Hy : Bi(t) = Bio Hy: Bi(t) =0
p-value p-value
AGE B1(t) = 0.9 — 0.001 - ¢2 <0.001 <0.001
NOD.RATIO Ba(t) = 1.51 — <0.001
T.SUB Bs(t) = 1.19 — <0.001
METAS Ba(t) = —0.13 +6.63 - t 2 0.016 0.037
uPA Bs(t) =1.82—7.19 -t 1 0.039 0.005
PAI-1 Be(t) = 0.93 — <0.001

The results for the time-varying coefficients model based on FPs are given in Table 5.
Beside age also the effects of uPA and distant metastases show a significant change over
time. If these dynamic structures are taken into account, all six factors considered provide
additional information to prognosis. The test based on scaled Schoenfeld residuals identifies
a significant time-variation for the effect of AGE and uPA.

Figure 3 compares the FP estimators of f;(t) for AGE, uPA and METAS to the natural
smoothing spline estimator (with 4 df) from a multivariable analysis. Both estimators indi-

cate a distinct decrease of the effect of age, although the FP function has a sharper slope
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than the non-parametric estimator in the second half of follow-up. For uPA the FP curve
describes an increasing influence with 8,p4(t) = 1.82 —7.19-¢~!, while the smoothing spline
has a slight non-monotonic trend. However, the FP function remains between the confi-
dence limits of the smoothing spline. Some disagreement can be observed between these two
estimators for the effect of distant metastasis. While the FP function stays constant after
one year, the smoothing spline estimator shows a strong decreasing effect. The reason for
this decline could be the small number of events towards the end of follow-up in the rather

shrunken risk group “METAS=1", (see Figure 3(c)).
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Figure 3: Comparison between FP estimators (thick curve) and smoothing spline estimators
of B(t) ( —— , with 95%-confidence limits - - - - ) for (a) AGE, (b) uPA and (d) METAS.
(c) Estimated Kaplan-Meier survival curves of the groups with METAS=0 and METAS=1.

16



5 Discussion

In this paper we propose the use of Fractional Polynomials in order to detect and model
dynamic effects in survival data within the Cox model framework. Since the FP functions
are linear in the regression coefficients, the estimation problem reduces in formulation (6) to
fitting a Cox PH-model with time-dependent covariates. Therefore, model estimation can be
performed straightforward, following the strategy described in Section 2.2, where standard

methods of inference are used, which are readily available in most statistical packages.

In addition, the FP approach allows formal testing for time-variation in the effects using stan-
dard methods, as the likelihood ratio test. In our simulation study this test shows an accept-
able consistency with the nominal significance level, and it yields high power for detecting
time-variation. In particular, it turns out to be superior to the other PH-validation meth-
ods which are widely used. The test of Cox and the score-test of Grambsch and Therneau,
which use predefined time-transformations, are not flexible enough to properly identify time-
variation of complex structure. The graphical method for checking the PH-assumption, based
on a comparison of the constant Cox estimator and point-wise confidence bands of natural
smoothing splines highly violates consistency, underlining the fact, that it is not usable for

global assessments.

The example of gastric cancer data illustrates clearly the general importance of correctly
specifying existing dynamic effect-structures. The prognostic impact of the factor age on
survival was not identifiable in the PH-model. Fractional Polynomials offer a useful tool for
analysing survival data, when no pre-information about the dynamic effect structure is given
and proportionality of the hazards seems doubtful. They describe the relationship between
the effect of the factor and time with simple functions, which are rather stable and easily
communicated. By allowing for variable selection and verification of the dynamic structure,
the multivariable analysis results in a parsimonious model, where only effects are modelled
in a dynamic way, when evidence is given in the data.

However, although Fractional Polynomials provide a rather flexible fit their global (non-local)
definition still suffers from the same restrictions as other non-local definition for smooth
function-estimation. If a fine drawing of the variation is essential, in a hybrid-like algorithm

the FP approach could be used to select the important covariates and their effect-structure,
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while afterwards a further semi-parametric modelling method could be applied. Yet, care
has to be taken, not to result in artefacts.

Royston (2000) recently presented a strategy verifying, whether the global, parametric fit
of a FP model misses important information. In order to model the effect of a continuous
covariate as parsimonious as possible, but still ensuring a sufficient goodness of fit, he sug-
gests to determine a non-parametric model, e.g. using natural smoothing splines, and test
it against the best parametric (FP) model. The test he proposes can directly be transferred

to our dynamic effect problem.
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