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Abstract

Generalised estimating equations have been well established to draw inference for the marginal
mean from follow-up data. Many studies suffer from missing data that may result in biased parameter
estimates if the data are not missing completely at random. Robins and coworkers proposed to use
weighted estimating equations (WEE) in estimating the mean structure if drop-out occurs missing
at random. We illustrate the differences between the WEE and the commonly applied available case
analysis in a simulation study. We apply the WEE and re-analyse data on pregnancy and HPV
infection. We estimate the response probabilities and demonstrate that the data are not missing
completely at random. Upon use of the WEE, we are able to show that pregnant women have an
increased odds for an HPV infection compared with study subjects after delivery (p = 0.027). We
conclude that the WEE are useful in analysing follow-up data with drop-outs.

Keywords: Correlated Data Analysis, Generalised Estimating Equations, Horvitz-Thompson Estimation, Marginal
Models, Missing Data, Weighted Estimating Equations

1 INTRODUCTION

Several approaches for the analysis of follow-up data have been well developed in the last decade. For
example, the Generalised Estimating Equations (GEE; Liang and Zeger, 1986) can be applied to investi-
gate the marginal effect of an intervention or potential risk factors. The GEE have been implemented in
some statistical software packages (Ziegler, Kastner and Blettner, 1998) and are widely used in practice.
The available procedures generally require complete data. Many studies suffer, however, from missing
or incomplete data. In this situation, either all available cases or the complete cases are used by most
computer programs. The GEE approach may yield biased estimates if data are not missing completely
at random (Laird, 1988; Liang and Zeger, 1986; Robins, Rotnitzky and Zhao, 1995).

In the literature, two different semiparametric approaches have been proposed to deal with the problem
of missing data. Both concepts underlying these methods are intuitive and appealing. Imputation
methods impute missing data. They have been discussed e.g. by Paik (1997) and Xie and Paik (1997) for
follow-up studies. By contrast, weighting methods discard the incomplete data but weight observations
inversely proportional to their observation probability (Paik, 1997). Thus, the weighting estimating
equations (WEE) generally follow the classical Horvitz-Thompson approach. They have been extensively
discussed in recent years (Robins, 1994; Robius et al., 1995; Robins and Rotnitzky, 1995; Rotnitzky and
Robins, 1995; Zhao, Lipsitz and Lew, 1996) but have rarely been applied in practice. This may be due
to the fact that they were not available in accessible form with computer software (Carlin, Wolfe, Coffey
and Patton, 1999). WEE have been proposed for both forms of item non-response that are commonly
distinguished: non-response in explanatory variables, i.e. in the x (Robins, 1994; Zhao et al., 1996),
and non-response in dependent variables, i.e. in the y (Robins et al., 1995; Robins and Rotnitzky, 1995;
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Rotnitzky and Robins, 1995). According to the structure of our real data on human papilloma virus
(HPV) infection, we restrict our attention to missing data in dependent variables. Explanatory variables
of interest are assumed to be completely observed. We furthermore consider only WEE for longitudinal
data with monotone missing patterns; that is, once a subject leaves the study, it will never return. In
the framework of clinical trials, an individual fulfilling this criterion is usually termed a drop-out.

Our interest is to consistently estimate the marginal mean; the association between the responses
is treated as nuisance. For the following reasons, we shall use the Independence Estimating Equations
(IEE) for parameter estimation. Firstly, the IEE can be considered as a special case of the GEE in
which the association is not modeled in addition to the association structure (Ziegler, Kastner and
Blettner, 1998). Thus, estimation is less time consuming. Secondly, the IEE are as efficient as the
GEE in various situations (Fitzmaurice, 1995; Mancl and Leroux, 1996). For example, if only baseline
covariates are included so that all explanatory variables are constant within one observational unit i.e.
cluster, IEE are as efficient as GEE, if the true correlation is equal between any two sample time points.
Thirdly, in the case of negative correlations, a GEE estimator need not exist (Hanley, Negassa and deB.
Edwardes, 2000). The IEE estimator, however, can be used in this situation. Finally, the GEE underly
two important implicit assumptions that are required for the validity of this method: The association
needs to be correctly specified. Otherwise, the association parameters involved might be subject to
uncertainty of definition which can result in a breakdown of the asymptotic properties of the estimators
(Crowder, 1995). Furthermore, the mean structure needs to be correctly specified as a function of all—
probably time point specific—explanatory variables. Otherwise, the resulting estimator might be biased
(Pepe and Anderson, 1994). These two implicit assumptions do not apply to the IEE.

The aim of this paper is a re-analysis of longitudinal data from a study on the effects of pregnancy
and other factors on detection of HPV infection (Chang-Claude, Schneider, Smith, Blettner, Wahrendorf
and Turek, 1996) using both the WEE approach and the “classical” complete case analysis using the
IEE. Both approaches are implemented in the program MAREG (Kastner, Fieger and Heumann, 1997).

In the next section we introduce the data. In Section 3 the IEE are derived assuming complete
observations. We discuss missing data mechanisms for dependent variables in Section 4. Section 5 deals
with approaches to estimate the response probabilities. These estimates are used in the WEE of Robins
et al. (1995) which are introduced in section 6 assuming a monotone missing data pattern. The difference
between the IEE and the WEE in the presence of missing response data is illustrated in Section 7 by
simulations. The analysis of the HPV data is presented in Section 8.

2 HUMAN PAPILLOMA VIRUS INFECTION DATA

HPYV infection of the lower female genital tract has been clinically observed to appear more frequently
during pregnancy and show a high regression rate after delivery (Barber, Werdel, Symbula, Williams,
Burkett and Taylor, 1992; Garry and Jones, 1985; Schneider, Hotz and Gissman, 1987). Epidemiological
studies have established that infection with certain genital “high risk” and “low risk” HPV types is
associated with the development of specific cancers (Koutsky, Holmes, Critchlow, Stevens, Paavonen
and Beckmann, 1992; zur Hausen, 1991; Gissmann, Wolnik, Ikenberg, Koldovsky, Schnurch and zur
Hausen, 1983).

One aim of the study conducted by Chang-Claude et al. (1996) was to clarify previous conflicting data
concerning the detection of HPV infection in the pregnant vs. the non—pregnant state while adjusting for
other known risk factors of cervical cancer. The longitudinal study used a cohort design with (internal)
control group to compare HPV detection over time in pregnant women compared to a group of age-
frequency matched non—pregnant controls. The study design, the subjects and serum samples have
previously been described in detail (Chang-Claude et al., 1996). Briefly, all subjects were followed to
evaluate changes in HPV status. Study subjects were identified at the University Womens’ Clinic in Ulm,
Germany, between October 1987 and May 1990. Women who had a history of reproductive cancer or other
disorders associated with HPV infection were excluded from the study. The investigators aimed to carry
out 5 follow-ups at 3-month intervals after enrollment. At the first visit a self-administered questionnaire
was completed by all participants including questions on reproductive history, gynecological diseases,
contraceptive methods, sexual behavior, urogenital disease of the partner, smoking, marital status, and
education. Infection with HPV and Vira-Pap smear were determined at each time point. Abnormal Vira-
Pap smear was strongly associated with HPV infection, thus an indicator for HPV infection. At follow-up



visits, a shorter version of the original questionnaire was filled in. It included questions on pregnancy
status at interim, contraception, hormone use, gynecological diseases, sexual behavior, urogenital disease
of the partner, and smoking behavior in the past three months.

Table I shows the observed monotone response pattern for the participating individuals. 155 of the
267 individuals were followed-up at all time points; for 36 individuals baseline values were available only.
27.7% of the completely followed-up women were pregnant at baseline, while 31.8% of the 267 subjects
were pregnant at baseline.

Table I: Observed monotone response patterns for the human papilloma virus infection data. Observation
= 1 if individual was observed, and 0 otherwise.

Follow-up

1 2 3 4 5 Number
1 1 1 1 1 155

1 1 1 1 0 19

1 1 1 0 0 21

1 1 0 0 0 15

1 0 0 0 O 21

0O 0 0 0 O 36

Upon use of univariate logistic regression and autoregressive logistic regression, Chang-Claude et al.
(1996) were able to identify age (in years) as strong determinant of HPV infection. They also showed an
association of the lifetime number of sexual partners (< 3, 4-6, > 7) and the number of cigarettes smoked
daily (0, 1 — 19 and > 20) with a p > 0.05. In addition, the odds for HPV infection postpartum tended
to be lower than the odds for non-pregnant women (Odds Ratio (OR) 0.68; 95% confidence interval (CI)
0.26 — 1.80), although this was not statistically significant. The chance for an HPV infection was not
statistically significant higher compared with non-pregnant study subjects (OR 1.22; 95% CI 0.49 — 3.05).
However, the final model included some other factors like current condom (yes = 1 and 0, otherwise) use
that were not significant at the 5% test-level.

In our re-analysis of the HPV data (section 8), we treated HPV infection in analogy to Chang-Claude
et al. (1996). Thus, HPV infection was modeled as a binary random variable being 1 if an HPV infection
with any of the HPV types 16, 18, 31, 33, and 35 could unequivocally be determined and 0 if the test
results were negative. Furthermore, a binary Vira-Pap smear surrogate variable was created with 1 if a
clear—cut negative result was obtained and 0 otherwise.

3 INDEPENDENCE ESTIMATING EQUATIONS

Let y; be a vector of responses from n clusters with T' observations for the ith cluster. For each response
yit, several covariates x;; are available which can be summarized to the matrix X; = (x;1,...,x;7)".
The method can be easily extended to unequal cluster sizes T;. The pairs (y;, X;) are assumed to be
independently identically distributed. We focus on marginal models so that we do not consider models
including state dependence or duration dependence. The association within a cluster needs, however, to
be taken into account.

For independent observations, the well-known Generalized Linear Model (GLM) allows flexibility in
modeling mean and variance structures. For binary variables (HPV infection present or absent), the
relation between the response y;; and x;; may be described e.g. via the logit link so that E(yi|x:) =
Wit = logit_l(xgt,@). Furthermore, the variance function is usually chosen as the binomial variance
function pi(1 — pit). B is the p x 1 parameter vector of interest which is estimated by solving the IEE

u(B)=>» D;Vi'e, =D'V'e=0. (1)
i=1

Here, D; = Ou;/0B' is the diagonal matrix of first derivatives and V; is the diagonal matrix of the
variances from the GLM. €; = y; — u; is the ordinary residual with p; being the vector of the mean
structure. D and € are the stacked D; matrices and €; vectors, respectively. Finally, V is the block
diagonal matrix of V.



An analytic solution of (1) exists for the linear model. In general, (1) have to be solved iteratively
by a FISHER-scoring algorithm or iterative weighted least squares (IWLS). If the observations are indeed
independent and suitable regularity conditions hold, the estimator ,@ 1EE 1s consistent and asymptotically
normal with variance matrix

Cov(B pgg) = (D'V D). (2)

For correlated observations, however, the true variance matrix Cov(y;|X;) = €; # V; is not diagonal.
Thus, the use of (2) generally leads to biased variance estimates. Therefore, Zeger, Liang and Self (1985)
proposed to use the robust estimator because it is a strongly consistent estimator of V(ﬁIEE) even if the
dependent variables within a cluster are correlated. The robust variance estimator is also known as the
sandwich information matrix or the HUBER-estimator (s. e.g. Ziegler, Kastner and Blettner, 1998).

4 MISSING DATA MECHANISMS

As stated in the Introduction, we assume that the explanatory variables of interest X; are observed
completely; dependent variables y;; may be missing. In different applications the missing data mechanism
can be explained by additional variables that are not of interest for the mean structure. Suppose that
surrogate variables z;; are observed in addition to y;, if y;; is observed.

Let wio = (vec(X;)', yio, zy)' be comprised of covariates X; and the observations of y;o and z; prior
to follow—up. We assume that y;,0 and z;o are observed completely. If X; are not baseline covariates,
they are assumed to be either fixed or independent of the response variables. Furthermore, we set
wit = (yit,ziy) for t = 1,...,T. Bars are used to indicate variables including the whole history except
the current observation, thus Wy = (Wi, wi, ... 7W;(t71))l-

In the following, r;; denotes the missing data indicator, such that r; = 1, if the pair (yi,zs) is
observed and 0 otherwise. We assume a monotone missing data pattern so that ry;11) = 0, if riy = 0
for any t. Thus, r;7 = 1 indicates that the data of cluster 7 are completely observed. We assume that
the data are missing at random (MAR) in the sense of Laird (1988). This implies that the response
probability at time ¢ only depends on observations prior to t. We do, however, not assume that the data
are missing completely at random (MCAR; Laird, 1988). This would imply that the probability for a
response at time ¢t may depend on the explanatory variables X; but not on the history w;; observed up
to ¢.

5 ESTIMATION OF RESPONSE PROBABILITIES

In the WEE method, observations are weighted by their inverse observation probability. In order to
guarantee the existence of the estimates, we assume that the probability A; to remain in the study is
greater than 0 for each study subject and each point:

Ait = P(’I“l‘t = 1|rz'(t71) = I,Wit) >0>0. (3)

The response probabilities Ay = At (7|rijt—1), Wiz) may depend on an additional parameter ~ that is
modeled as a function of the history up to ¢. If the response probabilities \;; () are unknown, + needs to
be estimated. A natural choice to model the response probability as a function of « is the logit link. If
no observation is missing at a specific time point ¢, A;; need not be estimated. In this situation, Ay = 1.
If at least one observation is missing and present, respectively, for every time point, an estimate 4 can
be obtained by maximizing the partial likelihood function L(vy) =[]}, Hthl Li(7y), where

. AL = X ()] i gy =1
LZt(’Y) - { 1 if ri(t_l) — 0

is the core of a GLM for binary data if r;;,_1) = 1. Note that cluster 7 does not contribute to the partial
likelihood function at time ¢ if 7;;_;) = 0. In our application with HPV infection data, we used the logit
link to establish the relationship between the response probability A;; and v. We assume that the model
for A\ is correctly specified.

If the data are MAR, the product of the response probabilities including time ¢, 7 = 7wy (y) =
Air () - ... - Ait(y) may be interpreted as the conditional probability of observing cluster ¢ at time ¢



given the entirely observed history w;;. In order to formulate the WEE, the conditional probabilities m;;
together with their observational status r;; are collected in a diagonal matrix IT = II(v) with elements

Tz't/7rz't~

6 WEIGHTED ESTIMATING EQUATIONS

Both the assumption that the data are MAR and the positivity of the response probabilities from eq. (3)
are the fundamental prerequisites to identify the marginal mean E(y;|X;). They imply

E(yuri /T Xs) = E(yu|Xs) - (4)

This is the key result required to formulate the WEE. It states that—given the explanatory variables—the
mean individual time point specific response is equal to the mean individual time point specific response
weighted by their inverse observation probability, if the observational status is taken into account.

The validity of eq. (4) can be shown easily for data that are MCAR. Here, the observational status
r; is independent from the response y;; so that the left hand side of (4) can be factorised to

E(yira[mit| Xi) = E(ya| Xq) E(rie| Xs) /Tt -

Finally, E(ri|X;) = P(ri# = 1|X;) = mi because the missing data pattern is monotone. The more
complex case of data that are MAR is discussed in detail by Robins et al. (1995).

The fundamental difference between the WEE and the IEE can be easily seen from (4): The WEE
rest upon the left hand side of (4), while the IEE are based on the right hand side of (4). Correspondingly,
the residuals € of the WEE are weighted by II(«), the inverse observation probability multiplied by the
actual observation status. This weighting implies that data with missing response do not contribute to
the WEE. Using the notation of section 2, an estimator BW g is the solution of the WEE

u(8,4) =D’V 'I()e=0. ()

Robins et al. (1995, Appendix A) have shown that By is asymptotically normal with mean 3 under
suitable regularity conditions. Its variance matrix can be strongly consistently estimated with variance
matrix given in the Appendix. The reader should note that the usually applied robust variance matrix
need not yield positive estimates of the variance matrix.

Robins and Rotnitzky (1995) have shown that prior knowledge concerning the response probabilities
does not provide additional information, if (i) the mean structure p; is correctly specified, (ii) the data
are MAR and (iii) the response probabilities \;; are greater than 0. This result also implies that the the
WEE may also be applied without loss of power even if the data are MCAR. This will be shown by a
simple simulation study in the next section.

7 SIMULATION STUDY

In a simulation study using binary dependent variables we compared the properties of the WEE estimator
with the IEE estimator that used the information of all observations (available case; AV) and the IEE
estimator that used the information of all clusters without missing data (complete cluster; CC). The
IEE estimator of the simulated data before generation of missings (full data estimator; FD) was used as
reference.

The simulation proceeded as follows. First, the complete data set without missing observations
was generated. Second, observations were deleted from the complete simulated data set using pre-
specified missing data mechanisms. Several approaches for simulating correlated binary data have been
proposed (Park, Park and Shin, 1996; Gange, Linton, Scott, DeMets and Klein, 1995; Lee, Scott and
Soo, 1993; Emrich and Piedmonte, 1991). We did not fix the marginal moments in our approach but
based our simulations on the theoretical work of Fitzmaurice and Laird (1993) which requires specification
of conditional log-odds ratios. Given the conditional log-odds ratios, the joint multinomial distribution
of the response patterns given the explanatory variables can be computed. The joint distribution is
then used to determine the marginal moments. Random numbers were generated using the DRAND48
generator, which is supplied by SunOS 5.5 as a C-library function (SunOS, 1995, man Pages(3C)). The



seed was set using the system time for each experiment. Both the WEE and the IEE were solved by
MAREG (Kastner et al., 1997).

We simulated 100 clusters with ¢t = 0,...,3 each. ¢ = 0 was used as baseline and was assumed to be
always observed. We generated two different marginal models. In both models, the response depended
on an intercept and a dummy-coded treatment variable. However, in the first model the intercept and
the treatment effect were time-constant, while in the second model the treatment effect is time-varying.
Furthermore, we use two different models for the dropout-process. In the first model the response
probability at time ¢ depended on a constant so that the data were MCAR. In the second model, the
response probability at time ¢ depended on a constant and the response at time ¢ — 1. This implies that
the data were MAR. In both cases the parameters were chosen so that the dropout rate was about 10%,
20% and 30% at t = 1,2 and 3, respectively. Missing data were generated using the logistic function.
Finally, two different degrees of association were used. The first yielded a small correlation of about 0.1,
while the second resulted in a high correlation of about 0.5.

Table IT shows mean and standard deviations (in brackets) of the estimated parameters of the model
with time-constant treatment effect. The theoretical parameters were Sintercept = —0.5 and Bireatment = 1.
The drop-out process was modeled assuming “intercept = 2, if the data were MCAR. For data that were
MAR, we used Yintercept = 1 and Vyo1) = 3 as parameters. Table III displays the results for the model
with time-varying treatment effects. Here we assumed fintercept = —0.9, and Bireatment = 0,0.5,1 and 1
at t = 0,1,2 and 3, respectively. The same parameters as in the cluster-constant case were chosen for
modeling the drop-out process.

Table II: Parameter estimates and robust standard errors (in parenthesis) from the simulations of the
marginal model with cluster-constant covariates. FD: full data, WEE: weighted estimating equations,
AV: available case, CC: complete clusters.

p=0.1 p=0.5

Dropout Parameter FD WEE AV CcC FD WEE AV CC
MCAR intercept -0.509 —0.509 —0.509 —0.506 —0.497 —-0.495 —-0.496 —0.500
(0.162) (0.174) (0.172) (0.193) (0.237)  (0.252) (0.250) (0.289)
treatment 1.017 1.017 1.016 1.011 0.999 0.998 0.997 1.006
(0.229) (0.251) (0.250) (0.279) (0.329) (0.351) (0.347) (0.403)
MAR intercept -0.511 —0.509 -0475 —0.217 —0.500 —0.502 —0.313 0.059
(0.170) (0.199) (0.186) (0.218) (0.237)  (0.263) (0.250) (0.291)
treatment  1.010 1.007 0.987 0.965 1.013 1.014 0.975 0.936

(0.230) (0.262) (0.247) (0.287)  (0.321) (0.370) (0.337) (0.401)

Both tables demonstrate that all approaches yielded consistent parameter estimates as long as the
data are MCAR. In this situation, the WEE and the AV yielded virtually identical parameter estimates
and standard errors. As expected, the FD estimator had the lowest standard errors across all models,
while the CC estimator had the largest standard errors. Therefore, the CC approach is not recommended
for applications even if the data are MCAR.

If the data were MAR, the IEE estimator using the AV or the CC approach yielded biased parameter
estimates, while the WEE remained consistent. The bias increased with the correlation of the responses.
Furthermore, the AV estimator and the CC estimator led to quite contrary results for some models.
For example, the mean parameter estimates of Bireatment; Were 1.258 and 0.895 for the AV and the CC
approach, respectively, with a single time-dependent treatment effect and high correlation of o = 0.5.
Here, the AV approach resulted in an overestimation, while the CC approach yielded an underestimation
of the true treatment effect.

Our results are comparable to those obtained by Robins et al. (1995) and Robins and Rotnitzky (1995)
for continuous dependent variables. The bias was, however, not so pronounced in our simulations. This
finding can be explained by the naturally lower variation of binary variables compared with continuous
data.



Table III: Parameter estimates and robust standard errors (in parenthesis) from the simulations of the
marginal model with time-varying covariates. FD: full data, WEE: weighted estimating equations, AV:
available case, CC: complete clusters.

p=0.1 p=0.5

Dropout Parameter  FD WEE AV CC FD WEE AV CcC
MCAR intercept -0.498 —0.496 —0.494 —0.494 —0.499 —0.498 —0.498 —0.496
(0.165) (0.181) (0.181) (0.205)  (0.232) (0.251) (0.249) (0.284)
treatmenty, -0.012 —0.017 —-0.018 —0.021 —-0.010 -0.012 —-0.011 -—0.022
(0.336) (0.345) (0.345) (0.427) (0.385) (0.396) (0.394) (0.467)
treatment; 0.499 0.498 0.497 0.496 0.503 0.498 0.498 0.501
(0.349) (0.374) (0.375) (0.421) (0.376)  (0.401) (0.399) (0.458)
treatment, 1.005 1.007 1.006 1.009 1.013 1.024 1.025 1.018
(0.348) (0.393) (0.393) (0.429) (0.379) (0.433) (0.432) (0.469)
treatmentz 0.998 1.004 1.003 1.002 1.001 1.009 1.009 1.007
(0.332) (0.398) (0.398) (0.409) (0.377)  (0.452) (0.451) (0.470)
MAR intercept -0.508 —0.505 —0.473 —0.213 —-0.499 -0.496 —0.311 0.052
(0.174)  (0.206) (0.192) (0.222)  (0.237) (0.264) (0.253)  (0.298)
treatmentg -0.007 —0.009 —0.042 0.021 —-0.011 -0.013 —0.198 —0.067
(0.340) (0.362) (0.353) (0.433) (0.388) (0.402) (0.397) (0.487)
treatment; 0.511 0.496 0.479 0.544 0.493 0.496 0.401 0.468
(0.332) (0.378) (0.370) (0.448) (0.376)  (0.422) (0.413) (0.486)
treatmenty 1.007 1.004 1.009 1.065 1.011 1.023 1.097 1.037
(0.343) (0.428) (0.417) (0.476) (0.397) (0.476) (0.465) (0.534)
treatments 1.028 1.042 1.075 0.816 1.014 1.040 1.258 0.895

(0.351) (0.458) (0.440) (0.457)  (0.389) (0.509) (0.486) (0.513)

8 RESULTS OF HUMAN PAPILLOMA VIRUS INFECTION
DATA

In the first step of our analysis, we modeled the response probabilities for an infection with HPV using the
data presented in section 2. The relationship between a response and possible covariates was established
with the logit link. To evaluate the significance of the parameter estimates, we used model based standard
errors since the WEE require a correct specification of the response probabilities. We hypothesized that
the probability of taking part in an examination increases with the age of a study subject. We furthermore
hypothesized that the probability is lower after delivery due to less free time of the study subject. It
probably also depends on the HPV status lag 1, i.e. prior to the current observation, and the Vira-Pap
status surrogate variable lag 1. Thus, if the study subject did not receive a clear-cut negative result at
t — 1, the probability to take part in the examination at ¢ should be high.

Table IV displays the results for the corresponding weight model. Age lag 1 (OR for a 10 year age
difference 1.553; 95% CI 1.135 — 2.125) and reproductive status lag 1 revealed p-values < 0.05 with
regression coefficients in the expected direction (overall p for reproductive status 0.005; after delivery p
= 0.003). Thus, the probability to take part in the examination was higher for older women. It was
lower for study subjects after delivery (postpartum) compared with pregnant women and non-pregnant
individuals (reference category). Unexpectedly, HPV infection status lag 1 had a p-value > 0.05. It
remained, however, in the model since additional parameters in the model of the response probabilities do
not decrease the efficiency of the parameter estimates of the mean structure (Robins and Rotnitzky, 1995,
Theorem 1). Interestingly, the probability to take part in the examination depended on the Vira-Pap
status surrogate variable lag 1 (p = 0.047). As expected, it was lower for an individual that either had
a clear-cut negative HPV result at the last examination (OR 0.502; 95% CI 0.253 — 0.996). Since the
Vira-Pap status had an influence on the response probability, the assumption that the data were MCAR
was violated.

In the second step of our analysis, we modeled the parameters of interest for the mean structure
using the data of section 2 and possible interactions between these variables. Our aim was to detect



Table TV: Odds ratios, 95% confidence intervals and p-values of the weighting model for the weighted
estimating equation analysis of the human papilloma virus infection data

Variable Odds ratio Confidence interval P-value
Intercept 2.090 0.739 - 5.905 0.164
Negative Vira-Pap status 0.502 0.253 - 0.996 0.049
HPV 0.490 0.156 — 1.541 0.222
Age (10 year difference) 1.553 1.135 - 2.125 0.005
Reproductive status 0.005
(pregnant) 1.150 0.690 - 1.919 0.591
(postpartum) 0.423 0.242 - 0.739 0.003

covariates that were potentially significant for an HPV infection. Therefore, we decided to include only
those variables in the final model revealing p-values < 0.05. The reproductive status was coded as in
the weighting model. Since there was no difference (p > 0.05) between non smokers and study subjects
smoking maximal 19 cigarettes per day, these groups were combined. Thus, daily smoking of cigarettes
was dichotomised for the analysis with categories 1 = “heavy smoker (more than 19 cigarettes per day)”
and 0, otherwise.

Table V displays the final model for the HPV infection data. It was derived using backward selection
for the WEE. Table V additionally shows the results for the available case analysis (AV). The complete
cluster analysis (CC) did not converge, most likely due to the relatively low number of complete clusters.
In accordance with the results of (Chang-Claude et al., 1996), age was a predictor for an HPV infection
for both WEE and AV (OR 0.600 for WEE; 0.543 for AV). Thus, the odds for an HPV infection was
lower for old individuals. The final model also included smoking for both estimation methods with a
higher odds for an HPV infection for heavy smokers. The reproductive status revealed a p-value < 0.05
in the WEE analysis only (p = 0.031 for postpartum vs. non-pregnant). It was not significant at the
5% test-level (p = 0.087) upon use of the AV analysis. This may be due to the fact that the data are
not MCAR. Pregnant women had no significantly increased risk for an HPV infection compared with
study subjects that were non-pregnant (p = 0.688 for WEE). However, the odds for an HPV infection for
pregnant women compared with those postpartum was significantly higher (p = 0.027 for WEE; p = 0.083
for AV).

Table V: Odds ratios (OR), 95% confidence intervals (CI) and p-values of the weighted estimating equa-
tions (WEE) and the available case analysis (AV) for the human papilloma virus (HPV) infection data

WEE AV
Variable OR CI P-value OR CI P-value
Intercept 0.156 0.043 - 0.565 0.005 0.235 0.058 - 0.950 0.042
Age (10 year difference) 0.600 0.406 - 0.889  0.013  0.543 0.353 - 0.836  0.005
Heavy smoker 3.235 1.112-9.414 0.031  3.025 1.056 — 8.667  0.039
Reproductive status 0.081 0.214
(pregnant) 1.176 0.533 -2.596  0.688  1.053 0.473 -2.344  0.899
(postpartum) 0.139 0.023-0.831 0.031 0.165 0.021 -1.298  0.087

The influence of one cluster on the parameter estimates was checked with the robust COOK-statistic
(Ziegler and Gromping, 1998) which is given in the Appendix. Two study participants had a markedly
influence on the parameter estimates. The robust CooOK-statistic of individuals 124 and 877 were 1.64 and
1.77, respectively. After elimination of these subjects, neither the daily number of smoked cigarettes nor
the reproductive status revealed p-values < 0.05. These two study participants were the only individuals
that had a positive HPV status at almost all investigations. Therefore, they had a high influence on the
parameter estimates.

9 DISCUSSION

A variety of methods have been established for the analysis of longitudinal data with non-normal depen-
dent variables. They have primarily been developed for complete data. Many studies, however, suffer



from missing response data. Therefore, there is a growing interest to adequately deal with missing data.
Basically three different approaches can be distinguished. The first group consists of maximum like-
lihood methods for the estimation of the marginal mean (Diggle and Kenward, 1994; Fitzmaurice and
Laird, 1993; Fitzmaurice, Laird and Lipsitz, 1994; Fitzmaurice, Clifford and Heath, 1996). However, their
consistency relies on the correct specification of the joint distribution of the clustered responses. This may
be crucial if the aim is to consistently estimate the marginal mean so that second—the correlation—and
higher order moments of the responses are considered as nuisance.

Two well-known alternatives are imputation methods (Heyting, Tolboom and Essers, 1992; Paik,
1997; Xie and Paik, 1997) and weighting methods (Flanders and Greenland, 1991; Zhao, Prentice and
Self, 1992; Robins, 1994; Robins et al., 1995; Robins and Rotnitzky, 1995; Rotnitzky and Robins, 1995).
They are different, in general. However, imputation and weighting yield identical results under specific
circumstances (Little, 1986; Paik, 1997). The weighting methods are more attractive than the imputation
methods because the weight—the inverse observation probability—is not a function of the marginal mean
parameters, as pointed out by Paik (1997). Furthermore, the WEE have optimality properties so that
they result in semiparametric efficient parameter estimates under suitable regularity conditions (Robins
and Rotnitzky, 1995). The consistency of the estimates, however, relies on the correct specification of the
respounse probabilities and the marginal mean.

Though the WEE are appealing, they have been criticized by Carlin and co-workers (Carlin et al.,
1999). These authors stated that the WEE were unavailable in an accessible form with current computer
software. This obviously limits the application of any method in practice. Recently, the WEE for
monotone missing data patterns have been implemented in the computer package MAREG (Kastner
et al., 1997) which can be retrieved from the Web. We have compared the WEE with the CC and the AV
which are usually applied in practice (s. Section 7). We showed for the simulated models that the WEE,
the CC and the AV yielded virtually identical results as long as the data were MCAR. Both the CC and
the AV estimators were biased when the responses were MAR but not MCAR. The biased increased with
the correlation of the responses. Only the WEE estimator was consistent in this situation.

We employed the WEE to HPV infection data with monotone missing responses. To our knowledge,
it was the first application of the WEE to real data with missing binary responses. First of all, we showed
by modeling of response probabilities that the data were not MCAR. Thus, the AV and the CC estimator
need not be consistent. Interestingly, the CC data were not even estimable, most likely due to the low
number of complete clusters. The WEE and the AV estimator yielded different results: the risk factor
of primary interest—the reproductive status—was not significant at the 5% test-level in the final model
of the marginal mean, while it revealed a p-value < 0.05 in the WEE model. Since the data were not
MCAR, we consider the WEE estimates to be the more reliable. We are, however, aware of the fact that
the reproductive status was only marginally significant after extensive model building. Furthermore,
we performed a re-analysis of the HPV infection data. Specifically, the WEE method was not even
mentioned in the study protocol. Nevertheless, the seemingly conflicting results concerning the risk for
an HPV infection by pregnancy could be explained as follows. If the sample of non-pregnant women
mainly consists of those women that had never been pregnant, the risk for an HPV infection of pregnant
women need not be significant. However, if it mainly consists of women after delivery, pregnancy could
well show an increased risk for an HPV infection. Finally, the robust CooOK-statistic showed that the
significance of the reproductive status relied on the inclusion of only two study subjects who had an HPV
infection at almost all investigations. This strong influence of two clusters is due to the fact that an HPV
infection is a relatively rare event.

Summing up, the WEE is an appropriate method to deal with missing responses for longitudinal data.
They have been implemented for monotone missing data patterns and are available to the public. To be
applicable in a broad range of applications, however, an extension to arbitrary missing data patterns for
the responses is required.

APPENDIX

The variance estimator of BW pg for the WEE has been proposed by Robins et al. (1995) and can be
obtained by applying the chain rule together with a standard Taylor series expansion. Using the notation
from sections 3 and 6, it may strongly consistently estimated by

—

V(Bwer) =AB,4) 'CB,¥)AB,4) (6)



where

AB.A) =DV IH)D and C(B,4) =Y resid; resid; .

i=1

—A(B, %) is the estimated Fisher information matrix and symmetric because V and II(4) are diagonal
matrices. C(B,7) is similar to the estimated outer product gradient (OPG) of the usual robust variance
estimator. However, it is more complex since the WEE (5) depend on an additionally estimated nuisance
parameter 4. Therefore, u;(3,4), being the usual term for the estimated OPG, needs to be corrected by
u;(4). Thus, resid; = rgsTd[u,- (B,4),u;(%)] is the estimated residual from the linear regression of u;(3,4)
on u;(%):

-1

e = w(8.4) — (Yo wB () ) (0 wB A BAY) wila).

Model checking can be performed using the robust CooOK-statistic (Ziegler, Blettner, Kastner and
Chang-Claude, 1998). For the ith cluster it is given by

—

(BWEE(fi) - BWEE)I V(/éWEE) (BWEE(fz') - /éWEE) )

where ,@W EE(—q) is the fully-iterated deletion-one WEE estimator.
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