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Abstract

Inference for the marginal mean using longitudinal data with monotone drop-outs in the response
can be drawn with the weighted estimating equations (WEE; Robins, Rotnitzky and Zhao, 1995).
Estimation proceeds in two steps. In the first step, a generalised linear model is usually applied to
estimate response probabilities. In the second step, parameters of the mean structure are estimated
by weighting a response inversely proportional to its estimated observation probability. The param-
eter estimates of the WEE are asymptotically normal and semiparametric efficient under suitable
regularity conditions that include the correct specification of the model for the response probabili-
ties. In this paper, we investigate the effect of misspecifying a) the parameters used to estimate the
response probabilities and b) the link function for the response probabilities in a simulation study.
We demonstrate that a slightly misspecified model for the response probabilities has an unimportant
effect on the parameter estimates of the marginal mean from the WEE. We furthermore show that
the choice of the link function has a negligible effect on the estimates of the marginal mean from the
WEE. Our results are in line with classical findings for generalised linear models and for generalised
estimating equations. Theoretical work should be added to our simulations that allow a quantification
of the bias introduced by a misspecification of the model for the response probabilities.

Keywords: Correlated Data Analysis, Generalised Estimating Equations, Horvitz-Thompson Estimation,

Marginal Models, Missing Data, Weighted Estimating Equations

1 Introduction

Several approaches for the analysis of the marginal mean using longitudinal data have been proposed.
Probably, the most popular among these are the Generalised Estimating Equations (GEE; Liang and
Zeger, 1986). The term “generalised” indicates that the association between the responses is modeled in
addition to the mean structure which is of primary interest. If the association between the responses is not
modeled but taken into account, the corresponding Estimating Equations (EE) are termed Independence
Estimating Equations (IEE).

In analogy to other standard or advanced statistical methods, the GEE and the IEE were designed
for complete data. However, many studies suffer from missing or incomplete data so that statistical
analyses become more complicated. Approaches that ignore systematical differences between complete
and incomplete clusters may be biased (Little and Schenker, 1995). In this paper we focus on item
non-response in dependent variables (in the y) and assume monotone missing data patterns; that is,
once a subject leaves the study, it will never return. Explanatory variables of interest are assumed to be
completely observed.

One approach for solving the IEE in presence of missing dependent data received considerable attention
(Robins et al., 1995; Robins and Rotnitzky, 1995). The basic idea of this approach is to weight observations
inversely proportional to their respective response probabilities. The resulting estimators belong to the
class of Horvitz-Thompson estimators. The corresponding estimating equations are termed Weighted
Estimating Equations (WEE) and may be applied to data missing at random in Laird’s (1988) sense.
One disadvantage of the WEE was its unavailability in a standard computer package as noted by Carlin,
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Wolfe, Coffey and Patton (1999). However, it has recently been implemented in the program MAREG
(Kastner, Fieger and Heumann, 1997) which is freely available from the Web. One advantage of the WEE
are their nice statistical properties: Thus, parameter estimates of the WEE are asymptotically normal
and semiparametric efficient under suitable regularity conditions. The regularity conditions include the
correct specification of the model for the response probabilities.

For this purpose we investigate a) the effect of misspecifying the parameters used to estimate the
response probabilities and b) the effect of misspecifying the link function to model the response proba-
bilities in a simulation study. The outline of this paper is as follows. In section 2 the IEE are derived
assuming complete observations. The WEE of Robins et al. (1995) for a monotone missing data pattern
are introduced in section 3. The results of our simulation study are discussed in section 4.

2 The Independence Estimating Equations

Let y; be a vector of responses from n clusters with T observations for the ith cluster. The covariates x;;
for each response y;; are summarized to the X; = (x};,...,x}p)". The method may be easily extended
to unequal cluster sizes T;. The pairs (y;, X;) are assumed to be independently identically distributed.
We focus on marginal models for the mean and treat the association within a cluster as nuisance.

For independent observations, the well-known generalised linear model (GLM) allows flexibility in
modeling mean and variance structures. In GLM, the mean structure is given by

E(yit|xit) = Mit = g(thﬁ)a (1)

where g is a non-linear response function and 3 is the p x 1 parameter vector of interest. If y; is a
binary variable, the connection between y;; and x;; may be established e.g. via the logit, the probit or the
compound loglog link. In this situation, the variance function is usually chosen as the binomial variance
function (1 — pit).

An estimator 8, is the solution of the IEE

=) DV (yi—p) =0 (2)
i=1

Here, D; = 0u,; /08 is the diagonal matrix of first derivatives, u; = p;(8) = g(X;8) is the vector of
the mean structure, and V; is the diagonal matrix of the variances V; = diag(v;:). In general, (2) are
solved iteratively by a FISHER-scoring algorithm. The true variance matrix Cov(y;|X;) = Q; # V; is
not diagonal for correlated observations. Therefore, Zeger, Liang and Self (1985) proposed to use the
sandwich information matrix

-1 n n -1
VBrpp) = (ZD V. iD, ) (Z f);vilfz,-vilf)i> <Z f);.\?ilf)i> 3)
i=1 i=

with €; = (y; — t;)(yi — it;)'. Eq. (3) yields consistent estimates of V(8;5), even if the dependent
variables within a cluster are correlated.

3 The Weighted Estimating Equations

In the presence of missing response data, the IEE need not be an appropriate tool for the analysis of
clustered data (s. e.g. Ziegler, Kastner and Chang-Claude, 2000). Weighting the observed data is one
general tool for dealing with missing response data. The weights are the inverse response probabilities. In
many applications, the missing data mechanism, thus the weights, can be explained by surrogate variables
z;; that are observed in addition to the response variables y;; and covariates X;. These surrogate variables
need not be of the investigator’s interest for the mean structure and are possibly only collected, if y;;
is observed. Let wyy = (vec(X;)',yi0,2}y)" be comprised of covariates X; and the observations of y;o
and z;y prior to follow-up. We assume that y;o and z;o are completely observed. Thus, the explanatory
variables are assumed to be either fixed or independent of the response variables. Furthermore, we set
Wit = (Yit, z},) for t = 1,...,T. Bars are used to indicate variables including the whole history except
the current observation so that Wi = (Wig, Wiy, ..., Wi, )"



ri denotes the missing data indicator, such that r;; = 1, if the pair (y,2:) is observed and r;; = 0,
if (yit, ;) is missing. We assume a monotone missing data pattern so that Ti¢¢t+1) = 0, if riy = 0 for any
t. Thus, r;7 = 1 indicates that the data of cluster i are completely observed. We assume that the data
are missing at random (MAR) in the sense of Laird (1988). This implies that the response probability
at time t only depends on observations prior to t. We do, however, not assume that the data are missing
completely at random (MCAR; Laird, 1988). This would imply that the probability for a response at
time ¢ may depend on the explanatory variables X; but not on the history w;; observed up to t. We
assume that the probability A;; to remain in the study is bounded away from 0:

Ait = P(ryg = 1|T2~(t,1) =1,wy)>d6>0. (4)

The response probabilities Aiz () = it (7|ri¢—1), Wit) may depend on an additional parameter v that is
modeled as a function of the history up to ¢t and the observation status at ¢ —1 as the missing is monotone.
If the response probabilities A;;(v) are unknown, v needs to be estimated. If no observation is missing
at a specific time point ¢, A;; need not be estimated and Ay = 1. If at least one observation is missing
and present, respectively, for every time point, an estimate 4 can be obtained by maximizing the partial
Likelihood function L(vy) = [, L;(y), where

T
) o\ Tit—1)
Li(y) = [T (Al (1 = a()=m) " (5)
t=1
If the data are MAR, the product m; = mu(y) = Nt (77) - ... - Aie(y) of the response probabilities

including time ¢ may be interpreted as the conditional probability of observing cluster i at time ¢ given the
entirely observed history w;;. In order to formulate the WEE, these conditional probabilities multiplied
are collected together with their observational status in a 7' x T diagonal matrix II; = II;(vy) with
elements r; /7. The multiplication by the actual observational status ensures that data with missing
response do not contribute to the WEE. An estimator BW g is the solution of the WEE

u(B,4) =Y DV, 'ILi(¥)e; =0, (6)
=1

Robins et al. (1995, Appendix A) have shown that By is asymptotically normal with mean 8 under
suitable regularity conditions. A strongly consistent estimator of the variance is given e.g. by Robins et al.
(1995). The reader should note that the usually applied robust variance matrix of eq. (3) need not yield
positive estimates of the variance matrix Robins and Rotnitzky (1995). Robins and Rotnitzky (1995)
have furthermore shown that prior knowledge concerning the response probabilities does not provide
additional information, if (i) the mean structure is correctly specified, (ii) the data are MAR and (iii) the
response probabilities are greater than 0. This result implies that the WEE may also be applied without
loss of power even if the data are MCAR. This has been illustrated previously by Ziegler et al. (2000).

4 A Simulation Study

In the first part of our simulation study, we investigate the properties of the WEE estimator for misspec-
ified response probabilities using binary and continuous dependent variables. We use a study design that
may be used in a randomized clinical trial. The simulation proceeds as follows.

1. The complete data set is generated without missing observations. The response depends on an
intercept and a dummy-coded cluster-constant dichotomous variable. We use a balanced design so that
the proportion of ‘1‘s is 50%. There is no difference between treatment groups at t = 1. At time points 2
and 3, the treatment effect is most pronounced being 1 and 2 for the binary and the continuous response,
respectively. At ¢t = 4, the treatment effect decreases by % compared with ¢t = 2,3. We simulate 100
clusters with t = 1,...,4 each. Throughout the simulations, the number of replicates is 1000. ¢ = 1 is
used as baseline and assumed to be always observed. As the missing mechanism depends on y; o, it is
necessary for y;» to be always observed, too. The association structure is exchangeable. We use smaller
associations for the binary response, since the correlation for multivariate binary data is restricted (s. e.g.
Ziegler, Kastner and Blettner, 1998).

The continuous response variables are generated using a multivariate normally distributed variable
with a pre-specified correlation structure. The binary response variables are generated using the log-
linear representation since higher order marginal moments are restricted in general. However, in contrast



to Fitzmaurice and Laird (1993) who have used conditional second order moments, we generate the
second-order moments marginally. Only third and fourth-order moments are conditional.

2. Observations are deleted from the complete simulated data set using pre-specified missing data
mechanisms. Missing data are generated using an MAR process. The complete data generation process
is described in full detail in Kastner (2000). The WEE are solved by MAREG (Kastner et al., 1997).

Tables 1 and 2 display the simulation results for the binary and the continuous response variable,
respectively. FD denotes the complete (full) data. CC is the estimate if only complete clusters are used
in the analysis. Thus, clusters are omitted from the analysis, if at least one observation in a cluster is
missing. AC is the available case estimator, i.e. all observations are included in the analysis. Finally,
WEE is the weighting estimating equations estimator. ME is the arithmetic mean of the parameter
estimates from the 1000 replicates, and SD is the arithmetic mean of the estimated standard deviation
of the parameter estimates. Finally, CI is the proportion of simulations in which the 95% confidence
interval for the specific parameter covers the true parameter.

Table 1: Simulation results for a four-dimensional binary response and a binary treatment variable

(Breat,1 = 0, Breat,2 = 1, Bireat,3 = 1, Bireat,a = 0.5). Response probabilities either depend on ;s

(denoted by 2) or on y;_; (denoted by !). The model for the response probability either includes y;_»

(denoted by ¢t — 2) or y;—1 (denoted by ¢ — 1).

/Btreat,l /Btreat,Q 5treat,3 /Btreat,4

Model p FD CC AC WEE| FD CC AC WEE| FD CC AC WEE| FD CC AC WEE

2¢2 0.1 ME| 0.001 0.052 0.001 0.001(1.024 1.447 1.024 1.024(1.029 1.472 1.075 1.042{0.520 0.591 0.591 0.534
SD | 0.286 0.355 0.286 0.283(0.325 0.459 0.325 0.322(0.326 0.464 0.368 0.355(0.296 0.372 0.372 0.364
CI | 0.971 0.952 0.971 0.955(0.943 0.902 0.943 0.943{0.950 0.900 0.960 0.942{0.927 0.948 0.948 0.925

2¢2 0.5 ME|-0.008 0.293 -0.008 -0.008|1.018 1.608 1.018 1.018|1.022 1.608 1.206 1.033|0.508 0.825 0.825 0.527
SD | 0.286 0.359 0.286 0.282(0.325 0.486 0.325 0.321(0.326 0.486 0.382 0.376|0.295 0.387 0.387 0.378
CI | 0.964 0.877 0.964 0.943(0.941 0.837 0.941 0.941(0.933 0.824 0.929 0.941{0.949 0.905 0.905 0.962

2¢1 0.1 ME| 0.007 0.069 0.007 0.007|1.045 1.477 1.045 1.045|1.014 1.458 1.058 1.026|0.516 0.585 0.585 0.525
SD | 0.286 0.355 0.286 0.283(0.327 0.464 0.327 0.324(0.324 0.462 0.366 0.354|0.295 0.371 0.371 0.364
CI | 0.971 0.956 0.971 0.954|0.946 0.898 0.946 0.946(0.961 0.895 0.971 0.941|0.948 0.962 0.962 0.937

2¢1 0.5 ME|-0.002 0.276 -0.002 -0.002|1.036 1.614 1.036 1.036|1.037 1.599 1.221 1.049|0.511 0.819 0.819 0.528
SD | 0.286 0.357 0.286 0.282(0.326 0.484 0.326 0.322(0.326 0.480 0.382 0.376|0.295 0.386 0.386 0.376
CI | 0.958 0.888 0.958 0.940]0.946 0.843 0.946 0.945[0.953 0.837 0.942 0.957|0.952 0.907 0.907 0.947

Lt+2 0.5 ME|[-0.009 0.279 -0.009 -0.009|1.044 1.617 1.044 1.044(1.017 1.573 1.195 1.024|0.522 0.829 0.829 0.528
SD | 0.286 0.358 0.286 0.282(0.327 0.484 0.327 0.323(0.325 0.478 0.380 0.373|0.296 0.386 0.386 0.377
CI | 0.971 0.900 0.971 0.950(0.949 0.825 0.949 0.949|0.943 0.857 0.956 0.956|0.943 0.909 0.909 0.959

Table 2: Simulation results for a four-dimensional normally distributed response and a binary treatment

variable (Bireat,1 = 0, Bireat,2 = 2, Bireat,3 = 2, Bireat,4 = 1). Response probabilities either depend on y;_»

(denoted by 2) or on y;_; (denoted by !). The model for the response probability either includes y;_»

(denoted by ¢t — 2) or y;—1 (denoted by ¢ — 1).

/Btreat,l /Btreat,Q 5treat,3 /Btreat,4

Model p FD CC AC WEE| FD CC AC WEE| FD CC AC WEE| FD CC AC WEE

2¢2 0.5 ME[-0.003 0.473 -0.003 -0.0031.996 2.264 1.996 1.996|1.999 2.247 2.231 2.029{0.995 1.247 1.247 1.032
SD | 0.139 0.145 0.139 0.138(0.140 0.166 0.140 0.138{0.140 0.170 0.169 0.189{0.140 0.169 0.169 0.195
CI | 0.952 0.106 0.952 0.950(0.945 0.643 0.945 0.942(0.943 0.694 0.731 0.858{0.944 0.680 0.680 0.849

2¢2 0.9 ME| 0.005 0.482 0.005 0.005|2.007 2.443 2.007 2.007|2.005 2.440 2.426 2.069|1.004 1.437 1.437 1.074
SD | 0.139 0.143 0.139 0.138{0.140 0.150 0.140 0.138(0.140 0.150 0.151 0.183|0.140 0.151 0.151 0.186
CI | 0.942 0.085 0.942 0.940{0.939 0.179 0.939 0.939(0.945 0.179 0.190 0.774|0.946 0.176 0.176 0.755

2¢1 0.5 ME|-0.003 0.478 -0.003 -0.003|1.999 2.269 1.999 1.999|2.008 2.256 2.243 2.176|1.003 1.252 1.252 1.125
SD | 0.139 0.145 0.139 0.121{0.140 0.167 0.140 0.137(0.140 0.170 0.169 0.161{0.140 0.170 0.170 0.172
CI | 0.951 0.092 0.951 0.913]0.942 0.640 0.942 0.939{0.946 0.661 0.685 0.782|0.937 0.672 0.672 0.857

2¢2 0.9 ME|-0.006 0.481 -0.006 -0.006|1.992 2.436 1.992 1.992|1.995 2.436 2.422 2.215{0.990 1.432 1.432 0.989
SD | 0.140 0.145 0.140 0.137{0.139 0.150 0.139 0.138(0.140 0.151 0.152 0.153|0.140 0.151 0.151 0.182
CI | 0.939 0.083 0.939 0.937]0.934 0.188 0.934 0.933]0.941 0.187 0.218 0.620|0.944 0.199 0.199 0.813

1t+2 0.5 ME| 0.002 0.316 0.002 0.002|1.997 2.464 1.997 1.997[1.996 2.464 2.177 2.114[0.996 1.309 1.309 1.237
SD | 0.140 0.177 0.140 0.136{0.140 0.156 0.140 0.122{0.140 0.156 0.158 0.141{0.139 0.175 0.175 0.176
CI | 0.930 0.553 0.930 0.925]0.922 0.167 0.922 0.886|0.945 0.157 0.776 0.828]0.935 0.558 0.558 0.692




The first two blocks within tables 1 and 2 show the results for the correctly specified model of the
response probabilities. It is seen that the CC and the AC estimators do not yield consistent parameter
estimates, since the response data are not MCAR but MAR. The bias increases with the correlation of
the responses and, generally, with the proportion of missing values. In contrast to the CC and the AC
estimator, the WEE produces consistent parameter estimates. As expected, the standard deviation (SD)
of the WEE is greater than that of the FD due to the presence of missing data.

The consistency of the WEE requires the correct specification of the model for the response prob-
abilities. It is interesting to note that the bias turns out to be negligible in the models considered in
our simulations if the true missing data process depends on y;—o but y;—;1 is used to model the response
probabilities (tables 1 and 2, blocks 3 and 4). Unexpectedly, there is no trend for an increased bias if the
correlation of the responses decreases. The findings also hold if the true missing data process depends on
yt_1 but y;_o is used in the model of the response probabilities. There seems to be a trend for a bias in
the estimate of Bireat,4 for the continuous response (table 2). This trend, however, is not seen for other
parameters and in other simulated models (s. table 1; results from other simulated models not shown).
Compared with standard approaches the WEE are, however, preferable even if the model for the response
probabilities is slightly misspecified (tables 1 and 2).

Tables 1, 2, 3 and 4 show the results for misspecified response probabilities. The endogenous variable
used to model the response probabilities is misspecified in tables 1 and 2. Tables 3 and 4, however,
display results for both response probabilities estimated without covariates and response probabilities
estimated without lagged explanatory variables of the mean model. The simulation to set up tables
3 and 4 proceeds as above with the exception that we use trivariate binary and continuous responses,
respectively, instead of four-dimensional dependent variables. The model without X leads to the same
conclusions as the misspecified models in tables 1 and 2. In the case that the response probabilities are
estimated without any y, i.e. we assume MCAR, the WEE are nearly as biased as CC and AV.

Our simulations clearly demonstrate that the WEE are consistent if the missing data process is MAR
and if the model for the response probabilities is correctly specified. The CC and the AC estimator yield
biased parameter estimates in these situations. The WEE may yield biased estimates if the model for
the response probabilities is misspecified. If, however, the misspecification is negligible, the WEE may
serve as an appropriate working model. A theoretical solution that quantifies the bias of the parameter
estimates of the mean structure is required for the situation of a misspecified model for the response
probability.

Table 3: Simulation results for a trivariate binary response and a binary treatment variable (Sireat,1 =
0, Bireat,2 = 1, Bireat,s = 0.5). The association structure is exchangeable with p = 0.5. Response proba-
bilities depend on y;—;. Results depend on the model for estimating response probabilities.
Model 5treat,1 Btreat,? /Btreat,S
FD CC AC WEE| FD CC AC WEE| FD CC AC WEE
without X mean -0.005 0.506 -0.005 -0.005|1.026 1.619 1.234 1.070 | 0.544 0.918 0.918 0.657
std.dev | 0.286 0.381 0.286 0.283 | 0.325 0.506 0.400 0.396 | 0.297 0.410 0.410 0.404
CI 0.970 0.748 0.970 0.946 | 0.949 0.847 0.949 0.962 | 0.945 0.873 0.873 0.938

without y mean -0.004 0.495 -0.004 -0.004 | 1.029 1.653 1.259 1.259 | 0.552 0.910 0.910 0.910
std.dev | 0.286 0.380 0.286 0.286 | 0.326 0.511 0.403 0.403 | 0.297 0.409 0.409 0.409
Cl 0.974 0.736 0.974 0.974 | 0.940 0.836 0.949 0.949 | 0.954 0.859 0.859 0.859

Table 4: Simulation results for a trivariate continuous response and a binary treatment variable
(Bireat,1 = 0, Bireat,2 = 2, Brreat,3 = 1). The association structure is exchangeable with p = 0.5. Re-
sponse probabilities depend on y;—1. Results depend on the model for estimating response probabilities.

Model Btreat,1 Btreat,2 Btreat,3
FD CC AC WEE| FD CC AC WEE| FD CC AC WEE

MAR without X mean 0.008 0.447 0.008 0.008 | 1.999 2.240 2.209 2.091 | 1.007 1.236 1.236 1.113
std.dev | 0.139 0.143 0.139 0.138 | 0.138 0.162 0.164 0.177 | 0.139 0.165 0.165 0.180
Cl 0.942 0.127 0.942 0.940 | 0.933 0.679 0.753 0.856 | 0.944 0.684 0.684 0.826
MCAR mean -0.000 0.477 -0.000 -0.000 | 1.992 2.262 2.225 2.225|1.000 1.245 1.245 1.245
std.dev | 0.140 0.146 0.140 0.140 | 0.139 0.165 0.168 0.168 | 0.139 0.170 0.170 0.170
Cl 0.934 0.095 0.934 0.934|0.947 0.632 0.710 0.710 | 0.947 0.673 0.673 0.673




In the second part of our simulation study we analyze the effect of misspecifying the link function for
the response probability model. The simulation proceeds as above. We use trivariate binary responses
and trivariate continuous responses, respectively. Subject to variation were the sample size (number of
clusters n), the correlation p of the association structure, the proportion of missing values (%miss) and
the link function used to generate the missing values (Link).

Table 5 shows the results for a trivariate binary response and a binary treatment variable with
(Brreat,1 = 0, Pireat,2 = 2, Pireat,s = 1). The association structure is exchangeable with p = 0.5. The
model for the response probabilities is correctly specified. The logit link function and the compound
loglog link function are used to generate the missing data. The proportion of missing values in the
treatment group (%miss) varies between 6% and 18%. The sample consists of either 100 or 1000 clusters.
Obviously, parameter estimates, standard deviations and coverage probabilities differ only slighty between
the logit, probit and the compund loglog link functions that are used to solve the WEE. These results
hold for missing data generated using the logit and the compund loglog link, respectively. Nevertheless,
we have to point out that the data for Sireat 2 are slightly biased even for the complete data (FD).

Table 6 shows the simulation results for a trivariate binary response, a binary treatment variable with
(Btreat,1 = 0, Brreat,2 = 1, Bireat,3 = 0.5) and a continuous covariate (Seont = 1). The association structure
is exchangeable with p = 0.5. The model for the response probabilities is correctly specified and missing
data are generated using the logit link function. The proportion of missing values in the treatment group
(%miss) varies between 4% and 86%. The sample consists either of 100 or 1000 clusters. Analogously
to table 5, the results are very similar for the different link functions. It is interesting to note that the
treatment effect at time 2 can be estimated appropriately from a total of 100 clusters even if 62% and
86% of the data in the treatment group are missing at times 2 and 3, respectively.

Table 7 shows the simulation results for a normally distributed response and a binary treatment
variable (Bireat,1 = 0, Btreat,2 = 2, Bireat,3 = 1). Table 8 displays simulation results for similar models.
However, a continuous covariate (Bcont = 1) is included in the model in addition to the binary treatment
variable. In both simulation settings, the association structure is exchangeable. The model for the
response probabilities is correctly specified. The number of clusters is 1000. Missing data are generated
using the logit link function. Results depend on the proportion of missing values in the treatment group
(%miss) and the correlation of the responses (p).

The simulation results for normally distributed responses are similar to those of the binary dependent
variables. Thus, there is no apparent difference between the three applied link functions. However, the
reader should note that the coverage probabilities for Sireat,2 decrease if a) the proportion of missing values
increases and b) the correlation increases. These results are as expected since the precision decreases
with a higher proportion of missing values. Furthermore, the additional information gained from multiple
observations within a cluster is low for high response correlations.

Summing up, the second part of our simulations shows that the use of the link function to model the
response probabilities is expected to have a negligible effect in most circumstances.
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5 Discussion

The application of GEE to estimate clustered data has become increasingly popular in recent years.
They have been implemented in several standard software packages (s. e.g. Ziegler and Gromping, 1998).
However, they all rely on the assumption that missing data are only MCAR in Laird’s (1988) sense.
Imputation (Paik, 1997; Xie and Paik, 1997) or weighting approaches (Robins et al., 1995; Robins and
Rotnitzky, 1995; Rotnitzky and Robins, 1995) that may be applied if missing data in the responses are
MAR in Laird’s (1988) sense have only received little attention. Recently, it has been stated that “one
could possibly exploit recent developments in semi-parametric modeling approaches”. However, it has
been criticized that this possibility is not “available in an accessible form with current software” (Carlin
et al., 1999). This important shortcoming of the WEE that weights observations inversely proportional
to their respective response probabilities has now been solved. The WEE proposed by Robins and co-
workers have been implemented in the stand-alone package MAREG (Kastner et al., 1997) which is freely
available. They seem to be an interesting approach to estimate the marginal from clustered follow-up
data. Its current implementation is, however, restricted to monotone missing data patterns. An extension
to arbitrary missing data patterns is under construction.

In this paper we have investigated the effect of a slightly misspecified model for the response probabil-
ities and a misspecified link function by simulations using the WEE for monotone missing data patterns.

Firstly, we have shown that the WEE yield consistent parameter estimates of the mean structure
if missing responses are MAR, while the usually applied complete cluster (CC) or available case (AC)
estimator failed to be consistent. Our results furthermore demonstrate that a slight misspecification of
the model for the response probabilities will have a negligible effect on the parameter estimates of the
mean structure. This result fits well within the classical findings for linear and generalised linear models
(GLM, s. e.g. Greene, 1993).

Secondly, we have shown that the choice of the link function has a negligible effect on the parameter
estimates of the mean structure. This result also agrees with classical findings for GLM and GEE (Park
and Weisberg, 1998; Li and Duan, 1989). These authors have shown that FISHER consistent estimates
of regression coefficients can be obtained even if the link function in the GLM is misspecified. Thus, we
can expect that the choice of the link function for the response probabilities will generally have a trifling
effect on the estimate of the response probabilities.

Theoretical work would be helpful that allows a quantification of the bias introduced by a misspec-
ification of the model for the response probabilities. Further work should also investigate the use of
alternatives to GLM for the modeling of response probabilities for WEE.

Acknowledgements

The work of C.K. was supported by the Deutsche Forschungsgemeinschaft.

References

Carlin, J. B., Wolfe, R., Coffey, C. and Patton, G. C. (1999). Analysis of binary outcomes in longitudinal
studies using weighted estimating equations and discrete-time survival methods: Prevalence and
incidence of smoking in an adolescent cohort, Statistics in Medicine 18: 2655-2679.

Fitzmaurice, G. M. and Laird, N. M. (1993). A likelihood-based method for analysing longitudinal binary
responses, Biometrika 80: 141-151.

Greene, W. H. (1993). Econometric Analysis, 2 edn, Macmillan, New York.

Kastner, C. (2000). Fehlende Werte bei korrelierten Beobachtungen, Dissertation, Ludwig-Maximilians-
Universitdt Miinchen.

Kastner, C., Fieger, A. and Heumann, C. (1997). MAREG and WinMAREG—a tool for marginal regres-
sion models, Computational Statistics and Data Analysis 24: 235-241. URL: (http://www.stat.uni-
muenchen.de/~andreas/mareg/winmareg.html)

Laird, N. M. (1988). Missing data in longitudinal studies, Statistics in Medicine 7: 305-315.

11



Li, K. C. and Duan, N. (1989). Regression analysis under link violation, Annals of Statistics 17: 1009
1052.

Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models,
Biometrika 73: 13-22.

Little, R. J. A. and Schenker, N. (1995). Missing data, in G. Arminger, C. C. Clogg and M. E. Sobel
(eds), Handbook of Statistical Modeling for the Social and Behavioral Sciences, Plenum, New York,
pp- 39-75.

Paik, M. C. (1997). The generalized estimating equation approach when data are not missing completely
at random, Journal of the American Statistical Association 92: 1320-1329.

Park, C. and Weisberg, S. (1998). Fisher consistency of GEE models under link misspecification, Com-
putational Statistics and Data Analysis 277: 229-235.

Robins, J. M. and Rotnitzky, A. G. (1995). Semiparametric efficiency in multivariate regression models
with missing data, Journal of the American Statistical Association 90: 122-129.

Robins, J. M., Rotnitzky, A. G. and Zhao, L. P. (1995). Analysis of semiparametric regression models for
repeated outcomes in the presence of missing data, Journal of the American Statistical Association
90: 106-120.

Rotnitzky, A. G. and Robins, J. M. (1995). Semiparametric estimation of models for means and covari-
ances in the presence of missing data, Scandinavian Journal of Statistics 22: 323-333.

Xie, F. and Paik, M. C. (1997). Multiple imputation methods for the missing covariates in generalized
estimating equation, Biometrics 53: 1538-1546.

Zeger, S. L., Liang, K.-Y. and Self, S. G. (1985). The analysis of binary longitudinal data with time-
independent covariates, Biometrika 72: 31-38.

Ziegler, A. and Gromping, U. (1998). The generalised estimating equations: A comparison of procedures
available in commercial statistical software packages, Biometrical Journal 40: 245-260.

Ziegler, A., Kastner, C. and Blettner, M. (1998). The generalised estimating equations: An annotated
bibliography, Biometrical Journal 40: 115-139.

Ziegler, A., Kastner, C. and Chang-Claude, J. (2000). Analysis of pregnancy and other factors on detection
of HPV infection using weighted estimating equations for follow-up data, SFB386 — Discussion paper
201, Ludwig-Maximilians-Universitat Miinchen.

12



