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ESTIMATING A POLYNOMIAL
REGRESSION WITH MEASUREMENT
ERRORS IN THE STRUCTURAL AND

IN THE FUNCTIONAL CASE - A
COMPARISON.

HANS SCHNEEWEISS AND THOMAS NITTNER
UNIVERSITY OF MUNICH

SUMMARY

Two methods of estimating the parameters of a polynomial regression with mea-
surement errors in the regressor variable are compared to each other with respect to
their relative efficiency and robustness. One of the two estimators (SLS) is valid for
the structural variant of the model and uses the assumption that the true regressor
variable is normally distributed, while the other one (ALS and also its small sample
modification MALS) does not need any assumption on the regressor distribution. SLS
turns out to react rather strongly on violations of the normality assumption as far as
its bias is concerned but is quite robust with respect to its MSE. It is more efficient
than ALS or MALS whenever the normality assumption holds true.
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1. INTRODUCTION

It is well known that if a regressor variable of a linear regression is measured with
errors, the ordinary least squares (OLS), or naive, estimator of the corresponding
slope parameter will be biased, the bias usually being such that it will attenuate
the true value of the slope parameter, Cheng and Van Ness (1999), Fuller (1987),
Schneeweiss and Mittag (1986). Assuming that the error is a random variable with
expectation zero and independent of the true regressor variable and that the value of
its variance is known, one can use this known error variance to construct an adjusted
least squares (ALS) estimator, which does not have any bias, but is in fact consistent.
The construction principle involved is that of the corrected score function method,
which can be applied not only to the linear but also to a large class of non-linear
models, Nakamura (1990), Buonaccorsi (1996). In this paper it will be applied to the
polynomial regression model, just as in Cheng and Schneeweiss (1998), see also Chan
and Mak (1985), and Stefanski (1989).



The ALS estimator does not use any further information beyond the knowledge
of the error variance. Suppose however that, even though the time regressor variable
cannot be observed, its distribution were known, then this additional knowledge could
be used to construct a possibly superior estimator by using another principle than that
for the ALS. The idea is to start from a mean function in the true regressor variables
as the original model, supplemented by a variance function, and to transform it into a
mean function model in the observable regressor by taking conditional expectations.
Again this principle can be applied to a large class of models including the polynomial
regression model, Thamerus (1998), Carrol et al. (1995). As the case of a known
regressor distribution corresponds to what is usually called the structural variant of
a measurement error model, this new estimator will be denoted by the same name: a
structural least squares estimator (SLS). It can be most easily constructed if a normal
distribution is assumed for the regressor variable.

In such a case, SLS will presumably be better than ALS in the sense of having
a smaller (asymptotic) variance, both estimators being consistent. However, if the
normality assumption is not valid, the SLS estimator may loose its superiority. In-
deed, the ALS estimator is more robust than the SLS estimator owing to the fact
that it does not depend on any particular distribution of the regressor variable. In
fact, the true regressor can even be thought of as being nonstochastic, i. e., just an
unknown constant for each observation, a case which is called the functional variant
of a measurement error model. Thus ALS is a method good for the functional variant
but can also be used in the structural variant case, whereas SLS explicitly makes use
of the distributional assumption of the structural variant of the measurement error
model and does depend on the validity of this assumption.

In the present paper we want to compare these two estimation methods, firstly
when the distribution of the true regressor variable is correctly specified as Gaussian
and secondly when it is non-Gaussian but incorrectly assumed to be Gaussian. One
may expect the ALS estimator not to be effected very much by the shape of the
regressor distribution and thus it will behave similarly whether the distribution is
correctly specified or not, but the SLS estimator will clearly depend on the correct
specification of the regressor distribution. The question is to what extent does the
SLS estimator react to a misspecification of the regressor distribution. When will its
properties deteriorate so much that it will become inferior to the more robust ALS
estimator?

The comparison will be done by way of a simulation study and will thus cover
small sample properties of the estimators. As with small samples ALS does not
behave very nicely, the estimates becoming very unstable, ALS has to be modified
so that its small sample variations become more stable and it can be compared more
easily with SLS, which apparently needs no modification. The modified method is
called MALS in this paper. The idea of modification stems from Fuller (1987) for a
linear model and has been adapted to the polynomial measurement error model by
Cheng et al. (1998).

In a recent paper, Kuha and Temple (1999) carried out a similar study trying to



answer the same question as in this paper. They do, however, not assume the error
variance to be known —the usual assumption— but rather the “noise-to-signal-ratio”.
Asymptotically these two approaches do not differ, but in small samples there may
be differences. Kuha and Temple also do not go beyond the quadratic model. On the
other hand, they study some other estimation methods as well.

In the next section a brief exposition is given of the estimation methods, ALS and
SLS, involved. Section 3 then describes the simulation study and presents its results.
The final section has some concluding remarks.

2. ESTIMATION METHODS

2.1 Adjusted least squares (ALS and MALS)

The model that is investigated is a polynomial regression in a latent variable & that
can only be measured with a measurement error 9.

yi = Bo+Bbi+...+ B +e (2.1)

x being the observed regressor variable. We assume the errors (e;,0;) to be iid
Gaussian, independent of the &’s, with variances ¢ and o3 and covariance o5 = 0.
It is then possible to construct polynomials ¢, (z) of degree r such that Et,(z;) = &£ .
Let H; be a (k+ 1) x (k+ 1) matrix with elements (H;),s = t,ys(x;), r,s =0,...,k
and h; a (k+ 1) x 1 vector with elements (h;), = y;t,(x;), r = 0,...,k, then the
unmodified ALS estimator Sazg of 3 = (Bo, - -+, Bk) is given as the solution of

HpBars =N, (2.3)

where the bar denotes averages, e. g., H = %Zﬂi; for details see Cheng and
Schneeweiss (1998).

This estimator is consistent and asymptotically normal. For small samples, how-
ever, it can give rise to large estimation errors, at least occasionally, and in particular
if the noise-to-signal-ratio 0§ /o7 is large, say, larger than 0.1. A modification of ALS
is available which reduces the estimator’s variance considerably without introducing
any conceivable bias. For this, define the vector ¢; = (to(z;),...,tk(x;)) and the
matrix V; = t;t; — H;. Then the MALS estimator of 3 is given as the solution of

(t — aV)Byars = b, (2.4)
where
1—2 if p>1+1
a = y
— . 1
przt it p<1l++



p being the smallest positive root (which always exists) of

w(EE) () e

where &« = k + 4. The estimator is an adaptation of Fuller’s (1987) small sample
improvement of the parameter estimates in a linear model with measurement errors.
For details see Cheng et al. (1998).

2.2 Structural least squares (SLS)

In order to introduce SLS assume & ~ iid N(ug, 07), write the regression model (2.1)
as a conditional mean-variance model (see Caroll et al. 1995):

E(y|€) = Bo+ &+ +Bs" (2.6)
V(y &) = of, (2.7)

and find a new mean-variance model in the observable variable x by taking conditional
expectations given x:

By [z) = gﬁjuj(ﬂf) (2.8)

Viylz) = 03+22 i Bl 1(x) — (@) ()} (2.9)

where p,.(z) = E(¢" | ). The conditional moments are easily computed using the
fact that the conditional distribution of £ given z is N(u(z),7%) with

p@) = po+ (1= 05/0))(z = pta) (2.10)
™ = o3(1—03/02) . (2.11)

Let pp = E[{& — u(z)}" | ] be the r-th conditional central moment of £ given x, then

0 if ris odd
Hy =
1-3-5---(r—1)7" if riseven

and p,(x) is given by

d r * r—j
= Z ( j ) pip()" (2.12)
=0
p and o2 can be estimated by their empirical counterparts.

o 1 _
fiz =T, ai:n_lz(xi—xy




If these are substituted for p, and o2 in (2.10) to (2.12), estimates of 72 and pu(z)
and finally of y,(z) arise. Replacing the y,(z) in (2.8) and (2.9) by their estimates and
substituting the observable values x; for the variable x we finally get a mean-variance
model for the observable data with mean and variance functions

~

Blyle=m) = gﬁjﬂj(wz’) (2.13)

Viylo=a) = o2+ > BiBilijla:) — fij(z:)fulz:)} (2.14)

j=11=1

One can derive estimates for the (3’s for this model by an iteratively reweighted
least squares method, where in each step, s, an estimate for o2 has to be updated
using the residuals of the previous step, s — 1:

62" = =k =17 Yy~ {8 ()} (2.15)

For details see Thamerus (1998) and for the general method Carroll et al. (1995).
It might be mentioned that an approximate method exists, where E(y|z) is approxi-
mated by replacing £ in (2.6) with E(£|z). This is the regression calibration method,
Carrol et al. (1995), which however can only reduce the measurement error bias, not
remove it. A more elaborate expanded regression calibration method is also avail-
able and is, in fact, used by Kuha and Temple (1999) in their simulation study. In
the quadratic model it coincides with the method used here, but not in higher order
polynomials, where it is only approximately unbiased.

3. SIMULATIONS

In order to compare the performance of ALS, both unmodified and modified, with
that of SLS a simulation study was run. Several polynomial models were studied,
which differed in the degree of the polynomial, £ = 2 or 3, and in the distribution
of £&. The parameter values were 3y = 0, ; = 1, f = —0.5, and (for £ = 3)
B3 = 0.5. In all cases the error variances were taken to be 02 = 07 = 0.1. (A much
smaller error variance o2 = 0.01 was also experimented with, but in this case the
results of the various estimation methods did not differ very much. For larger error
variances like 02 = 0.5 the results became rather unstable.) The sample size was
fixed at n = 201. Three distributions for & were chosen: the Gaussian distribution
N(0, %), the uniform distribution, where the &; were fixed at the 201 equidistant points
—1+ 15, ¢ =0,...,200, and the exponential distribution Exp()) shifted to the left
by the amount + with A = /3. In all three cases E(§) = 0 and Var(¢) = 1. (Clearly
for the uniform distribution, which here is taken to be nonstochastic, E(¢) and Var(¢)
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have to be replaced with £ and s7 = £ 3(& — £)?, and the equality s7 = 5 holds only
approximately).

For these, altogether 6, models artificial samples were generated and the three
estimation methods ALS, MALS and SLS were applied. The simulations were run
with V = 100 replications. Bias and standard error of the estimates were computed
and can be compared between models and between estimation methods. The naive
OLS estimator was also computed but is not reproduced here. It clearly showed a
significant bias in almost all cases, as was to be expected.

In table 4.1 the simulation results are presented for £ = 2 and in table 4.2 for
k = 3. Note that the noise-to-signal ratio o2/Var(£) = 0.3 is rather high so that a
noticeable bias for the naive estimator (not shown here) results. The SLS estimator
is consistent if ¢ is actually normally distributed. The other estimators (ALS and
MALS) are always consistent, whatever the distribution of £. Nevertheless they may
show some bias in small or medium sized samples, where n = 201 may be considered
medium sized. It is for this reason that the bias is shown in Tables 4.1 and 4.2, even
though it turns out to be rather small and often insignificant for all the consistent
estimators.

From table 4.1 it is seen that in the quadratic case ALS and MALS estimators
hardly differ at all so that one might think the small sample modification of ALS was
not necessary. There are however, albeit rare, cases where the ALS estimate has an
extremely high estimation error, which is then greatly reduced by the MALS method.
Apparently such a case did not come up in the present simulation study. Nevertheless
the MALS method should always be used, if only for precautionary reasons.

The necessity of using MALS instead of ALS is seen most clearly in Table 4.2.
For the cubic regression, the MALS estimator has always a conspicuously smaller
standard deviation. While the standard deviation of MALS is rather modest, that of
ALS is often extremely large, rendering the ALS method almost useless in this case.

Let us now compare MALS to SLS. The standard deviations of the SLS estimators
are always smaller than those of MALS, regardless of the distribution of £&. However,
if we consider the bias, it is seen that on the whole, though not always, SLS has
a smaller bias than MALS if £ is normally distributed, but a significantly higher
bias if the distribution of £ deviates from the normal one, the difference being most
prominent in the case of the exponential distribution.

It should be noted that the values for the bias are only estimated values. A rough
rule-of-thumb 95%-confidence interval for the true bias is given by By + 26/3/\/N,

where 33 is the estimated bias of the estimated regression coefficient B, as shown
in the tables, 05 1s the corresponding estimated standard deviation, and N = 100.

Bias values with one asterisk differ from zero by 204 / V/N and with two asterisks by
365/VN.

A simple and comprehensive measure of precision is the overall MSE which here



is defined as the sum of the MSE’s for Bo to Bk, k = 2 or 3. This measure is shown
in Table 4.3 for the six models.

It is seen that the SLS estimators have smaller overall MSE than the MALS
estimators in models with a normal and uniform distribution of £. For the exponential
distribution, however, the overall MSE of the SLS estimators is larger in the quadratic
regression (k = 2), but still smaller in the cubic regression (k = 3), although only
slightly so.

4. CONCLUSION

Several conclusions can be drawn from the results of this simulation experiment.

1. The estimators considered in this paper are rather stable and do not differ
too much in the quadratic model. On the other hand, due to the high mul-
ticollinearity, all the estimators become rather unstable in the cubic case and
differ considerably with regard to their variances.

2. In particular the ALS estimator, a simple adjustment of the naive estimator,
although being consistent, has very bad small sample properties for the cubic
regression. Here a modification of ALS, viz. MALS, greatly reduces the instabil-
ity of the estimator giving rise to reasonable standard errors. In the quadratic
model, ALS and MALS hardly differ. This changes, however, when o2 increases,
e. g.,to 0.5. Then ALS becomes unstable also for the quadratic case.

3. While MALS (just like ALS) is a consistent method whatever the distribution
of &, another estimation procedure developed for the structural variant of the
measurement error model, viz. SLS, depends heavily on the assumption of nor-
mally distributed &-variables. As long as this assumption is true, SLS is superior
to MALS, both with regard to bias and to the standard error.

4. When the distribution of ¢ deviates from the normal distribution, SLS becomes
strongly biased, the more so the farther away the distribution of & gets from
normality. However the standard error of the SLS estimator is still rather small,
indeed so small that the overall MSE of SLS is smaller than that of MALS in
most cases except for the cubic regression with an exponential distribution of

.

5. This MSE behavior of SLS will certainly change when either the sample size is
increased or the error variance o2 becomes smaller. In these cases the overall
MSE will typically be always larger for the SLS estimators whenever the dis-
tribution of £ is non-normal. This is testified by the results of table 4.4. They
show that for o = 0.01 the overall MSE of SLS is always considerably larger
than the MSE of MALS, except for the case of normal &.

6. To sum up, SLS is always superior to MALS when the assumption of normality
of ¢ is valid. Whenever ¢ deviates from normality, SLS becomes biased and, as
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far as one is solely concerned with the bias, MALS should be prefered to SLS.
The picture is not so clear when one takes the MSE as a precision criterion.
With respect to this measure, SLS is rather robust, at least for not too large
samples and if 07 is large enough. For small 02 and for large sample size, SLS
deteriorates with respect to its overall MSE as compared to MALS.
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¢ Normal
ALS MALS SLS
Bo | 0.01 0.01 0.00
Gy | 0.02 0.02 —0.09 ** | Bias
B> | —0.04 —0.04 —0.09 **
Bo | 0.06 0.06 0.04
B 0.10 0.10 0.07 Standard deviation
B2 | 0.19 0.19 0.08
¢ Uniform
ALS MALS SLS
Bo | 0.04 0.04 **| —0.05 **
By | 0.02 0.02 —0.07 ** | Bias
B2 | —0.12 —0.11 ** | —0.19 **
Bo | 0.11 0.11 0.04
B 0.10 0.10 0.06 Standard deviation
B2 | 0.36 0.34 0.07

¢ Exponential

ALS MALS SLS
Bo | 0.01 0.01 —0.06 **
By | 0.01 0.01 —0.34 ** | Bias
B2 | —0.02 —0.02 024 **
Bo | 0.05 0.05 0.04
B 0.16 0.16 0.06 Standard deviation
B | 0.15 0.15 0.10

Table 4.1: Bias and standard error of three estimators in three different models with k£ = 2



¢ Normal
ALS MALS SLS
Bo | 0.03 —0.00 —0.01
B | —0.69 —0.25 ** | —0.08 ** | Bias
By | —0.23 —0.01 0.09 **
Bs | 1.14 0.35 ** | —0.13 **
Bo | 0.50 0.08 0.04
b1 4.58 0.38 0.15 Standard deviation
B> | 292 0.38 0.13
B3 | 7.68 0.55 0.16
¢ Uniform
ALS MALS SLS
Bo | 0.17 0.01 —0.06 **
Gh 0.10 —0.23 **| 041 **| Bias
B2 | —0.66 —0.04 0.20 **
Bs | 0.23 045 **| —0.73 **
Bo | 1.19 0.14 0.06
B 7.49 0.60 0.13 Standard deviation
By | 4.05 0.46 0.10
B3 | 15.98 1.02 0.13

¢ Exponential
ALS MALS SLS
Bo | —0.09 003 * | —0.19 **
B | 0.34 —0.14 ** | —0.29 ** | Bias
B> | 0.68 —0.37 *F| 085 **
B3 | —0.85 0.28 **| —026 **
Bo | 1.79 0.13 0.05
B1 2.91 0.35 0.19 Standard deviation
By | 10.85 0.74 0.16
Bs | 6.59 0.50 0.19

Table 4.2: Bias and standard error of three estimators in three different models with k£ = 3
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distribution of ¢
degree | estimator | normal | uniform | exponential
k=2 MALS 0.05 0.15 0.05
SLS 0.03 0.06 0.19
k=3 MALS 0.78 1.89 1.17
SLS 0.10 0.79 1.00

Table 4.3: Overall MSE of the estimators in six different models, 0% = 0.1

distribution of ¢

degree | estimator | normal | uniform | exponential
k=2 MALS 0.0016 | 0.0023 0.0014

SLS 0.0015 | 0.0034 0.0062

k=3 MALS 0.0155 | 0.0342 0.0297

SLS 0.0088 | 0.0803 0.0798

Table 4.4: Overall MSE of the estimators in six different models, o = 0.01
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